DAVALLIOSIDE A AND B, NOVEL FLAVAN-3-OL DERIVATIVES WITH A $_7$ -LACTAM, FROM THE RHIZOMES OF <u>DAVALLIA MARIESII</u> Moore 1)

Cheng-Bin CUI, ^a Yasuhiro TEZUKA, ^a Tohru KIKUCHI, *, ^a Hirofumi NAKANO, ^b and Jong-Hee PARK^c
Research Institute for Wakan-Yaku (Oriental Medicines), ^a Toyama Medical and Pharmaceutical University, 2630
Sugitani, Toyama 930-01, Japan, Tokyo Research Laboratories, Kyowa-Hakko Kogyo Co., Ltd., ^b 3-6-6 Asahimachi,
Machida-shi, Tokyo 194, Japan, and College of Pharmacy, Pusan National University, ^c Pusan 607, Korea

Davallioside A and B, new (-)-epicatechin glycosides carrying a γ -lactam substituent, have been isolated from the rhizomes of <u>Davallia mariesii</u> M_{OORE} (Davalliaceae). Their structures were determined by 2D NMR spectroscopy including HMQC and HMBC techniques.

KEYWORDS Davallioside A; Davallioside B; Davalliaceae; <u>Davallia mariesii</u>; 8-(2-pyrroli-dinone-5-y1)-(-)-epicatechin-3-0-β-D-allopyranoside; 2D NMR; HMQC; HMBC

In the preceding paper,²) we reported the isolation and structure of a new compound, davallialactone, from the rhizomes of <u>Davallia mariesii</u> Moore (Davalliaceae), which is used in Korea as a folk medicine "Sin Seong Cho" to treat common colds, neuralgia, and stomach cancer.³) In a continued study, we have recently isolated two minor flavan-3-ol derivatives, named davallioside A (1) and B (2). Here we describe the structures of 1 and 2 found by 2D NMR techniques.

The BuOH-soluble fraction (110 g) of the aqueous acetone extract of the dried rhizomes (7.8 kg)²) was separated by repeated column chromatography on Sephadex LH-20 to give (-)-epicatechin-3- \underline{O} - β -D-allopyranoside⁴) (3, 458 mg), a new compound identified as (-)-epicatechin-5- \underline{O} - β -D-glucopyranoside (4, 157 mg), and a mixture fraction (88 mg). The last one was further separated by preparative TLC [Merck Kieselgel 60 F₂₅₄ plates; EtOAc-EtOH-H₂O (10:2:1)] followed by HPLC separation [column, TSK-GEL ODS-120A, 21.5 mm x 35 cm; solvent, MeOH-H₂O (2:8); flow rate, 9.9 ml/min] to give davallioside A (1, t_R 370 min, 24.8 mg) and B (2, t_R 281 min, 12.4 mg).

Davallioside A (1), amorphous solid, showed $[\alpha]_D^{23}+10.2^{\circ}$ (MeOH) and its molecular formula was determined to be $C_{25}H_{29}NO_{12}$ by elemental analysis and FAB-MS measurement $(\underline{m/z}:536\ [M+H]^+)$. It showed UV absorptions at 230sh and 281 nm (log $\varepsilon:4.37$ and 3.79) and IR (KBr) absorptions at 3350-3200 (br, OH), 1650 (amide CO), 1605, and 1510 cm⁻¹ (aromatic ring). The ¹H- and ¹³C-NMR spectra of 1 were similar to those of 3, but they were characterized by the disappearance of a ¹H-signal due to one of the ring-A protons and the appearance of new signals assignable to a CHCH₂CH₂ residue ($\delta_H 5.39$, 2.28, 2.47, 2.33, and 2.37; $\delta_C 51.1$, 33.0, and 27.7) and a carbonyl group ($\delta_C 182.3$).

