RING-OPENING FLUORINATION OF α , β -EPOXY SULFOXIDES: A NOVEL SYNTHESIS OF α -FLUOROKETONES 1) Tsuyoshi SATOH, Jun-ichi SHISHIKURA, and Koji YAMAKAWA* Faculty of Pharmaceutical Sciences, Science University of Tokyo, Ichigaya-funagawara-machi, Shinjuku-ku, Tokyo 162, Japan Treatment of α , β -epoxy sulfoxides (sulfinyl oxilanes) with KHF $_2$ and BF $_3$ ·OEt $_2$ in CHCl $_3$ gave α -fluoroketones in moderate to good yields. KEYWORDS α , β -epoxy sulfoxide; α -fluoroketone; fluorination; KHF $_2$ Recently, α -fluoroketones have been used as key substances for preparation of fluorine-containing medicines and agricultural chemicals. There are many approaches to preparing α -fluoroketones. The most convenient method is oxidation of α -fluoro alcohols, which usually are synthesized from epoxides by the reaction with HF or modified HF. Recently, Shimizu et al. reported that SiF4 was an effective fluorinating agent; SiF4 and additives (R4NF, H2O, and/or R3N) formed hypervalent fluorosilane, so nucleophilicity of the fluoride anion was increased. In some cases, α -halo- or α -cyanoepoxides are directly converted into α -fluoroketones with AgBF4; however, AgBF4 is quite expensive. On the other hand, we have reported new methods for synthesizing $\alpha\text{-substituted}$ ketones through $\alpha,\beta\text{-epoxy}$ sulfoxides. For example, treatment of $\alpha,\beta\text{-epoxy}$ sulfoxides with MgCl $_2$ in refluxing 2-propanol gave $\alpha\text{-chloroketones}$ in good yields. We thought that this technology could be extended to a synthesis of $\alpha\text{-fluoroketones}$. $$\begin{array}{c|c} & & & \\ & &$$ Chart 1 At first we examined the reaction of α,β -epoxy sulfoxides with Olah's reagent (HF·Pyridine); however, it gave low yield of desired α -fluoroketones with plenty of by-products. In order to increase the nucleophilicity of fluoride anion and to activate ring-opening of the epoxy group, and to trap the eliminated sulfinyl group, we tested the use of MF and BF₃OEt₂, and finally found that a combination of KHF₂ and BF₃·OEt₂ was the reagent of choice for the desired reaction (Chart 1). The choice of solvent was very critical; among the solvent examined, the best was CHCl_3 as its polarity and lipophilicity were suitable for this system. At the surface of solid KHF_2 , BF_3 OEt_2 may form BF_4 , which dissolves into CHCl_3 . June 1990 1799 Table I. Ring-Opening Fluorination of α , β -Epoxy Sulfoxides with KHF₂ and BF₃·OEt₂ PhS O R2 $$\frac{\text{KHF}_2 (2 \text{ eq })}{\text{BF}_3 \cdot \text{OEt}_2 (2 \text{ eq })}$$ $$R^2 \xrightarrow{\text{BF}_3 \cdot \text{OEt}_2 (2 \text{ eq })}$$ $$R^3 \xrightarrow{\text{CHCl}_3}$$ $$R^4 \xrightarrow{\text{R}^2}$$ $$R^2 \xrightarrow{\text{R}^3}$$ $$R^3 \xrightarrow{\text{R}^3}$$ $$R^3 \xrightarrow{\text{R}^3}$$ | Entry | R ₁ | R ₂ | R ₃ | | Time | Product(%) ^{a)} | | | |-------|---|-------------------------------------|-------------------------------|------------------------|-------------|-------------------------------|--|--| | | 1 | 2 | 3 | | (h) | $\alpha extsf{-Fluoroketone}$ | Enone | Other | | 1 | PhCH ₂ | сн3 | CH ₃ | | 1 | 66.3 | 19.0 | _b) | | 2 | PhCH ₂ | CH ₃ | с ₂ н ₅ | | 1 | 72.1 | 15.0 ^{c)} | - | | 3 | PhCH ₂ | CH ₃ | с ₃ н ₇ | | 1 | 62.1 | 13.2 ^{c)} | . - | | 4 | PhCH ₂ | — (СН ₂ | ₂) ₅ — | | 1 | 38.2 | 52.8 | - | | 5 | n-C ₇ H ₁₅ | CH ₃ | CH ₃ | | 1 | 80.4 | 18.2 | - | | 6 | n-C ₇ H ₁₅ | CH ₃ | с ₃ н ₇ | Le)
Pe) | 1 | 57.2
58.0 | 28.3 ^{c)}
17.6 ^{c)} | - | | 7 | ^{n-C} 7 ^H 15 | — (СН | ₂) ₅ — | | 0.5 | 50.7 | 41.8 | - | | 8 | (CH ₃) ₂ CH(CH ₂) ₂ | CH ₃ | ^C 2 ^H 5 | L ^{e)}
Pe) | 0.5
