BIOSYNTHESIS OF AVENIC ACID A, A FERRIC CHELATING SUBSTANCE SECRETED FROM AVENA SATIVA L.

Jian Feng MA and Kyosuke NOMOTO*

Suntory Institute for Bioorganic Research Shimamoto-cho, Mishima-gun, Osaka 618, Japan

The biosynthesis of avenic acid A was studied by feeding L-methionine-1-13C or D,L-methionine-3, 3, 4, 4-d₄ to iron-deficient oat roots (*Avena sativa* L. cv Amuri II). Both avenic acid A and 2'-deoxymugineic acid labeled with ¹³C or ²H were isolated from root-washings of the same plants. The ¹³C-NMR elucidated that three molecules of L-methionine were incorporated into avenic acid A in the same way as 2'-deoxymugineic acid. The ²H-NMR spectra indicated that all deuteriums from the methionine were incorporated into 2'-deoxymugineic acid, but one of the deuteriums at C-4 was lost in avenic acid A. A possible biosynthetic pathway is L-methionine→ →2'-deoxymugineic acid→avenic acid A.

KEYWORDS 2'-deoxymugineic acid; avenic acid A; biosynthesis; *Avena sativa*; L-methionine; ²H-NMR; ¹³C-NMR

It has been known that gramineous plants respond to iron stress by secreting iron chelating substances which have been generically termed "mugineic acids (MAs)".1) These substances play a role in solubilization and transport of Fe(III). One of them, avenic acid A (1), was secreted from iron-deficient oat roots (Avena sativa L.).2)

1 COOH

1 COOH

4 COOH

4 COOH

HO 3 NH 1' 2' 3' NH 1" 2" 3" OH

1; avenic acid A

1 COOH 4 COOH 2 NH 1" 2" 3" OF

2; R=H 2'-deoxymugineic acid

3; R=OH mugineic acid

Since mugineic acid (3) was discovered in barley plants and its structure was first determined,³⁾ the biosynthesis of MAs has been explored. Kawai *et al.* fed four ¹⁴C-labeled amino acids and L-methionine-1-¹³C to iron-deficient barley roots, and found that L-methionine is the most efficient precursor for mugineic acid (3) and 2'-deoxymugineic acid (2).⁴⁾ Shojima *et al.* also got the same results *in vitro*.^{5,6)} However, no experimental data on the biosynthesis of avenic acid A (1), or on its relation with other MAs, have been published. In the present study, we found that the precursor for avenic acid A (1) is the same as that for mugineic acid (3) and 2'-deoxymugineic acid (2). A possible biosynthetic pathway for avenic acid A (1) is suggested by the ²H-NMR study.

Eighty 8-day-old oat plants (*Avena sativa* L. cv Amuri II) were cultured in 3-liter pots containing continuously aerated 1/5 strength Hoagland solution in an environmental chamber. The solution was adjusted to pH 6.0 and renewed once every two days. After 2 weeks, the plants were transferred to a solution free of iron. When the chlorosis developed moderately, $100 \, \mu M$ L-methionine-1- 13 C or $200 \, \mu M$ D,L-methionine-3, 3, 4, 4-

October 1992 2889

d₄ were fed to the roots with 40 ppm surface-active agent "Decaglyn 1-L" at the end of the secretion. Root-washings were collected the following day by soaking the roots in distilled water from 3 to 5 hour after onset of the light period. The isolation was performed by various chromatographies.³⁾ As a result, ¹³C-enriched avenic acid A (1) (10.8 mg) and 2'-deoxymugineic acid (2) (1.25 mg) and ²H-enriched corresponding compounds (1, 1.8 mg; 2, 0.5 mg) were obtained. The ¹H-, ²H-, and ¹³C-NMR spectra were measured at 500, 76.8, and 75.5 MHz spectrometers, respectively. The assignments were accomplished by ¹H-¹H and ¹³C-¹H COSY, HMBC, and HMQC experiments.

The ¹³C-NMR spectrum showed that labeled avenic acid A (1) (Fig. 1A) was ¹³C-enriched by 11.2, 11.7, and 12.7-fold in their peak-heights for C-1, 4', and 4", respectively, compared to those of unlabeled avenic acid A (1) (Fig. 1B). This result revealed that three molecules of L-methionine were incorporated into avenic acid A (1) in the same way as mugineic acid (3) and 2'-deoxymugineic acid (2).⁴⁾ The precursor for these different MAs is thought to be the same.