Detailed analysis of the $^1\text{H}-^1\text{H}$ COSY and HMQC⁵) spectra of 1 (see Table I), coupled with the carbonyl absorption in the IR spectrum, led us to consider that 1 may be an epicatechin-3- $\underline{0}$ - β -D-allopyranoside derivative carrying a 2-pyrrolidinone-5-yl group at the 6- or 8- position.

The position of 2-pyrrolidinone-5-yl group was determined by the analysis of the HMBC5, spectrum (Fig.

Table I. 400 MHz 1 H- and 100 MHz 13 C-NMR Data for 1, 2, and 3 in Methanol- d_4^{a})

Compd.		1		2	3
		¹ H L.r. coupled ^{b)}		¹ H L.r. coupled ^{b)}	
Position	^б н (J Hz)	δ _C (³ J _{CH} ² J _{CH})	δ _H (J Hz)	δ _C (³ J _{CH} ² J _{CH})	^δ H (J Hz) ^δ C
2	5.13 d (2.1)	80.1 d 2', 4, 6'	5.08 d (2.1)	80.2 d 2', 4, 6'	5.08 d (2.2) 79.9 d
3	4.42 ^{c)} ddd (5.5, 4.6, 2.1)	73.9 d 1" 4	4.43 ^{c)} td (4.6, 2.1)	74.0 d 1"' 4	4.45 ^{c)} ddd (5.5, 4.6, 2.2) 74.1 d
4	2.82 ad (16.2, 4.6) 2.74 dd (16.2, 5.5)	25.7 t 2	2.80 d (4.6)	26.2 t 2	2.79 dd (16.5, 4.6) 2.72 dd (16.5, 5.5) 25.5 t
4a		101.2 s 3, 6 4		101.3 s 3, 6 4	— 101.1 s
5		157.7 s 4 6		157.8 s 4 6	— 158.6 s
6	6.00 s	97.2 d	6.00 s	97.3 d	5.92 d (2.2) 97.2 d
7		157.1 s 1" 6	·	157.1 s 1" 6	— 158.7 s
8		108.5 s 1", 2", 6		108.5 s 1", 2", 6	5.89 d (2.2) 96.4 d
8a	-	156.1 s 1", 2, 4	_	156.4 s 1", 2, 4	— 157.9 s
ין		132.3 s 3, 5' 2, 2'	_	132.3 s 3, 5' 2, 2'	— 132.4 s
2'	7.04 ^{d)} d (1.8)	117.0 d 2, 6'	7.04 ^{d)} d (1.8)	116.9 d 2, 6'	7.05 ^{d)} d (2.1) 117.0 d
3'		146.3 s 5' 2'		146.2 s 5' 2'	— 146.2 s
4'	_	146.6 s 2', 6' 5'		146.5 s 2', 6' 5'	— 146.5 s
5'	6.71 d (8.2)	116.5 d	6.71 d (8.2)	116.5 d	6.69 d (8.2) 116.3 d
6'	6.80 ^{d)} dd (8.2, 1.8)	121.1 d 2, 2'	6.81 ^{d)} dd (8.2, 1.8)	120.9 d 2, 2'	6.80 ^{d)} dd(8.2, 2.1) 121.1 d
ן"	5.39 dd (8.6, 5.5)	51.1 d 3" 2"	5.41 dd (9.2, 5.5)	51.2 d 3" 2"	_ _
2"	2.37 m 2.33 m	27.7 t 1", 3"	2.38 m 2.28 m	27.9 t 1", 3"	
3"	2.47 m 2.28 m	33.0 t 2"	2.46 m 2.30 m	33.0 t 2"	
4"		182.3 s 1", 2" 3"		182.1 s 1", 2" 3"	
1""	4.75 ^{c)} d (7.9)	101.2 d 3, 3"', 5"' 2"'	4.72 ^{°C)} d (7.9)	100.9 d 3, 3"', 5" 2"'	4.76 ^{c)} d (7.9) 100.9 d
2'''	3.27 dd (7.9, 2.9)	73.0 d 3"'	3.26 dd (7.9, 2.9)	73.1 d 3"'	3.27 dd (7.9, 2.9) 73.0 d
3"'	4.01 t (2.9)	73.7 d 1"', 5"' 2"'	3.99 t (2.9)	73.7 d 1"', 5"' 2"'	4.00 t (2.9) 73.6 d
4"'	3.46 dd (9.2, 2.9)	69.7 d 6" 3"', 5"	3.43 dd (9.5, 2.9)	69.7 d 6"' 3"', 5"	3.44 dd (9.5, 2.9) 69.7 d
5"'	3.63 ddd (9.2, 5.2, 4.3)	76.1 d 3" 4", 6"	3.59 ddd (9.5, 5.5, 4.3)	76.0 d 3"' 4"', 6"'	3.63 ddd (9.5, 6.0, 2.0) 76.0 d
6"'	3.80 dd (13.7, 4.3) 3.62 dd (13.7, 5.2)	64.0 t 4"'	3.76 dd (13.7, 4.3) 3.57 dd (13.7, 5.5)	64.0 t 4"	3.79 dd (12.5, 2.0) 3.60 dd (12.5, 6.0) 64.0 t