0.5 | 51.0
50.3 | 42.9 ^{c)}
35.1 ^{c)} | -
- | | 9 | cyc-Hexyl | CH ₃ | CH ₃ | | 0.25 | 62.0 | 24.7 | - | | 10 | cyc-Hexyl | - (CH ₂) ₅ - | | | 0.25 | 39.3 | 49.3 | - | | 11 | PhCH ₂ | Ph | Н | Le)
Pe) | 0.25
0.5 | 0
0 | 0 | 85.0 ^{d)}
76.6 ^{d)} | | 12 | PhCH ₂ | С ₅ ^Н 11 | Н | Le)
Pe) | 12
50 | 37.2 | 18.4 | -
65.3 ^{f)} | a) Isolated yield. b) Not investigated. c) Exo methylene compound: vinyl-H (2H) appeared on NMR. d) Rearranged product as shown on the right. e) Diastereomers of the α,β -epoxy sulfoxides; the polar one was called P and the lesspolar one was called L. See ref 7a. f) Starting material was recovered. As shown in Table I, β -monosubstituted α,β -epoxy sulfoxides showed low reactivity, giving α -fluoroketones (entry 12). β -Phenyl-substituted α,β -epoxy sulfoxide gave only the rearranged compound (entry 11). β,β -Disubstituted α,β -epoxy sulfoxides gave α -fluoroketones in good yields. However, spiro-cyclic β,β -disubstituted α,β -epoxy sulfoxides gave α -fluoroketones in low yields and enones in modest yields (entry 4, 7, and 10). These results may be interpreted as follows: the ring strain of spiro-cyclic epoxy sulfoxides is stronger than that of β,β -disubstituted acyclic ones, so in spiro-cyclic epoxy sulfoxides the ring-opening rate is faster than the fluorination rate and large amounts of the enones are obtained. The following is a typical experiment: In a 5-ml ETFE-bottle (Teflon resin), BF $_3$ ·OEt (34 µl; 0.28 mmol) was added to a suspension of 22 mg (0.28 mmol) of KHF $_2$ in CHCl $_3$ (1 ml) at room temperature under N $_2$ and the mixture was stirred for 5 min. A solution of 2,3-epoxy-3-methyl-1-phenyl-2-(phenylsulfinyl)butane (32 mg; 0.14 mmol) in 1.5 ml of CHCl $_3$ was added to the mixture. After stirring for 1 h at room temperature, the reaction was quenched with saturated aqueous NaHCO $_3$, and extracted with ether. The organic layer was separated and washed with brine, dried over MgSO $_4$ and the solvent was evaporated. The product was purified by silica-gel preparative TLC to give 3-fluoro-3-methyl-1-phenyl-2-butanone (16.7 mg; 66%) as a colorless oil. ## REFERENCES AND NOTES - 1) α,β -Epoxy sulfoxides as useful intermediates in organic synthesis. 26. Part 25: T. Satoh, Y. Kawase, and K. Yamakawa, <u>Tetrahedron Lett.</u>, in press. - 2) a) "Biochemical Aspect of Fluorine Chemistry," Ed. by R. Filler and Y. Kobayashi, Kodansha Ltd., Elsevier Biochemical Press: Tokyo, New York (1982); b) "Synthesis and Function of Fluorine Compounds," Ed. by N. Ishikawa, C. M. C. Ltd., Tokyo (1987); C) S. Rozen and R. Filler, <u>Tetrahedron</u>, <u>41</u>, 1111 (1985). - 3) Reviews, see: C. M. Sharts and W. A. Sheppards, Org. React., 21, 125 (1974); M. R. C. Gerstenberger and A. Haas, Angew. Chem. Int. Ed. Engl., 20, 647 (1981); ref 2c. - 4) G. A. Olah and S. J. Kuhn, <u>J. Am. Chem. Soc.</u>, <u>82</u>, 2380 (1960); G. A. Olah, J. T. Welch, Y. D. Vanger, M. Nojima, and J. A. Olah, <u>J. Org. Chem.</u>, <u>44</u>, 3872 (1979). - 5) M. Shimizu and H. Yoshioka, <u>Tetrahedron</u> <u>Lett.</u>, <u>29</u>, 4101 (1988). - 6) K. Griesbaune, H. Keul, R. Kibar, B. Pfeffer, and M. Spraul, <u>Chem. Ber.</u>, <u>114</u>, 1859 (1981); K. Griesbaun, G. O. Lie, and E. Raupp, <u>ibid</u>., <u>114</u>, 3273 (1981). - 7) a) T. Satoh, Y. Kaneko, T. Izawa, K. Sakata, and K. Yamakawa, <u>Bull. Chem. Soc. Jpn.</u>, <u>58</u>, 1983 (1985); b) T. Satoh, and K. Yamakawa, <u>J. Syn. Org. Chem. Jpn.</u>, <u>47</u>, 734 (1989); c) T. Satoh, A. Sugimoto, and K. Yamakawa, <u>Chem. Pharm. Bull.</u>, <u>35</u>, 4632 (1987). (Received April 25, 1990)