NEW ARBORANE TYPE TRITERPENOIDS FROM RUBIA CORDIFOLIA VAR. PRATENSIS AND R. ONCOTRICHA

Hideji ITOKAWA, * Ya-Fang QIAO, and Koichi TAKEYA

Department of Pharmacognosy, Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

The structures of six new arborane type triterpenoids, rubiarbonols A, B, C, D, E, and F, from Rubia plants were determined as 3β , 7β , 19α , 28-tetrahydroxyarbor-9(11)-ene, 3β , 7β , 19α -trihydroxyarbor-9(11)-ene, 2α -acetoxy- 3β , 7β , 19α -trihydroxyarbor-9(11)-ene, 3β -acetoxy- 2α , 7β , 19α -trihydroxyarbor-9(11)-ene, 2α , 3β , 7β , 19α -tetrahydroxyarbor-9(11)-ene, and 2α , 3β , 7β , 19α , 28-pentahydroxyarbor-9(11)-ene respectively by various spectroscopic methods.

KEYMORDS rubiarbonol; Rubia cordifolia var. pratensis; Rubia oncotricha; Rubiaceae; arborane; triterpenoid; $^{1}\text{H}-^{13}\text{C}$ COSY; COLOC

We have reported the isolation and characterization of three new oleanane type triterpenoids, rubi-prasins A, B, and C which were obtained from the roots of <u>Rubia cordifolia</u> L. var. <u>pratensis Maxim.</u> Here we describe the further isolation and structural elucidation of six new arborane type triterpenoids which have been isolated for the first time from the genus <u>Rubia</u>.

The roots of \underline{R} . $\underline{cordifolia}$ var. $\underline{pratensis}$ and \underline{R} . $\underline{oncotricha}$ Hand-Mazz. were collected in China. Methanol extracts were partitioned between water and chloroform, then the respective chloroform-soluble fractions were applied to repeated Sephadex LH-20 and silica gel column chromatography to give rubiarbonol A from \underline{R} . $\underline{cordifolia}$ var. $\underline{pratensis}$ and rubiarbonols B, C, D, E, and F from \underline{R} . $\underline{oncotricha}$ (Fig. 1).

Rubiarbonol A, colorless plates (from MeOH), 2) had partial structures 1, 2, 3, 4, 5, and 6 in the $^1H^{-1}H$ and $^1H^{-1}G$ COSY spectra (Fig. 2). There were also seven methyls, one hydroxymethyl, and six quarternary carbons in the 1H and $^{13}C^{-1}MR$ spectra (Tables I and II). From this it was evident that rubiarbonol A was an arborane or a fernane type triterpenoid. Also, correlation spectroscopy via $^1H^{-1}G^{-$

Rubiarbonol B, 4) colorless plates (from MeOH), was found to be a triterpenoid having eight methyls by the 1 H- and 13 C-NMR spectra, and it has the same partial structures as rubiarbonol A except for the partial

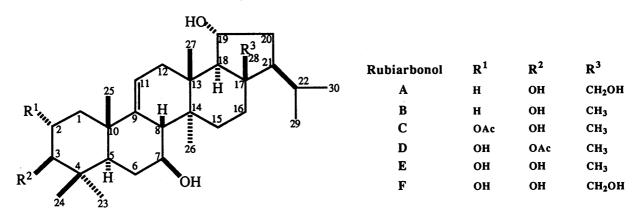


Fig. 1. Structures of Rubiarbonols A - F

Table I. H-NMR Spectra Data of Rubiarbonols A - F (400 MHz, Py-d₅, Coupling Constants in Hz)

