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SYNTHESIS OF THE B/C-RING SYSTEM OF TETRONASIN (ICI-139603)
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An efficient entry to the tetrahydropyran/cyclohexane moiety of tetronasin has been
developed. An aldol reaction between a cyclohexanecarboxaldehyde,8, and a (tetrahydro-
pyranyl)acetate ,9 ,under controlled conditions followed by dehydration of the adduct 10
afforded predominantly (E)-ester 11, which on photoisomerization and subsequent
reduction with iso-BupAlH provided the B/C ring system 13.
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A reasonable approach to the total syntheses of tetronasin (1)1) and the closely related antibiotic
tetronomycin (2)2) would be in the first place to synthesize the three subunits (A-, B-, and C-rings) suitable
for coupling reaction, then their assemblage in an appropriate order, and lastly introduction of the
acyltetronic acid appendage.3) To date we and S.V. Ley's group have been able to synthesize all three cyclic
fragments4) and achieved connection of the two heterocycles.) The remaining problem in accomplishing the
total synthesis is how to join the cyclohexyl and tetrahydropyranyl groups.®) Here we provide a solution to
the problem as realized in a successful synthesis of the B/C ring system of 1.

In a previous paper’) we reported the synthesis of a racemate of bicyclic ketone 3 and its transformation
into cyclohexane fragment (+)-6. To obtain both enantiomers of 6, which can be used for the total
syntheses of tetronasin (1) and tetronomycin (2), we resolved the racemate via ketalization with (2R,3R)-
butanediol to furnish 4 and ent-4%) whose absolute stereochemistries were determined at a later stage of the
transformations. The resolution was also accomplished by an enzyme-catalyzed enantioselective
acetylation.9) Thus, treatment of (+)-4 with acetic anhydride (2 eq) in a 9:4 mixture of isooctane and benzene
in the presence of Amano lipase CES (Pseudomonus sp.) on Celite (23 °C, 9h) afforded 5 (62.5% ee, 52%
yield), and ent-4 (65.2% ee, 48% yield).10.11) The optical purity of (-)-5 could be enhanced to 90% ee
(35% yield) by single recrystallization from hexane-iso-Prp0 (1:1).

The bicyclic ketone (-)-4 was transformed into functionallized cyclohexane 6, [ot]p26 +4.83° (c=1.69,
CHCI3) according to the procedure we reported earlier.”) The absolute configuration as depicted was
assigned by an acid-catalyzed lactonization?) leading to 7, [a]p26 -98.2° (¢c=0.5, CHCI3), and by comparison
of the [ot]p with that of ent-7, []p28 +89.9° (c=0.16, CHCI3) obtained by an exhaustive ozonolysis of
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tetronomycin.12) Compound 6 was then converted to aldehyde 8 by a conventional 2-step reaction:
desilylation (HF in aq. MeCN) and Swern oxidation.13)

Coupling of 8 and pyran segment 914) by an aldol reaction have been accomplished under controlled
conditions. Thus treatment of 9 with lithium diisopropylamide in THF at -100 °C for 15 min followed by
addition of 8 (0.65 eq),15) then quenching the reaction after 15 min produced in 79% yield an easily separable
mixture of two diastereomeric adducts, 10a (less polar)/10b (more polar) = 1:1.7) The individual isomer
was dehydrated by O-mesylation (5 eq MeSO2Cl and 0.5 eq 4-dimethylaminopyridine in pyridine, room temperature, 24
h) followed by treatment of the crude O-mesylate with DBU (neat, room temperature, 20 h). By this procedure
the isomer 10a produced (E)-ester 11 exclusively, whereas 10b afforded a 10:1 mixture of 11 and (Z)-ester

12. The assignments of the olefin geometries were based on the downfield chemical shift of the vinyl
proton in 11 (8 6.65) relative to that observed in 12 (3 5.79).16,17)

H oTBS

TBS = tort-butyldimethylsily!

Predominant formation of the (E)-ester 11 prompted us to investigate a photochemical E/Z isomerization.
Irradiation of an acetone solution of 11 (ca. 8 mM) with 254-nm light using an immersion-type low-pressure
Hg lamp at -10 °C for 2.5 h produced a 1:2 mixture of 11 and 12, from which the desired (Z)-isomer 12
was isolated in 50% yield by silica gel chromatography. Finally, the ester and nitrile groups of 12 were
reduced by treatment with diisobutylaluminum hydride (3 eq) in toluene at -80°C to provide the B/C ring
system 13,17) [a]p25 -15.3° (c=0.35, CHCI3) in 75% yield. Application of the present result to the total
syntheses of 1 and 2 is under investigation.
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11: 5 0.04 (6H, s, SiMep), 0.76 (3H, d, J=6.6 Hz, Me-3), 0.88 (9H, s, tBu), 0.93-
1.46 (7H, m), 1.07 (3H, d, J=6.3 Hz, Me-3'), 1.32 (3H, d, J=7.6 Hz, CH(Me)CN),
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CHHOTBS), 4.16 (1H, d, J=10.3 Hz, H-2), 6.65 (1H, d, J=10.5 Hz, olefinic-H).
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q, J=7.6 Hz, CH(Me)CN), 3.36-3.45 (1H, m, H-6), 3.51 (1H, dd, J=10.6, 4.5 Hz,
CHHOTBS), 3.63 (1H, dd, J=10.6, 6.1 Hz, CHHOTBS), 3.70 (1H, d, J=9.8 Hz, H-2),
3.79 (3H, s, COOMe), 5.79 (1H, 4, J=11.0 Hz, olefinic-H).

13: 8 0.04 (6H, s, SiMe2), 0.65 (3H, d, J=6.6 Hz, Me-3), 0.88 (9H, s, tBu), 0.93
(34, d, J=6.3 Hz, Me-3'), 1.04-1.75 (12H, m), 1.20 (3H, 4, J=7.3 Hz, CH(Me)CN),
1.83-1.91 (1H, m, H-2'), 2.38 (1H, qd, J=10.6, 3.7 Hz, H-1'), 2.50 (1H, qd,
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3.44 (1H, d, J=9.8 Hz, H-2), 3.51 (1H, dd, J=10.3, 4.9 Hz, CHHOTBS), 3.60 (1H,
dd, J=10.3, 5.4 Hz, CHHOTBS), 4.09 (1H, d, J=11.9 Hz, CHHOH), 4.23 (1H, dd,
J=11.9, 8.4 Hz, CHHOH), 4.96 (1H, d, J=10.6 Hz, olefinic-H), 9.73 (1H, s, CHO).
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