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PHOTO-OXYGENATION OF ALKANES BY A HETEROCYCLIC N-OXIDE VIA NON-OXENE MECHANISM. PECULIAR PHOTOCHEMICAL
PROPERTY OF PYRIMIDO[S,4-G]PTERIDINE N~OXIDE
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Irradiation of a solution of cyclohexane (4) or adamantane in chloroform containing
pyrimido[5,4-g]pteridine N-oxide (1) with UV-visible light resulted in the formation of the
corresponding oxygenated products together with chlorinated products. This indicates the
occurrence of the chloroform-mediated radical reaction initiated by an excited 1.
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Photochemical oxygenation of alkanes by heterocyclic N-oxides such as 3-methylpyridazine N-oxide
(3) 1, 2) and pyridine N-oxide 3) leading to the corresponding alcohols has provided a positive proof
supporting liberation of an oxygen-atom in their triplet-excited states (the oxene mechanism). 4

We have reported that pyrimido[5,4-glpteridine N-oxide (1) 5) oxygenates cyclohexene 6) and benzenes 7
via a photo-induced single-electron transfer from these substrates to 1 (the SET mechanism). This is an
alternative to the common oxene mechanism. In sharp contrast to 3 and pyridine N-oxide, 1 is quite stable
in cyclohexane (4) as well as acetonitrile under UV-irradiation, providing strong chemical evidence in
support of no oxene liberation from an excited 1. 8)

This paper describes that when chloroform is used as a solvent the N-oxide 1 photochemically oxygenates
the alkanes 4 and adamantane in a new way different from the oxene- or SET-mechanism. The present
observation further demonstrates the peculiar photochemical property of 1 in comparison with the hetero-
cyclic N-oxides 3 and pyridine N-oxide so far investigated and indicates that an excited 1 functions as a
radical initiator and an oxygen-atom donor to the non-activated alkanes in chloroform.

A mixture of 1 [UV;AmaX: 370 (€= Z.ZXIOA)nm] (5 mM) and 4 (1.85 M) in dry acetonitrile, methylene

chloride, chloroform,g)

or carbon tetrachloride was irradiated with a 400 W high-pressure mercury arc lamp
through a BiCly solution filter (>355 nm) under argon for 3 h. Only in the case of chloroform was consumed
a significant amount of 1 (75%7) and was observed the formation of cyclohexanol (5)(37%), cyclohexanone (6)
(12%), cyclohexylchloride (7)(11%), and hexachloroethane (8)(23%) together with pyrimido[5,4-g]pteridine

(2)(36%) and some undetermined products originated from 1. 10)
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Contrary to the foregoing observations, when a mixture of 3 [UV;xmaX: 323 @==144x10A)nm] (5 mM) and 4
(1.85 M) in the above four solvents was irradiated at around 323 nm (JASCO CRM-FA monochromator with 2 KW Xe
lamp and 4 nm band width) for 10 min, 3 was completely consumed and the oxygenated products, 5 (25-37%) and
6 (5-197%), were obtained with independent of the nature of solvents. When chloroform was used, neither
chlorinated product 7 nor 8 was formed.

Discrepancy in the solvent dependence and the product distribution between the photooxygenations of 4
by both N-oxides, 1 and 3, shows clearly that 1 oxygenates 4 via a reaction mode entirely different from the
case of 3 (the oxene mechanism).

The reaction was complex, so we simplified a reaction sequence for the photoreaction of 4 with 1 in

chloroform as shown in Chart 2.
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The capacity of the excited 1 11) to abstract hydrogen is enough for chloroform but not for 4 12) to
generate the trichloromethyl radical (A) or the nitroxyl radical (B). Radical A readily abstracts hydrogen
from 4 to give cyclohexyl radical (C) 13) and its generation accommodates the formation of the coupling
product 8. 14) A combination of the resulting radicals B and C leads to the formation of a transient
intermediate (D) which then collapses to give 2 and 5. Cyclohexanol (5) is oxidized via hydrogen
abstraction by the excited 1 or other radical species generated during the reaction to produce 6. In fact,
5 was gradually converted into 6 by 1 under the photochemical conditions employed.

A significant amount of 7 is expected to be formed via undetermined radical pathways. One possible
pathway is the radical combination of C with a chlorine-atom from 8. Chlorination of alkanes by poly-
chlorinated hydrocarbons such as 8 in the presence of a radical initiator has been well documented. 15)

Only the oxygenated products 5 and 6 were formed in the photoreaction of 4 with 1 under aerobic
conditions: when a mixture of 1 (5 mM) and 4 (500 mM) in dry chloroform was irradiated at >355 nm under air
for 3 h, 5(31%) and 6 (33%) were obtained but no 7 or 8 was formed. This can be rationalized in terms of

efficient trapping of A and C by molecular oxygen.
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Irradiation of a mixture of adamantane (500 mM) and 1 (5 mM) in dry chloroform at >355 nm under argon
for 2 h gave l1-hydroxyadamantane (19%), 2-hydroxyadamantane (10%), 2-oxoadamantane (trace), l-chloro-
adamantane (85%), 2-chloroadamantane (7%), and 8 (17%). The predominent formation of l-chloroadamantane is
surprising and the reason for it is not clear at present. Under the aerobic conditions, however, 1-
hydroxyadamantane was produced in much improved yield (75%).

In summary, our results have shown that 1 oxidizes non-activated alkanes via a radical-chain pathway
which is different from the oxene mechanism for oxygenation by the heterocyclic N-oxides studied

previously.
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