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Another Lag-Time Involved in Constant-Field Iontophoretic Mass Transport through a Homogeneous

Membrane
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The time-dependent theoretical solution to ionic mass transport through a uniform membrane under the influence
of a uniform electric field is derived, satisfying the initial condition of diffusional (non-iontophoretic) steady state. With
increasing voltage magnitude, the lag times increase from zero, to attain the maximum and decrease to zero.
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Introduction

In the course of a study on iontophoretic drug transport
through a uniform membrane, an in-vitro experiment using
a two-chamber cell was designed. Under an infinite-sink
condition and without electric field, diffusional behavior of
a drug was studied for a sufficient period of time to attain
diffusional steady state (stage 1). Then the experiment was
continued under the influence of a uniform electric field
(stage 2). A cumulative amount of the transported drug was
determined at appropriate time intervals. (Fig. 1)
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Fig. 1.
t;, diffusional lag time, 7,(0); r,, beginning of stage 2; t,—1,, iontophoretic lag
time, #,(v); t,—1,, intersection time, f,,e;ccci; J(0), diffusional transport rate; J(v),
iontophoretic transport rate.

Schematic Presentation of Transported Drug Amount
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Fig. 2. Model of Passive Diffusion in a Membrane (Stage 1)
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Steady-state transport rates of drug and lag times to
establish the steady state were determined from the data of
both stages. The obtained parameters were used for
estimation of micro parameters such as diffusion constant,
partition coefficient, membrane thickness etc. and for
characterization of the iontophoretic drug transport.

Theoretical expressions for the steady-state transport rate
of drug and the lag time, under the influence of a constant
electric field, were derived by Keister et al.,") presuming
that at time ¢=0, there is no drug in the membrane (initial
condition). According to the above-mentioned experimen-
tal procedure, however, at the time when the iontophoresis
is initiated, the drug has already accumulated in the
membrane. Therefore, a slight revision of the theoretical
expression is necessary. The aim of the present report is to
supply a theoretical basis for the stage-2 experiment.

Theoretical Analysis
Stage 1 The model is shown in Fig. 2. The equation
describing the drug flux J within the membrane is:

oC
J=—D—
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where D is the diffusion coefficient, C the drug
concentration. Boundary conditions are as follows:
Clx=0)=C,
Clx=0)=0
Ct=0)=0, O0<x<I

If one takes the partial derivative of this equation with
respect to x and uses the mass conservation equation, Fick’s
2nd equation is obtained, as

ac _D(?ZC )
or ox? @
The solution of Eq. 2 was reported by Barrer? as
. nm
x\ 2C, & s Tx n?n2Dt
C(x, t)=C0(l ———)———0 Z exp(—- > 3)
l T on=1 n 12

The amount of drug per unit area that has penetrated as
a function of time at x=/, is given by Eq. 4.

DCo[ 12\ 2C & (—1y-1 n72Di
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The steady-state part of Q(t) can be written as:
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Fig. 3. Model of lontophoresis Enhancement in a Membrane (Stage 2)
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Stage 2 The problem considered is diffusion of an
ionized drug through an uncharged homogeneous mem-
brane under the influence of a constant electric field. The
model is shown in Fig. 3. The equation describing the drug
flux J within the membrane is:

ac zFE

J=—D—+D
ox RT
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where D is the diffusion coefficient, C the drug con-
centration, as above, z the charge on the drug ion, F the
Farady constant, E the electric field, R the gas constant,
and 7T the absolute temperature. Boundary conditions are
as follows:

Cx=0)=C,
Clx=1)=0
Clt=0)=Co(1 —x/I), O0<x<I

If one takes the partial derivative of this equation with
respect to x and uses the mass conservation equation
dC/dt= —dJ/dx, as above, Eq. 6 can be written as

oc  9*C Dv aC
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where v=zFV/RT. V is the voltage drop across the
membrane and / is the membrane thickness, consequently
E=V/L

A major assumption is that the electric field is constant.
According to Keister, this is quite reasonable if the primary
current-carrying ions are the smaller ions such as Na*, Cl~,
etc., and if we assume that these ions are distributed
uniformly throughout the membrane.

Using separation of variables (¢f. appendix A of re-
ference?’), the solution of Eq. 7 can be shown to be
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Equation 8 is definitely different from Eq. 4 of reference,’
although seemingly similar.

Since the primary concern is the amount of drug per unit
area that has penetrated as a function of time at x=/, one
must integrate J(x=1) over time.

Q(t)=J‘tJ(x=l, T)dT=JI~Dwdt ©

° 0 0x

Since C(x=1)=0, the second term of the expression from
Eq. 6 for J must vanish. The final result for Q(z) is:
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The steady-state part of Q(t) can be written as:
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Evaluating the infinite series in Eq. 11, the final expression
Eq. 12 is obtained.
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In order to confirm validity of Eq. 12, numerical
evaluation of Q(f) was attempted using the Laplace
transform.