	Rubiarbonol A	Rubiarbonol B	Rubiarbonol C	Rubiarbonol D*	Rubiarbonol E	Rubiarbonol F
H-2		-	5.54(td,10,4)	4.29(td,10,4)	4.21(td,11,4)	4.21(td,11,4)
H-3	3.50(dd,10,6)	3.49(dd,10,6)	3.56(dd,10,5) ^{a)}	5.08(d,10)	3.43(d,10)	3.41(d.9)
H-6**	2.31 (ddd,13,5,2)	2.31 (ddd,13,5,2)		2.20(ddd,13,5,2)	2.30(ddd,13,5,2)	2.29(ddd,13,5,3)
H-7	4.10(td,10,5)	4.06(td,10,5)	4.04(td,10,5)	4.02(td,11,5)	4.07(td,11,5)	4.09(td,10,5)
H-11	5.54(brd,6)	5.48(brd,6)	6.50(brd,6)	5.58(brd,6)	5.63(brd.5)	5.67(brd.6)
H-15**	2.85(dt,15,4)	2.82(dt,15,3)	2.81(dt,15,3)	2.78(dt,16,3)	2.81(dt,15,3)	2.82(dt,16,3)
H-18	2.37(d,10)	2.04(d,10)				2.34(d,10)
H-19	5.08(td,10,3)	4.51(td,10,3)	4.50(td, 9, 3)	4.48(td,10,3)	4.49(td,10,3)	5.05(td,10,3)
CH ₃ -23	1.26(s)	1.25(s)	1.26(s) ^b)	1.05(s) ^{d)}	1.26(s) ^{e)}	1.28(s)
CH ₃ -24	1.12(s)	1.11(s)	1.14(s) ^{C)}	1.01(s) ^d)	1.15(s) ^{f)}	1.15(s)
CH3-25	1.20(s)	1.21(s)	1.32(s) ^{b)}	1.23(s) ^{d)}	1.31(s) ^{e)}	1.28(s)
CH3-26	1.37(s)	1.28(s)	1.27(s) ^{b)}	1.27(s) ^{d)}	1.28(s) ^{e)}	1.34(s)
	1.46(s)	1.16(s)	1.16(s) ^{C)}	1.14(s)	1.16(s) ^{f)}	1.44(s)
CH3-28		0.88(s)	0.90(s)	0.89(s)	0.90(s)	4.22;4.11(d,11)
CH3-29		0.89(d,6)	0.91(d,6)	0.90(d,6)	0.91(d.6)	0.98(d,6)
	1.11(d,6)	0.84(d,6)	0.86(d,6)	0.86(d.6)	0.86(d.6)	1.11(d,6)
CH3 −CC			2.02(s)	2.11(s)		

- a) It became double (J=10Hz) when D20 was added. b-f) Assignments may be reversed.
- * The coupling constants were obtained from the spectrum made in CD3CD.
- ** These protons are equatorial.

Table II. 13C-NMR Spectra Data of Rubiarbonols A - F (100 MHz, Py-d₅)

											- 5					
C-No	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
λ	36.98	28.74	77 .9 9	39.42	48.99	33.86	72.13	49.43	147.69	39.79	117.29	37.64	38.37	40.23	33.02	33.32
В	37.03	28.81	78.04	39.49	49.07	33.94	72.20	49.48	147.64	39.88	117.09	37.34	38,33	39.93	32.08	37.17
C	42.53	74.05	79.47	40.22 ^a	¹⁾ 48.89	33.77	71.94	49.14	146.64	40.98 ⁸	1)117.46	37.16	38.34	39.93	32.06	37.16
D	46.57	66.92	84.80	39.35	48.72	33.62	71.84	49.15	146.71	40.77	117.55	37.29	38.32	39.94	32.07	37-15
E	46.02	69.20	83.57	39.71	49.12	33.91	72.07	49.24	147.24	41.03	117.26	37.30	38.35	39.95	32.10	37.18
F	46.04	69.20	83.58	39.71	49.09	33.91	72.06	49.28	147.38	41.03	117.52	37.68	38.46	40.33	33.11	33.38
	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Ac-Me	Ac-00
A	48.99	59.99	70.67	43.41	58.07	30.71	28,67	16.36	22.02	17.23	16.74	62.89	23.38	23.58		
В	43.82	59.26	70.38	41.91	57.83	30.72	28.74	16.42	22.05	17.12	16.99	15.95	22.20	23.20		
C	43.82	59.21	70.33	41.91	57.84	30.70	29.02	17.37	22.63	17.10	16.96	15.94	22.20	23.19	21.34	170.84
D	43.81	59.23	70.38	41.90	57.83	30.71	28.73	17.99	22.97	17.09				_		171.12
E	43.83	59.26	70.39	41.90	57.84	30.71	29.25	17.53	23.13	17.14	16.99	15.94	22.21	23.19		
F	49.09	60.09	70.72	43.49	58.17	30.78	29.27	17.54	23.17	17.31			23.45			
- \	9 2															

a) Assignments may be exchangeable.

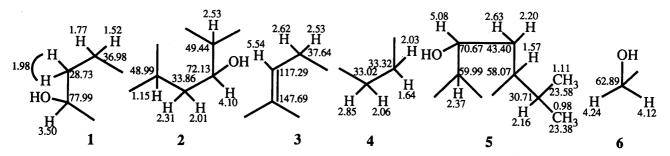


Fig. 2. Partial structures 1, 2, 3, 4, 5 and 6 of Rubiarbonol A (400 MHz, Py-d₅)

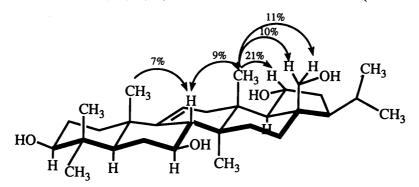


Fig. 3. NOE Enhancements of Rubiarbonol A (500MHz, Py-d₅)

structure 6 from the $^{1}\text{H}-^{1}\text{H}$ and $^{1}\text{H}-^{13}\text{C}$ data. Apparently it is an arborane type triterpenoid in analogy with rubiarbonol A. The complete assignments have been made by the analysis of the COLOC spectrum at 500 MHz (in pyridine-d₅). Also, a 5% enhanced NOE effect appeared between the methyl group at the C-10 and the proton at the C-8 in 1D-NOE experiment. The hydroxyl groups attached to the 3-, 7- and 19-positions evidently were β , and α orientations similar to rubiarbonol A. Consequently, rubiarbonol B was cofirmed as shown in Fig. 1.

