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The quantitative structure-activity relationships (QSARs) of 37 carboquone derivatives with antileukemic activity
and 51 benzodiazepine derivatives with anti-pentylentetrazole activity were studied using two neural computing
methods—the functional-link net (FUNCLINK) and the generalized delta rule net with the back propagation of error
(GDR). Both methods showed good fitting of the activity values in the two data sets. A great difference appeared,
however, in the prediction of the activity values: GDR’s predictive ability is much lower than FUNCLINK’s. To elucidate
the difference of the predictive ability, we examined the contribution of parameters to activity using the QSAR models
of carboquone derivatives by plotting the contribution curves. Well-regulated and similar contribution curves resulted
for all parameters in both the FUNCLINK and GDR models for the entire data. On the other hand, the contribution
curves for the leave-one-out models derived by eliminating one compound from the data set showed that much greater
deviations occurred in GDR than in FUNCLINK. The QSAR models of GDR seemed to depend greatly upon each

individual compound.
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Introduction

Neural computing methods for simulating the data
processing of neurons and brain have been suggested and
widely accepted, such as the generalized delta rule net with
the back propagation of error (GDR),” Hopfield net,??
and Boltzmann machine.® Such methods are characterized
by the high ability of pattern recognition, associative
memory and other features. Successful applications of the
methods to special fields have proved their usability and
high performance. Against this background, GDR has been
recently introduced into quantitative structure—activity
relationship (QSAR) studies, ~® since QSAR possesses the
feature of pattern recognition. Based on its algorithm, GDR
is generally considered as a semilinear approach, and the
fitting of activity is usually superior to linear methods such
as multiple regression analysis (MRA).>*® Based on a quite
different algorithm devised by Klassen and Pao,!" we
recently developed a semilinear QSAR method called
FUNCLINK (the functional-link net).!!® The difference
in the two approaches is at that GDR transforms the
parameters through a multilayer net by semilinear fitting
of the parameters to the activity, while FUNCLINK uses
semilinear functions for the same purpose. The QSAR
applications have shown that, though a good fitting of the
activity is realized by both FUNCLINK and GDR, a great
difference results in the leave-one-out prediction—that is,
the predictive ability of GDR is much lower than
FUNCLINK.!2:t3

In the present study, we compared the QSAR results of
FUNCLINK and those of GDR applied to 37 carboquone
derivatives with antileukemic activity!® and to 51 ben-
zodiazepine derivatives with anti-pentylentetrazole activ-
ity.'> QSAR analysis by FUNCLINK showed good results
in both reproduction and leave-one-out prediction of the
activity. For GDR, however, the leave-one-out prediction
was much poorer, though the reproduction of the activity
values was superior to that by FUNCLINK. In order to
elucidate this difference, the contribution of parameters to
activity was investigated by plotting the contribution curves
(CCVs) in the QSAR models for carboquone derivatives.

In the FUNCLINK and GDR models for the entire set of
data, the contribution of each parameter was well regulated
and consistent with that in the multiple regression model.
CCVs were also drawn for the leave-one-out models
calculated by eliminating one compound from the data set.
In this case, most of the CCVs by FUNCLINK retained
the original pattern well, while GDR showed greater
deviations.

Methods

FUNCLINK A published program’? was used after slight modifica-
tion.'? Two steps are necessary for the QSAR analysis of FUNCLINK.
In the first step, original parameters are transformed by the functional
link. The following six semilinear functions!® were used for functional
linking: x,?, sin(nx,), cos(nx;), log(9x; + 1), 4(x;—0.5)3 +0.5, and x;x;. Here,
x; and x; are the original parameters which are scaled into the range of
0.0 to 1.0. The second step is concerned with QSAR estimation using the
functionally linked parameters. In a general way, FUNCLINK makes all
possible combinations of the parameters, and then each combination is fed
to the network for QSAR estimation in order to select a subset which
gives the best fitting of observed activity.