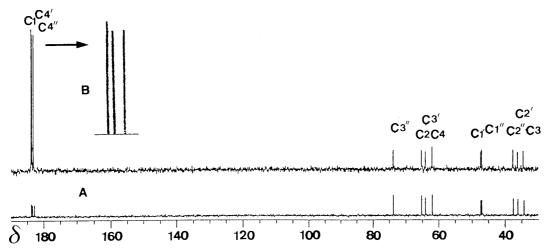


Fig. 1. ¹³C-NMR Spectra of Avenic Acid A (1) Biosynthesized from L-Methionine-1-¹³C (B) and Unlabeled Avenic Acid A (1) (A)

Avenic acid A (1) and 2'-deoxymugineic acid (2) were simultaneously isolated from the same plants; however, their relationship in the biosynthetic pathway is not clear. It is helpful, therefore, to know how protons in methionine change during the biosynthesis to avenic acid A (1) and 2'-deoxymugineic acid (2). To investigate this, both 2H -enriched avenic acid A (1) and 2'-deoxymugineic acid (2) were isolated, and their 2H -NMR was performed. As 2H chemical shifts correspond to 1H shifts aside from a small isotope effect and broadening, we can speculate the assignment of 2H -NMR peaks based on that of 1H -NMR. As shown in Fig. 2B, relative peak intensity at δ 4.12, 4.01, 3.51, 3.39, 3.22, 2.77, 2.57, 2.18, 2.06 in labeled 2'-deoxymugineic acid (2) was 1:1:1:1:2:1:1:3:1, corresponding deuteriums at C-4, C-1', C-1'', C-3, C-2', and C-2'', respectively. This result suggests that 12 deuteriums from three molecules of methionine-3,3,4,4-d4 were wholly incorporated. In comparison, 11 deuteriums whose relative peak intensity at δ 3.60, 2.58, 1.76 was 1:4:6 were observed in the labeled avenic acid A (1) (Fig. 3B). One of the deuteriums at C-4 was lost in the labeled avenic acid A (1), but all other deuteriums were incorporated in the same way as the labeled 2'-deoxymugineic acid (2). These results suggest that avenic acid A (1) can not be the precursor of 2'-deoxymugineic acid (2). However, the reverse may be possible--that is, avenic acid A (1) is biosynthesized from 2'-deoxymugineic acid (2) by cleavage of azetidine ring. A possible biosynthetic pathway for avenic acid

2890 Vol. 40, No. 10

A (1) may be suggested as L-methionine→ → 2'-deoxymugineic acid (2) → avenic acid A (1).

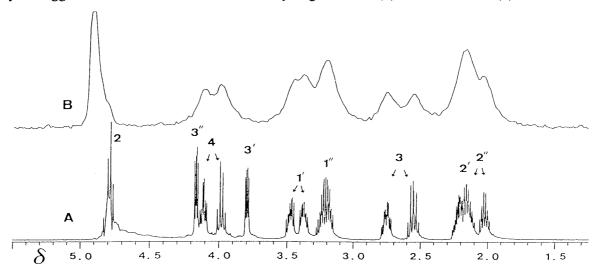


Fig. 2. ¹H-NMR Spectrum of 2'-Deoxymugineic Acid (2) (A) and ²H-NMR Spectrum of 2'-Deoxymugineic Acid (2) Biosynthesized from D,L-Methionine-3,3,4,4-d₄ (B)

The peak at δ 4.93 represents the signal of water.

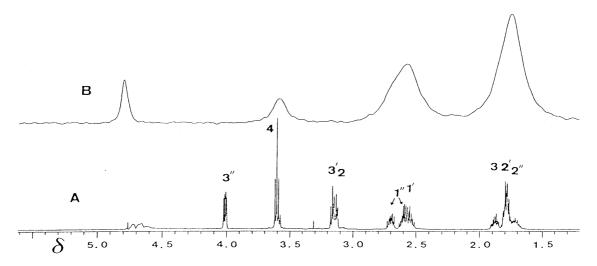


Fig. 3. ¹H-NMR Spectrum of Avenic Acid A (1) (A) and ²H-NMR Spectrum of Avenic Acid A (1) Biosynthesized from D,L-Methionine-3,3,4,4-d₄ (B)

The peak at δ 4.80 represents the signal of water.

ACKNOWLEDGMENTS We are indebted to Dr T. Iwashita, Mr H. Naoki, and Ms T. Kitajima, of the Suntory Institute for Bioorganic Research, for measuring NMR.

REFERENCES

- 1) Y. Sugiura and K. Nomoto, Structure and Bonding, 58, 107 (1984).
- 2) S. Fushiya, Y. Sato, S. Nozoe, K. Nomoto, and T. Takemoto, Tetrahedron Lett., 21, 3071 (1980).
- 3) T. Takemoto, K. Nomoto, S. Fushiya, R. Ouchi, G. Kusano, H. Hikino, S. Takagi, Y. Matsuura, and M. Kakudo, Proc. J. Acad., 54, 469 (1978).
- 4) S. Kawai, K. Itoh, S. Takagi, T. Iwashita, and K. Nomoto, Tetrahedron Lett., 29, 1053 (1988).
- 5) S. Shojima, N. K. Nishizawa, and S. Mori, Plant Cell Physiol., 30, 673 (1989).
- 6) S. Shojima, N. K. Nishizawa, S. Fushiya, S. Nozoe, T. Irifune, and S. Mori, Plant Physiol., 93, 1497 (1990).

(Received August 20, 1992)