RING-OPENING FLUORINATION OF α , β -EPOXY SULFOXIDES: A NOVEL SYNTHESIS OF α -FLUOROKETONES 1)

Tsuyoshi SATOH, Jun-ichi SHISHIKURA, and Koji YAMAKAWA*
Faculty of Pharmaceutical Sciences, Science University of Tokyo,
Ichigaya-funagawara-machi, Shinjuku-ku, Tokyo 162, Japan

Treatment of α , β -epoxy sulfoxides (sulfinyl oxilanes) with KHF $_2$ and BF $_3$ ·OEt $_2$ in CHCl $_3$ gave α -fluoroketones in moderate to good yields. KEYWORDS α , β -epoxy sulfoxide; α -fluoroketone; fluorination; KHF $_2$

Recently, α -fluoroketones have been used as key substances for preparation of fluorine-containing medicines and agricultural chemicals. There are many approaches to preparing α -fluoroketones. The most convenient method is oxidation of α -fluoro alcohols, which usually are synthesized from epoxides by the reaction with HF or modified HF. Recently, Shimizu et al. reported that SiF4 was an effective fluorinating agent; SiF4 and additives (R4NF, H2O, and/or R3N) formed hypervalent fluorosilane, so nucleophilicity of the fluoride anion was increased. In some cases, α -halo- or α -cyanoepoxides are directly converted into α -fluoroketones with AgBF4; however, AgBF4 is quite expensive.

On the other hand, we have reported new methods for synthesizing $\alpha\text{-substituted}$ ketones through $\alpha,\beta\text{-epoxy}$ sulfoxides. For example, treatment of $\alpha,\beta\text{-epoxy}$ sulfoxides with MgCl $_2$ in refluxing 2-propanol gave $\alpha\text{-chloroketones}$ in good yields. We thought that this technology could be extended to a synthesis of $\alpha\text{-fluoroketones}$.

$$\begin{array}{c|c}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

Chart 1

At first we examined the reaction of α,β -epoxy sulfoxides with Olah's reagent (HF·Pyridine); however, it gave low yield of desired α -fluoroketones with plenty of by-products. In order to increase the nucleophilicity of fluoride anion and to activate ring-opening of the epoxy group, and to trap the eliminated sulfinyl group, we tested the use of MF and BF₃OEt₂, and finally found that a combination of KHF₂ and BF₃·OEt₂ was the reagent of choice for the desired reaction (Chart 1).

The choice of solvent was very critical; among the solvent examined, the best was CHCl_3 as its polarity and lipophilicity were suitable for this system. At the surface of solid KHF_2 , BF_3 OEt_2 may form BF_4 , which dissolves into CHCl_3 .

June 1990 1799

Table I. Ring-Opening Fluorination of α , β -Epoxy Sulfoxides with KHF₂ and BF₃·OEt₂

PhS O R2
$$\frac{\text{KHF}_2 (2 \text{ eq })}{\text{BF}_3 \cdot \text{OEt}_2 (2 \text{ eq })}$$

$$R^2 \xrightarrow{\text{BF}_3 \cdot \text{OEt}_2 (2 \text{ eq })}$$

$$R^3 \xrightarrow{\text{CHCl}_3}$$

$$R^4 \xrightarrow{\text{R}^2}$$

$$R^2 \xrightarrow{\text{R}^3}$$

$$R^3 \xrightarrow{\text{R}^3}$$

$$R^3 \xrightarrow{\text{R}^3}$$

Entry	R ₁	R ₂	R ₃		Time	Product(%) ^{a)}		
	1	2	3		(h)	$\alpha extsf{-Fluoroketone}$	Enone	Other
1	PhCH ₂	сн3	CH ₃		1	66.3	19.0	_b)
2	PhCH ₂	CH ₃	с ₂ н ₅		1	72.1	15.0 ^{c)}	-
3	PhCH ₂	CH ₃	с ₃ н ₇		1	62.1	13.2 ^{c)}	. -
4	PhCH ₂	— (СН ₂	₂) ₅ —		1	38.2	52.8	-
5	n-C ₇ H ₁₅	CH ₃	CH ₃		1	80.4	18.2	-
6	n-C ₇ H ₁₅	CH ₃	с ₃ н ₇	Le) Pe)	1	57.2 58.0	28.3 ^{c)} 17.6 ^{c)}	-
7	^{n-C} 7 ^H 15	— (СН	₂) ₅ —		0.5	50.7	41.8	-
8	(CH ₃) ₂ CH(CH ₂) ₂	CH ₃	^C 2 ^H 5	L ^{e)} Pe)	0.5 0.5	51.0 50.3	42.9 ^{c)} 35.1 ^{c)}	- -
9	cyc-Hexyl	CH ₃	CH ₃		0.25	62.0	24.7	-
10	cyc-Hexyl	- (CH ₂) ₅ -			0.25	39.3	49.3	-
11	PhCH ₂	Ph	Н	Le) Pe)	0.25 0.5	0 0	0	85.0 ^{d)} 76.6 ^{d)}
12	PhCH ₂	С ₅ ^Н 11	Н	Le) Pe)	12 50	37.2	18.4	- 65.3 ^{f)}

a) Isolated yield. b) Not investigated. c) Exo methylene compound: vinyl-H (2H) appeared on NMR. d) Rearranged product as shown on the right. e) Diastereomers of the α,β -epoxy sulfoxides; the polar one was called P and the lesspolar one was called L. See ref 7a. f) Starting material was recovered.