FUNCLINK uses a two layer network—an input layer for the input of
parameters, and an output layer for the output of calculated activity values.
For QSAR analysis of a data set whose activity data is given by a continuous
variate, only one net is needed in the output layer. Each input-net is
connected with the output-net. The connections simulate the transmission
of the signals. The strength of the connections between different nets is
distinct, by which the amount of signals into the output-net is controlled.
The value input into the output-net is the sum of the products of all the
input values (parameters) and the corresponding strength of connections.
The values output from the output-net are transformed by a sigmoidal
activation function. Observed activity values are also scaled into the range
of 0.0 to 1.0, and used as the reference for the output values. Learning is
conducted by iterative correction of the strength values to reduce the error
between the output values and the reference values, and is complete when
the error is sufficiently small. For the detailed procedure of FUNCLINK,
see the literature.*1-1?

Generalized Delta Rule Net A published program was used.!V A
network with one hidden layer was adopted. The first layer was for
parameter input. The parameters were scaled into the range of 0.0 to 1.0.
The third layer contained one node for output of the calculated values.
For the detailed procedure, see ref. 11. The relevant equations used in
the program are listed below for reference.

Internal values of the nodes in the second layer:

Z;=IWX, M
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Sigmoidal activity function:

AZ)=1/[1+exp(—Z;+6)] @
Output values from the nodes in the second layer:

0,=AZ) 3
Internal value of the node in the third layer:

Z,=2W,;0; 4)
Output value from the node in the third layer:

Y =fZ)) ©)
Correction of weights W,;:

AW,;=16,0; ©

O, =(T~Y) [ (Z) Q)]
Correction of weights W;:

AW =06,0,+ ad W', ®8)

8;=f(Z)Z6, Wy (O]

In these equations, 6 is the threshold, y is the constant called “momentum
rate,” T'is the reference activity value, and « is the constant called “‘learning
rate.”
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Data Sets for QSAR Estimation The two data sets, 37 2,5-bis(l-
aziridinyl)-p-benzoquinones (carboquone derivatives) with antileukemic
activity'® and 51 benzodiazepine derivatives with anti-pentylentetrazole
activity!® were cited from the literature. For the carboquone derivatives,
we selected the activity data determined as optimal dose on a chronic
treatinent schedule in mice.

Parameters a) Carboquone Derivatives: Since the QSAR for the data
set was investigated by Yoshimoto et al. using MRA,'® we employed the
same well-defined physicochemical parameters in our QSAR investigation
in order to give an objective comparison of the results. The parameters
were the following substituent constants: 1) hydrophobic constant PI, for
substituent R?; 2) molar refractivity MR, for substituent R'; 3) PI, ,
(PI,+PI,); 4 MR, (MR, +MR,); and 5—6) electronic substituent
constants F and R, where F is the sum of field effects, and R is the sum
of resonance effects of R! and R2. The values of the parameters are shown
in Table I.

b) Benzodiazepine Derivatives: Seven parameters were used in the
QSAR analysis. They were all employed by Yoshimoto and his colleagues
in MRA of the same data set.!® The parameters are MR-3, PI-3, MR-7,
0,-3, F-4, R-4, and I-7. MR is the molar refractivity, PI is the hydrophobic
constant, a,, is the Hammett electronic constant, £ and R are the field
effect and the resonance effect, respectively, and /-7 is an indicator variable
being 1 for H and 0 for substituents except H. The figure after each
parameter (ex. 3 in MR-3) indicates the position of the substituent. The
values of the parameters are shown in Table II.