Laplace Transform of (¢) and Numerical Inversion The
equations for the Laplace transform® C (stage 2) derived
from Eq. 7 are:

d’C_vdC_s . _,C_o<1_§>

0.0)=

(12)

(13)

dx?

with C=Cyls x=0

Solution of these is:

PG [1 . {exp(pa) — 1} exp(pix) — {exp(pi))— 1} eXp(pzx)}
5212 exp(p;1) —exp(p,/)
+£9,(1 _i‘) (1)
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where
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The Laplace transform of Eq. 9 is Eq. 15.
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TaBLe 1. Steady-State Flux and Lag Time as a Function of v Evaluated
by Eq. 16 Using FILT and by Eq. 12

Eq. 16 Eq. 12
Q(=9) Q(t=10) Slope Lagtime Slope Lag time
(mg/cm?) (mg/em?)  (mg/ Ly (mg/ )
cm?-h) cm?-h)
2 0.183969 0.204784 0.020815 0.16171 0.020817 0.16145
4 0.323095 0.359761 0.036666 0.18816 0.036672 0.18830
6 0.477801 0.531927 0.054126 0.17243 0.054134 0.17255
8 0.637324 0.709338 0.072014 0.15000 0.072024 0.15002
10 0.798225 0.888221 0.089996 0.13044 0.090004 0.13003
20 1.606374 1.786353 0.179979 0.07466 0.180000 0.07458

D=7.5x10"%cm?/s, [=0.030cm, C,=1.0 mg/ml.

s)

_D*Cyv [pl{eXp(pzl)— 1} exp(ps]) —pa{exp(pi) - 1} eXp(pzl)]
£ exp(p1)) —exp(p.!)
(16)

For arbitrarily chosen parameter values of D=7.5x 1078
cm?/s, [=0.030cm and C,= 1.0 mg/ml, numerical inversion
of Eq. 16 was performed using a fast inversion of Laplace
transform (FILT) algorithm proposed by Hosono.* Q
values for r=9(h) and 10(h) as a function of v are
shown in Table I. The slope and the z-axis intercept of the
line connecting two sets of (¢, Q) values, as well as the
slope and the lag time calculated by Eq. 12 are also includ-
ed in Table L.

The fact that the values obtained by quite a different
approach agreed 4 to 5 places below the decimal point,
confirms the validity of Eq. 12 and usability of FILT
algorithm.

Discussion

The two most important aspects between Eq. 5 and Eq.
12, which are observed experimentally in stages 1 and 2,
are the transport enhancement effects of the applied voltage
and the effective lag time. The expression for the
enhancement ratio, i.e., the ratio of steady-state flux with
applied voltage divided by steady-state passive flux, J(v)/J(0)

is given in Eq. 17.
o _ v (17
J(0) 1—exp(—v)

In the reference,? an identical equation has been presented
and some features of the enhancement ratio are discussed.
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Fig. 4. Lag Time Factor (#,(v)/#,(0)) versus v

The ratio of the voltage-enhanced lag time to the passive
lag time, ¢, (v)/#.(0) is given in Eq. 18.

wm_6 {I—i—e‘xp(—v)# 1 I—exp(—v) 1}
n©0 v v 2

Figure 4 shows the variation of #; (v)/#.(0) versus v.

The ratio #,(v)/?,(0) has some interesting features. The
effective lag time is first increased by the application of a
voltage, then is decreased passing the maximum value.
Maximum lag time ratio of 0.3393 occurs at v=3.80. A
reversal of voltage will tend to shut down the drug flow.
Steady-state flux is less than the initial flux of stage 2. A
negative effective lag time results.

Experimentally, it is easier to determine the intersection
time, #;yersect (¢4 in Fig. 1). One simply extends each linear
portion of the transported-amount-time curve for stage 1
and stage 2, and reads the time scale of the intersection.
Theoretically, the ratio of iontophoretic lag time and
intersection time is given by Eq. 19.

I—exp(—v) v v2 2 s
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Although FILT algorithm presented by Hosono® has
made it easy to evaluate numerically complex expressions
for drug transport through a membrane, the importance of
analytical representation should not be underestimated.
Mathematical expressions for lag time, steady-state flux etc.
are obtained by analytical procedures.

References
1) J. C. Keister, J. Membrane Sci., 29, 155 (1986).
2) R. M. Barrer, “Diffusion in and through Solids,” Cambridge
University Press, Cambridge, 1951, p. 15.
3) 1. Crank, “The Mathematics of Diffusion,” Oxford University Press,
Oxford, 1975, pp. 19—27.
4) T. Hosono, Radio Sci., 16, 1015 (1981).

NII-Electronic Library Service