As shown in Table I, β -monosubstituted α,β -epoxy sulfoxides showed low reactivity, giving α -fluoroketones (entry 12). β -Phenyl-substituted α,β -epoxy sulfoxide gave only the rearranged compound (entry 11). β,β -Disubstituted α,β -epoxy sulfoxides gave α -fluoroketones in good yields. However, spiro-cyclic β,β -disubstituted α,β -epoxy sulfoxides gave α -fluoroketones in low yields and enones in modest yields (entry 4, 7, and 10). These results may be interpreted as follows: the ring strain of spiro-cyclic epoxy sulfoxides is stronger than that of β,β -disubstituted acyclic ones, so in spiro-cyclic epoxy sulfoxides the ring-opening rate is faster than the fluorination rate and large amounts of the enones are obtained.

The following is a typical experiment: In a 5-ml ETFE-bottle (Teflon resin), BF $_3$ ·OEt (34 µl; 0.28 mmol) was added to a suspension of 22 mg (0.28 mmol) of KHF $_2$ in CHCl $_3$ (1 ml) at room temperature under N $_2$ and the mixture was stirred for 5 min. A solution of 2,3-epoxy-3-methyl-1-phenyl-2-(phenylsulfinyl)butane (32 mg; 0.14 mmol) in 1.5 ml of CHCl $_3$ was added to the mixture. After stirring for 1 h at room temperature, the reaction was quenched with saturated aqueous NaHCO $_3$, and extracted with ether. The organic layer was separated and washed with brine, dried over MgSO $_4$ and the solvent was evaporated. The product was purified by silica-gel preparative TLC to give 3-fluoro-3-methyl-1-phenyl-2-butanone (16.7 mg; 66%) as a colorless oil.

REFERENCES AND NOTES

- 1) α,β -Epoxy sulfoxides as useful intermediates in organic synthesis. 26. Part 25: T. Satoh, Y. Kawase, and K. Yamakawa, <u>Tetrahedron Lett.</u>, in press.
- 2) a) "Biochemical Aspect of Fluorine Chemistry," Ed. by R. Filler and Y. Kobayashi, Kodansha Ltd., Elsevier Biochemical Press: Tokyo, New York (1982); b) "Synthesis and Function of Fluorine Compounds," Ed. by N. Ishikawa, C. M. C. Ltd., Tokyo (1987); C) S. Rozen and R. Filler, <u>Tetrahedron</u>, <u>41</u>, 1111 (1985).
- 3) Reviews, see: C. M. Sharts and W. A. Sheppards, Org. React., 21, 125 (1974); M. R. C. Gerstenberger and A. Haas, Angew. Chem. Int. Ed. Engl., 20, 647 (1981); ref 2c.
- 4) G. A. Olah and S. J. Kuhn, <u>J. Am. Chem. Soc.</u>, <u>82</u>, 2380 (1960); G. A. Olah, J. T. Welch, Y. D. Vanger, M. Nojima, and J. A. Olah, <u>J. Org. Chem.</u>, <u>44</u>, 3872 (1979).
- 5) M. Shimizu and H. Yoshioka, <u>Tetrahedron</u> <u>Lett.</u>, <u>29</u>, 4101 (1988).
- 6) K. Griesbaune, H. Keul, R. Kibar, B. Pfeffer, and M. Spraul, <u>Chem. Ber.</u>, <u>114</u>, 1859 (1981); K. Griesbaun, G. O. Lie, and E. Raupp, <u>ibid</u>., <u>114</u>, 3273 (1981).
- 7) a) T. Satoh, Y. Kaneko, T. Izawa, K. Sakata, and K. Yamakawa, <u>Bull. Chem. Soc. Jpn.</u>, <u>58</u>, 1983 (1985); b) T. Satoh, and K. Yamakawa, <u>J. Syn. Org. Chem. Jpn.</u>, <u>47</u>, 734 (1989); c) T. Satoh, A. Sugimoto, and K. Yamakawa, <u>Chem. Pharm. Bull.</u>, <u>35</u>, 4632 (1987).

(Received April 25, 1990)