CCV  The contribution of parameters to activity in QSAR models by

TaBLE 1. Structures of 37 Carboquone Derivatives and Their Parameters Used in the QSAR Analysiss
(6]
Y R?
R N
O
No. R! R2 MR, , Pl , PI, MR, F R
1 CeH; CeH, 5.08 3.92 1.96 2.54 0.16 —0.16
2 CH, (CH,)5C¢H; 4.50 3.66 3.16 0.57 —0.08 —0.26
3 CsH,, CsHy, 4.86 5.00 2.50 2.43 —0.08 —0.26
4  CH(CH,), CH(CH,), 3.00 2.60 1.30 1.50 —0.08 —0.26
5 CH, CH,C/H;, 3.57 2.51 2.01 0.57 ~0.12 —0.14
6 C,H, C,H, 3.00 3.00 1.50 1.50 —0.08 —0.26
7 CH, CH,0CH; 3.79 2.16 1.66 0.57 —0.04 —0.13
8 (CH,),OCON(CH,), (CH,),OCON(CHj;), 6.14 0.72 0.36 3.07 ~0.08 —0.26
9  C,H, C,H; 2.06 2.00 1.00 1.03 —0.08 —0.26
10 CH, (CH,),0CH, 2.28 1.03 0.53 0.57 —0.08 —0.26
11 OCH, OCH, 1.58 —0.04 —0.02 0.79 0.52 —1.02
12 CH; CH(CH,;), 2.07 1.80 1.30 0.57 —0.08 —0.26
13 C,H, CH(OCH,)CH,0CONH, 4.24 0.98 —0.52 1.50 —0.04 —0.13
14 CH, CH, 1.14 1.00 0.50 0.57 —0.08 —0.26
15 H CH(CH,), 1.60 1.30 1.30 0.10 —0.04 —0.13
16  CH, CH(OCH,)CH,CH, 2.75 1.53 1.03 0.57 —~0.04 —0.13
17 C;H, (CH,),0CONH, 3.56 1.45 —0.05 1.50 —0.08 —0.26
18 (CH,),0CH, (CH,),OCH, 3.42 1.03 0.53 1.71 —0.08 —0.26
19  C,H, CH(OC,H ;)CH,0CONH, 4.23 0.98 —0.02 1.03 —0.04 —0.13
20 CH, (CH,),0COCH, 2.78 1.23 0.73 0.57 —0.08 —0.26
21 CH, (CH,); dimer 1.96 2.00 1.50 0.57 —0.08 —0.26
22 CH; C,H; 1.60 1.50 1.00 0.57 —0.08 —0.26
23 CH, CH(OCH,CH,0CH,;)CH,0CONH, 445 0.01 ~0.49 0.57 —0.04 —0.13
24 CH, CH,CH(CH,)OCONH, 3.09 0.75 0.25 0.57 -0.08 —0.26
25 C,H; CH(OCH,;)CH,0CONH, 3.77 0.48 —0.52 1.03 —0.04 —0.13
26 CH, CH(C,H;)CH,O0CONH, 3.55 1.25 0.75 0.57 —0.08 —0.26
27 CH, CH(OC,H)CH,0CONH, 3.77 0.48 —0.02 0.57 —0.04 —0.13
28 CH, (CH,);OCONH, 3.09 0.95 0.45 0.57 —0.08 —0.26
29 CH, (CH,),0CONH, 2.63 0.45 —0.05 0.57 —0.08 —0.26
30 C,H, (CH,),0CONH, 3.09 0.95 —0.05 1.03 —-0.08 —0.26
31 CH, (CH,),OH 1.78 0.34 —0.16 0.57 —0.08 —0.26
32  CH, CH(CH,)CH,OCONH, 3.09 0.75 0.25 0.57 —0.08 —0.26
33 CH,; CH(OCH,)CH,OCONH, 3.31 —0.02 —0.52 0.57 —0.04 —0.13
34 H N(CH,), 1.66 0.18 0.18 0.10 0.10 —0.92
35 (CH,),0H (CH,),OH 242 —-0.32 —0.16 [.21 —0.08 —0.26
36 3 N(CH,), 2.13 0.68 0.18 0.57 0.06 —1.05
37 CH, CH(OCH,;)CH,0H 2.47 -0.13 —0.63 0.57 —0.04
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TasLe II.  Structures of 51 Benzodiazepine Derivatives and Their Parameters Used in QSAR Analysis
R7
| 0}
S
RS O —N
Wa