a) Signal assignments are based on the analyses of the $^{1}\mathrm{H-}^{1}\mathrm{H}$ COSY, HMQC, and HMBC spectra.

1). Among three oxygenated ring-A carbons at δ 156-158 region, ⁶) the one at δ 156.1 (C-8a) showed long-range correlations with the protons at δ 2.74, 2.82 (4-H₂), and 5.13 (2-H), while the carbons at δ 157.7 (C-5) and at δ 157.1 (C-7) showed correlations with the protons at δ 2.74 and 2.82 (4-H₂) and an isolated aromatic proton at δ 6.00 (6-H) and with the proton at δ 6.00 (6-H), respectively. Therefore, these carbons were unambiguously assigned to C-8a, C-5, and C-7, respectively, and the isolated aromatic proton at δ 6.00 was assigned to 6-H. Further, the carbons C-7 (δ 157.1) and C-8a (δ 156.1) both showed long-range correlation with the methine proton (δ 5.39, 1"-H) of the pyrrolidinone group (Fig. 1). Also some other significant long-range correlations observed are shown by arrows in the formula in Fig. 1.

From these observations, davallioside A was determined to be 8-(2-pyrrolidinone-5-yl)-epicatechin-3- $\underline{0}$ - β -D-allopyranoside (1).

Davallioside B (2), amorphous solid, $[\alpha]_D^{23}$ -114.6° (MeOH), has the molecular formula $C_{25}H_{29}NO_{12}$ (FAB-MS m/z: 536 [M+H]*, 558 [M+Na]*). Its UV and IR spectra were very similar to those of 1. The ¹H- and ¹³C-NMR spectra (Table I) also closely resembled those of 1, and the extensive analysis with the aid of ¹H-¹H COSY, HMQC, and HMBC indicated that 2 should be a diastereoisomer of 1.

In the CD spectra, 1 and 2 both showed a negative Cotton effect at around 280 nm ($^{1}L_{b}$ transition), 7) showing that both compounds have the R-configuration at the C-2 position. 8) Thus, davallioside A and B are diastereoisomers at the C-1" position of 8-(2-pyrrolidinone-5-yl)-(-)-epicatechin-3- $\underline{0}$ - β -D-allopyranoside shown as 1 and 2. The absolute configuration of 1 and 2 and their biological activity are currently under investi-

b) $^{3}J_{CH}$ and $^{2}J_{CH}$ indicate the protons long-range-coupled with carbons through three and two bonds, respectively, which were observed in the HMBC spectra.

c) NOE was observed between each other. d) Long-range coupling was observed with 2-H in the $^1\mathrm{H}$ - $^1\mathrm{H}$ COSY.