Rubiarbonol C^{5} was isolated as colorless needles and D^{6} as colorless powder. Their 13 C chemical shifts were like those of rubiarbonol B, except for the appearance of an acetyl group in each one and the carbon signals of ring A, namely the C-2 and C-3 signals were shifted 45.24 and 1.43 ppm downfield in rubiarbonol C, and 38.11 and 6.76 ppm downfield in rubiarbonol D, compared with rubiarbonol B (Table II). So rubiarbonols C and D have an additional hydroxyl group at C-2, which has been acetylated in the former, and the C-3 hydroxyl group has been acetylated in the latter, as is also apparent from their 1 H-NMR spectra (Table I). Thus, rubiarbonols C and D were respectively established as shown in Fig. 1. The orientations of the hydroxyl groups were also confirmed from the proton coupling constants combining with the hydroxy-carbons. The complete assignments of rubiarbonols C and D were determined on the basis of the spectral data of rubiarbonol B.

Rubiarbonols $E^{7)}$ and $F^{8)}$ were obtained as trace constituents of colorless powder. Their structures were determined in the same way as shown in Fig. 1. The structure of rubiarbonol F was also supported by the $^{1}\text{H}-^{1}\text{H}$ COSY spectrum.

The isolations of rubiarbonols A - F from \underline{R} . cordifolia var. pratensis and \underline{R} . oncotricha are particularly interesting in view of the fact that arborane type triterpenoids have rarely been isolated from natural sources. 3.9) and were not yet discovered before in \underline{Rubia} plants.

ACKNOWLEDGMENT The authors are grateful to Dr. H. Morita for helpful discussion and to Miss E. Kijima for invaluable assistance.

REFERENCES AND NOTES

- 1) H. Itokawa, Y.-F. Qiao, K. Takeya, and Y. Iitaka, Chem. Pharm. Bull., 37, 1670 (1989).
- 2) Rubiarbonol A, HRMS: Calc. 456.3601, Found 456.3614, $C_{30}H_{48}O_3$ (M⁺- H_2O), mp 260 263°C, [a]_D +36.5° (c 0.22, MeOH), IRv $_{max}cm^{-1}$ (KBr): 3423 (OH), 1639 (C=C).
- 3) K. Nishimoto, M. Ito, and S. Natori, Tetrahedron, 24, 735 (1968).
- 4) Rubiarbonol B, HRMS: Calc. 440.3651, Found 440.3627, $C_{30}H_{48}O_2$ (M⁺- H_2O), mp 272 273°C, [a]_D +30.3° (c 0.17, MeOH), IRv $_{max}cm^{-1}$ (KBr): 3338 (OH), 1640 (C=C).
- 5) Rubiarbonol C, HRMS: Calc. 498.3706, Found 498.3699, $C_{32}H_{50}O_4$ (M⁺- H_2O), mp 211 213°C, [α]_D -4.3° (c 0.70, MeOH), IR ν max cm⁻¹(KBr): 3436 (OH), 1719 (C=O), 1639 (C=C).
- 6) Rubiarbonol D, HRMS: Calc. 498.3706, Found 498.3659, $C_{32}H_{50}O_4$ (M⁺- H_2O), mp 218 220°C, $[\alpha]_D$ +6.1° (c 0.33, MeOH), IR ν maxcm⁻¹(KBr): 3423 (OH), 1740 (C=O), 1720 (chelate C=O), 1638 (C=C).
- 7) Rubiarbonol E, HRMS: Calc. 456.3600, Found 456.3506, $C_{30}H_{48}O_3$ (M⁺- H_2O), dec. 290°C, [α]_D +15.4° (c 0.13, MeOH), IR ν max cm⁻¹(KBr): 3423 (OH), 1630 (C=C).
- 8) Rubiarbonol F, HRMS: Calc. 472.3550, Found 472.3551, $C_{30}H_{48}O_4$ (M⁺- H_2O), dec. 280°C, $[\alpha]_D$ +33.3° (c 0.09, MeOH), $IRv_{max}cm^{-1}$ (KBr): 3432 (OH), 1631 (C=C).
- 9) W. H. Hui and C. N. Lam. Phytochemistry, 4, 333 (1965).

(Received March 7, 1990)