No. Substituents MR-3 PIL-3 MR-7 0,3 F4 R4 -7
1 3-Cl-7-is0-CsH, 0.60 0.71 2.42 0.37 0.00 0.00 0.00
2 3-SC,H; 1.84 1.07 0.10 0.15 0.00 0.00 1.00
3 3-SC,H, 2.77 2.07 0.10 0.15 0.00 0.00 1.00
4 3-NO,-7-is0-CsH, 4 0.74 —-0.28 2.42 0.71 0.00 0.00 0.00
5 3-N(CH,;), 1.56 0.18 0.10 —0.15 0.00 0.00 1.00
6 3-Cl-4-OCH, 0.60 0.71 0.10 0.37 0.26 —0.51 1.00
7 3-Cl-7-(CH,);OH 0.60 0.71 1.65 0.37 0.00 0.00 0.00
8 3-NO,-7-CH,CONHCH, 0.74 -0.28 1.92 0.71 0.00 0.00 0.00
9 3-Cl-7-(CH,),N(C,Hj), 0.60 0.71 3.41 0.37 0.00 0.00 0.00
10 3-Cl-7-CH,CON(CH,;), 0.60 0.71 2.39 0.37 0.00 0.00 0.00
11 3-Cl-7-CH,C4H; 0.60 0.71 3.00 0.37 0.00 0.00 0.00
12 3-Cl-7-(CH,),N(CH,3), 0.60 0.71 2.48 0.37 0.00 0.00 0.00
13 3-Cl-4-F-7-(CH,)3N(CH,), 0.60 0.71 2.95 0.37 0.43 —0.34 0.00
14 3-CF;-7-CH,CONHCH; 0.50 0.88 1.92 0.43 0.00 0.00 0.00
15 3-SCH, 1.38 0.61 0.10 0.15 0.00 0.00 1.00
16 3-C1-7-CH,CONH, 0.60 0.71 1.44 0.37 0.00 0.00 0.00
17 3-SOCHj, 1.37 —1.58 0.10 0.52 0.00 0.00 1.00
18 3-Cl-4-CH,4 0.60 0.71 0.10 0.37 —0.04 —0.13 1.00
19 3-N(CH;),-7-CH; 1.56 0.18 0.57 —~0.15 0.00 0.00 0.00
20 3-Cl-4-F-7-(CH,),N(C,Hj), 0.60 0.71 341 0.37 0.43 —0.34 0.00
21 3-NO,-7-(CH,);N(CH,), 0.74 —0.28 2.95 —-0.15 0.00 0.00 0.00
22 3-NO,-7-(CH,),N(CH,), 0.74 -0.28 2.48 0.71 0.00 0.00 0.00
23 3-Cl-4-Cl 0.60 0.71 0.10 0.37 041 —0.15 1.00
24 3-Cl-7-CH,-cyc-C5H;5 0.60 0.71 1.82 0.37 0.00 0.00 0.00
25 3-CN 0.63 -0.57 0.10 0.56 0.00 0.00 1.00
26 3-NO,-4-CF, 0.74 —0.28 0.10 0.71 0.38 0.19 1.00
27 3-Cl 0.60 0.71 0.10 0.37 0.00 0.00 1.00
28 3-CN-4-F 0.63 —0.57 0.10 0.56 0.43 -0.34 1.00
29 3-Cl-7-C,H; 0.60 0.71 1.03 0.37 0.00 0.00 0.00
30 3-SCH,-7-CH, 1.38 0.61 0.57 0.15 0.00 0.00 0.00
31 3-Cl-7-CH,COCH, 0.60 0.71 1.51 0.37 0.00 0.00 0.00
32 3-Cl-4-Br 0.60 0.71 0.10 0.37 0.44 —-0.17 1.00
33 3-NO,-4-CF;-7-CH;4 0.74 —-0.28 0.57 0.71 0.38 0.19 0.00
34 3-CF,;-7-(CH,),N(CH;), 0.50 0.88 2.48 0.43 0.00 0.00 0.00
35 3-Cl-7-CH,CH=CH, 0.60 0.71 1.45 0.37 0.00 0.00 0.00
36 3,4-Cl,-7-CH, 0.60 0.71 0.57 0.37 0.41 -0.15 0.00
37 3-Cl-7-CH, 0.60 0.71 0.57 0.37 0.00 0.00 0.00
38 3-NO,-4-CI-7-CH, 0.74 -0.28 0.57 0.71 0.41 —0.15 0.00
39 3-CF;-4-CF, 0.50 0.88 0.10 0.43 0.38 0.19 1.00
40 3-Br 0.89 0.86 0.10 0.39 0.00 0.00 1.00
41 3-CN-7-CH,4 0.63 —-0.57 0.57 0.56 0.00 0.00 0.00
42 3-NO, 0.74 —-0.28 0.10 0.71 0.00 0.00 1.00
43 3-NO,-7-CH, 0.74 —0.28 0.57 0.71 0.00 0.00 0.00
44 3-CF, 0.50 0.88 0.10 0.43 0.00 0.00 1.00
45 3-Cl-4-F-7-CH; 0.60 0.71 0.57 0.37 0.00 —~0.34 0.00
46 3-CF;-7-CH,CH=CH, 0.50 0.88 1.45 0.43 0.00 0.00 0.00
47 3-NO,-4-Cl 0.74 —0.28 0.10 0.71 0.41 —0.15 1.00
48 3-NO,-7-NH, 0.74 —0.28 0.54 0.71 0.00 0.00 0.00
49 3-NO,-4-NO, 0.74 —0.28 0.10 0.71 0.67 0.16 1.00
50 3-NO,-4-F 0.74 -0.28 0.10 0.71 0.43 —0.34 1.00
51 3-NO,-4-F-7-CH;, 0.74 —0.28 0.57 0.43 —0.34 0.00