2622 Vol. 38, No. 9

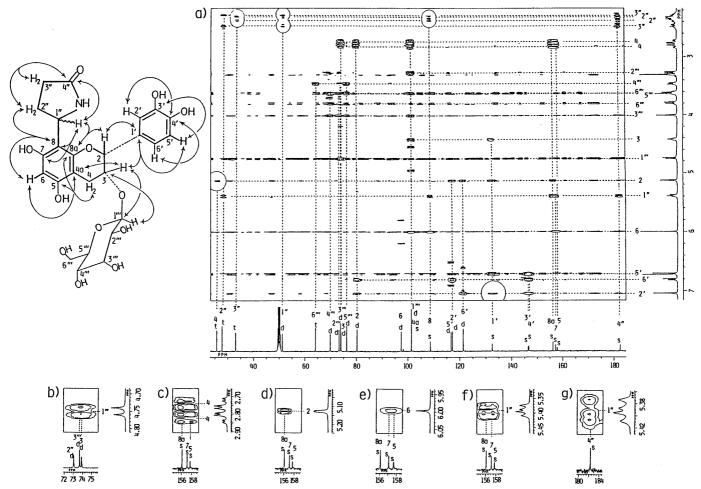


Fig. 1. HMBC Spectrum of 1 in Methanol-d₄ (Sample: 24.8 mg, Long-range J_{CH}=8.3 Hz, 12 h run) a) Whole region. b), c), d), e) Cross peaks of l" -H, 4-H, 2-H and 6-H, respectively. f), g) Cross peaks of l"-H. Open circles indicate significant but weak peaks at this threshold level.

gation. Our present result provided the first example of flavan-3-ol derivatives with a γ -lactam substituent.

ACKNOWLEDGMENT This work was supported in part by a Grant-in-Aid for Scientific Research (No. 63870090) from the Ministry of Education, Science and Culture of Japan.

REFERENCES AND NOTES

- 1) This work was presented at the 36th Annual Meeting of the Japanese Society of Pharmacognosy, Kumamoto, October, 1989; Abstract Papers, p.75.
- 2) C.-B. Cui, Y. Tezuka, T. Kikuchi, H. Nakano, T. Tamaoki, and J.-H. Park, Chem. Pharm. Bull., in press.
- 3) J.-H. Park, Korean J. Pharmacogn., 18, 191 (1987).
- 4) T. Murakami, H. Wada, N. Tanaka, T. Kuraishi, Y. Saiki, and C.-M. Chen, Yakugaku Zasshi, 105, 649 (1985).
- 5) M. F. Summers, L. G. Marzilli, and A. Bax, <u>J. Am. Chem. Soc.</u>, **108**, 4285 (1986).
- 6) P. K. Agrawal, M. C. Bansal, L. J. Porter, and L.Y. Foo, "Carbon-13 NMR of Flavonoids," ed. by P. K. Agrawal, Elsevier Science Publishers B. V., Amsterdam, 1989, p.444-446, p.474-476.
- 7) Davallioside A (1), CD (c=0.02, methanol) $\Delta \varepsilon^{25}$: -1.27 (282.5), -2.59 (244), -2.27 (243). Davallioside B (2), CD (c=0.02, methanol) $\Delta \varepsilon^{25}$: -0.96 (283.5), -3.58 (244), -3.50 (243).
- 8) O. Korver and C. K. Wilkins, <u>Tetrahedron</u>, 27, 5459 (1971).
- 9) Two flavonoidal alkaloids, ficine and isoficine, were isolated from a <u>Ficus</u> species and a flavanol alkaloid, kopsirachine, from a <u>Kopsia</u> species; see S. R. Johns, J. H. Russel, and M.L. Heffernan, <u>Tetrahedron Lett.</u>, **24**, 1987 (1965); K. Homberger and M. Hesse, <u>Helv. Chim. Acta</u>, **67**, 237 (1984).

(Received July 6, 1990)