0.71

FUNCLINK and GDR was investigated by drawing the CCVs of the
parameters, since the contribution of parameters in a semilinear QSAR
model generally exhibits a semilinear form. A CCV was drawn in the
following way. For a parameter in the QSAR model, a number of points
over the range of the parameter values were chosen, and the activity values
were calculated while all other parameters were kept at their median values.
Then, the CCV was drawn by plotting the calculated activity against the
parameter values.

The CCVs of the parameters were drawn in the semilinear QSAR model
for the whole set of data as well as in the leave-one-out model which was

derived for the data sets in which a compound was left out. We call the
latter CCVs ““leave-one-out CCVs.” All such CCVs for the same parameter
were drawn on the same axes to see what deviations resulted.

Results and Discussion

QSAR Estimation. a) Carboquone Derivatives a-1)
QSAR by FUNCLINK: The correlation of the structure
of 37 carboquone derivatives with antileukemic activity as
optimal dose on a chronic treatment schedule was analyzed
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by MRA'® and FUNCLINK.'? The QSAR equations are
shown here for comparison with the results from GDR.

FUNCLINK:

1,=1.894cos(nPl, ,)+0.757 cos(nM R )+ 2.438 cos(nF)—3.938R

(10)
n=37; r=0951; s=0.169; F=76.4
leave-one-out: r=0.935
MRA:
log 1/C=—0.352PI,—0.290 MR, —2.075F—1.165R + 5.383 (1
(z=7.58) (4.48) (4.02) (4.65) (44.55)
n=37; r=0894; 5=0247; F=31.7
leave-one-out: r=0.843

In Eq. 10, Iq is the internal value of the node in the
second layer, # is the number of compounds, r is the multiple
correlation coefficient, and s is the standard deviation. Three
semi-linear parameters, cos(nPl; ,), cos(nMR,), and
cos(nF), and a linear parameter, R, were selected in the
equation. Since cos(x) (0 < x <) is a decreasing function, it

TaLE III.  Calculated and Predicted Activity Values® by FUNCLINK

No Obsd —_—

Calcd. Pred.? Calcd. Pred.”

1 4.140 4,148 4.149 4.159 4,191
2 4.210 4471 4,537 4.247 4.430
3 4.521 4.202 4.176 4.150 4.164
4 4.589 4.614 4.618 4.588 4.636
5 4.691 4.704 4.709 4.690 4.979
6 4.440 4.475 4.481 4.357 4.319
7 4.709 4.773 4.784 4.849 5.005
8 4.850 5.071 5.298 4.841 5.417
9 5.090 5.074 5.073 5.164 5.175
10 5.419 5.652 5.665 5.725 5.744
11 5.171 5.105 5.209 5.168 6.210
12 5.210 5.313 5.320 5.412 5.430
13 5.069 5.044 5.038 5.080 5.133
14 5.359 5.662 5.678 5.734 5.748
15 5.370 5.259 5.249 5.405 5.346
16 5.330 5.098 5.078 5.213 5.129
17 5.231 5.189 5.186 5.283 5.227
18 5.310 5.295 5.292 5.368 5.351
19 5.239 5.225 5.225 5.266 5.256
20 5.779 5.581 5.572 5.664 5.630
21 5.390 5.201 5.185 5.279 5.096
22 5.370 5.465 5.471 5.561 5.571
23 5.390 5.585 5.597 5.637 5.669
24 5.790 5.732 5.728 5.895 5.908
25 5.221 5.389 5.402 5.406 5.514
26 5.659 5.573 5.568 5.644 5.611
27 5.221 5.507 5.525 5.530 5.564
28 5.931 5.677 5.665 5.747 5.716
29 5.750 5.792 5.794 5.668 5.605
30 5.479 5.575 5.579 5.642 5.653
31 5.790 5.809 5.810 5.801 5.793
32 5.709 5.732 5.733 5.801 5.801
33 5.659 5.587 5.582 5.656 5.638
34 6.189 6.126 6.119 6.206 6.206
35 6.051 5.729 5.697 5.942 5.756
36 6.210 6.164 6.160 6.209 6.209
37 5.750 5.595 5.584 5.871 5.881
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is easily confirmed that the four parameters in Eq. 10 all
exhibit negative correlation with the activity, as do those
parameters in Eq. 11 derived by MRA. The leave-one-out
prediction was also performed to check the predictability
of Eqs. 10 and 11. The activity values calculated using Eq.
10 are listed in Table III along with those predicted by the
leave-one out prediction.

a-2) QSAR by GDR: The four parameters, PI, ,, MR,
F, and R, selected in the QSAR models by MRA and
FUNCLINK were also used for GDR’s QSAR estimation.
The number of nodes in the second layer, 1, and « were
examined by a preliminary calculation in order to obtain
the best QSAR result. As shown in Table IV, the number
of nodes in the second layer varied from 1 to 14, but the
correlation coefficients in recognition were not directly
improved. When N, was 4, 9, and 11—14, the QSAR
models showed good correlation, and the best correlation
was derived at N,.4.=13. The correlation coefficients by
leave-one-out prediction were also calculated and shown in
Table IV. No good relationship in correlation coefficients
between the recognition and the leave-one-out prediction

TasLe 1V. Effect of the Number of Nodes in the Second Layer of GDR
on the Results of QSAR Analysis for Carboquone Derivatives

r (pred.)?

Nnodca) n n o 9 r (C‘dlC.)d)
i 0.6 0.6 0.908 0.827
2 0.6 0.6 0.938 0.844
3 0.6 0.6 0.938 0.840
4 0.6 0.7 0.951 0.855
5 0.6 0.8 0.942 0.840
6 0.6 0.7 0.943 0.834
7 0.6 0.8 0.941 0.856
8 0.6 0.7 0.942 0.832
9 0.6 0.8 0.953 0.834
10 0.6 0.7 0.942 0.859
11 0.6 0.7 0.951 0.856
12 0.6 0.7 0.951 0.852
13 0.6 0.8 0.960 0.849
14 0.6 0.8 0.959

0.856

a) Number of nodes in the second layer.
d) Correlation coefficient.

b) Momentum rate. ¢) Learning rate.
e) Correlation coefficient for leave-one-out prediction.

TABLE V. Weight Matrices of the QSAR Model by GDR for Carboquone
Derivatives

Layer {9

Layer 3
1 2 3 4 1
Layer 2

1 —-1.0066 —1.0707 —1.7731 —1.8836 1.8588
2 —1.2315 —-1.2014 —1.8843 —1.9647 2.0398
3 —3.5120 0.2854 —4.3936 —4.2715 3.5816
4 —0.7577 —1.2206 —1.6142 —1.9385 1.7994
N —0.9432 —0.8709 —2.2000 —2.4839 2.1571
6 —0.6539  —0.6902 —0.9023 —1.3727 1.1559
7 —2.7493 —~0.0149 —3.8623 —3.8258 3.2833
8 —1.3115 —1.2307 —1.9842 —2.1096 2.0751
9 111232 —~1.7880  —1.6218 1.0804 —3.3807
10 —1.4125 —0.8052 —2.5821 —2.7787 2.4599
i1 —0.8110 —1.0590 —0.8331 —1.2419 1.2193
12 2.6730 4.2088 4.3012 0.4799 —2.3514

13 -0.1032 —0.8545 —0.5893 —1.0891

0.9730

a) log 1/C, C: optimal dose (mol/kg) in a chronic treatment.
leave-one-out prediction.

b) From

a) The nodes in layer 1 correspond to the following four parameters: 1: Pl 52
MR; 3: F; and 4: R.
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was recognized. We finally selected the QSAR model derived
at N,oq.=13, #=0.6, and «=0.8 as the best one, whose
is 0.960 in the recognition and 0.849 in the leave-one-out
prediction. The weight matrices between the nodes in
different layers are listed in Table V. It is very difficult to
get information about the contribution of the parameters
of activity from this table. The activity values calculated
and predicted using GDR are shown in Table III.

b) Benzodiazepine Derivatives b-1) QSAR by FUN-
CLINK: We used the five parameters included in the
multiple regression equation by Yoshimoto ez al.'® as the
original parameters for the QSAR estimation by FUN-
CLINK. The five parameters were M R-3, MR-7, 0,,-3, F-4,
and I-7. After functional linking of the original parameters
scaled into the range of 0.0 and 1.0, parameter selection was
done to estimate the best QSAR model. Equation 12 was
finally derived. The result by MRA'® is also shown as Eq.
13.

FUNCLINK:

Ig= —3.057MR-3+0.519 cos(n MR-7) + 1.036 0,,-3*

—0.552 cos(nF-4)—0.630/-7—0.033 (12)
n=51; r=0876; s=0369; F=295
leave-one-out : r=0.842
MRA:
log1/C= —0.589MR-3—0.274MR-T+1.0770,,-3 + 1.481 F-4
(¢=3.53) (3.55) (3.56) (4.64) (13)
—0.5501-7+5.440
(3.31) (19.40)
n=>51; r=0855; s=0.397; F=244
leave-one-out: r=0.796

In Eq. 12, three semilinear parameters, cos(nMR-7),
6,.-3%, and cos(nF-4), as well as two linear ones, MR-3 and
I-7 were selected. As in the QSAR of carboquone derivatives,
the contributions of all the parameters in Eqs. 12 and 13
are alike since cos(x) (0 <x <) is a decreasing function and
x? (0<x<1) is an increasing one. The activity values
estimated by Eq. 12 and those by leave-one-out prediction
are shown in Table VI.

b-2) QSAR by GDR: The five parameters used in MRA
and FUNCLINK were adopted for QSAR analysis by
GDR. As done in section a-2), the optimal values of the
number of nodes in the second layer, 7, and « were examined.
The results are shown in Table VII. The correlation coef-
ficient in the recognition was improved when N, 4, was in-
creased to 6; no great improvement was observed thereafter.
Compared to the recognition, one can notice that the results
of the leave-one-out prediction were rather poor. Except
for the first three ones, the lowering of the correlation
coefficients from recognition to prediction is 0.3 or more.
We selected the QSAR model gained at #=0.6, «=0.8, and
N,ooqe =06 as the best result whose r is 0.887 in recognition
and 0.583 in leave-one-out prediction. The weight matrices
are shown in Table VIIL. It is also very difficult to get
information about the contribution of parameters from
this table. The activity values calculated and predicted by
leave-one-out prediction are shown in Table VI.

By comparing the QSAR results of carboquone
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TaBLE VI. Calculated and Predicted Activity Values® by FUNCLINK
and GDR for Benzodiazepine Derivatives

FUNCLINK

No Obsd e
Caled. Pred.” Calcd Pred.”
1 4.99 4.729 4.716 4.905 4,903
2 3.57 3.858 3.909 3.454 3.158
3 3.79 3.658 3.647 3.695 3.258
4 4.80 5.103 5.167 4.866 4,862
5 3.84 3.931 3.948 3.764 4,350
6 4.60 5.219 5.274 5.322 5.398
7 4.34 5.013 5.043 5.037 5.075
8 5.29 5.292 5.289 5.122 4,788
9 5.06 4,573 4.531 4.853 4.705
10 5.35 4.738 4.706 4.908 4.853
11 4.64 4.600 4.598 4.868 4.964
12 4.73 4.711 4.710 4.900 4931
13 4.76 5.254 5.267 5.146 5.899
14 5.06 5.090 5.092 5.117 5.067
15 4.15 4.068 4.059 4.061 3.720
16 5.07 5.096 5.098 5.107 5.087
17 4.08 4,329 4.367 4.199 5.508
18 4.57 4.874 4.906 4913 5.276
19 4.69 4.164 4.041 4.768 3.874
20 5.38 5.213 5.208 5.114 4.274
21 4.28 4.249 4.247 4318 4.035
22 4.70 5.083 5.170 4.843 4.760
23 5.85 5.516 5.487 5.738 5.833
24 4.90 4.944 4.946 4.994 4.995
25 5.30 S5.116 5.099 5.649 6.231
26 5.70 5.827 5.842 6.163 6.230
27 4.65 4.881 4.908 4.943 4,906
28 5.63 5.777 5.789 5.996 5.802
29 4.90 5.244 5.271 5.320 5.390
30 3.60 4.365 4.536 3.794 4.861
31 5.28 5.069 5.057 5.082 4,966
32 5.77 5.569 5.548 5.832 5.502
33 5.71 6.205 6.265 6.534 6.788
34 4.76 4.887 4.895 5.024 5.008
35 5.35 5.093 5.078 5.103 5.001
36 6.03 5.956 5.942 6.494 7.255
37 5.31 5.360 5.362 5.723 5.961
38 6.92 6.243 6.143 6.570 6.317
39 . 497 5.643 5.705 5.666 6.041
40 5.20 4.606 4.553 5.064 4.031
41 5.44 5.596 5.609 5.987 6.167
42 5.60 5.267 5.228 6.029 6.056
43 5.62 5.737 5.749 5.974 5.951
44 548 5.066 5.006 5.133 4,259
45 5.88 5.360 5.293 5.723 5.386
46 5.03 5.282 5.303 5.277 5.153
47 6.30 5.877 5.828 6.197 6.009
48 577 5.742 5.741 5.989 5.900
49 597 6.096 6.117 6.447 6.508
50 6.00 5.908 5.899 6.220 6.209

S1 6.50 6.266 6.233 6.592

a) log 1/C, C: EDy, (mol/kg). b) From leave-one-out prediction.

derivatives and benzodiazepine derivatives obtained by
FUNCLINK with those by GDR, it can be concluded that
GDR usually gives a little better fitting of the activity, but
the leave-one-out prediction by GDR is poorer than that
by FUNCLINK.

CCVs The contribution patterns of the parameters to
activity were investigated for the QSAR models of
carboquone derivatives obtained by FUNCLINK and
GDR.

a) FUNCLINK: The CCVs of the four parameters
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TaBLe VIIL

Effect of the Number of Nodes in the Second Layer of GDR

on the Results of QSAR Analysis for Benzodiazepine Derivatives

7 (calc.)?

r (pred.)®

Nnodeu) ‘1“ aC)
1 0.6 0.6 0.705 0.600
2 0.6 0.6 0.835 0.617
3 0.6 0.6 0.849 0.608
4 0.6 0.6 0.864 0.525
5 0.6 0.6 0.855 0.519
6 0.6 0.8 0.887 0.583
7 0.6 0.8 0.879 0.538
8 0.8 0.8 0.864 0.537
9 0.6 0.8 0.875 0.504
10 0.6 0.8 0.865 0.566
11 0.6 0.6 0.860 0.544
12 0.6 0.8 0.861 0.560
13 0.6 0.6 0.864 0.518

a) Number of nodes in the second layer.

b) Momentum rate.

¢) Learning rate.

d) Correlation coefficient. ¢) Correlation coefficient for leave-one-out prediction.

TasLe VIII. Weight Matrices of the QSAR Model by GDR for
Benzodiazepine Derivatives

Layer 19

Layer 3
1 2 3 4 5 1
Layer 2

1 —4.0588  0.0270 —5.3435 —0.9899  3.2583 —3.5572
2 2.2155 —5.6553 —3.9618 1.8663 —1.5829 4.8300
3 —0.3436 —5.0460 0.6342  5.0751 —1.1853 1.1608
4 12.1693  0.1761 0.1910 —2.9819 —1.9231 —3.7239
5 —2.3990 —5.6051 6.3713 —2.3504 —1.7429 1.3816
6 0.3195 —0.8682 —1.4978 —0.7196  0.2265 0.1456

a) The nodes in layer I correspond to the following five parameters: 1: MR-3; 2:
MR-7; 3: 6,-3; 4: F-4; and 5: I-7.
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included in Eq. 10 were drawn with the QSAR models for
all the 37 data (Fig. 1). Clearly, all four parameters have
negative correlation with the activity. The CCV of R which
takes a linear form in Eq. 10 is not a linear one in Fig. 1,
since the sigmoidal function acted on the output values. The
small range of the activity changes with MR, means that
the contribution of MR, to activity is not so great.

The leave-one-out CCVs of the four parameters are shown
in Fig. 2. Thirty-seven CCVs for each of the 37 compounds
left out of the data set resulted for each parameter. The
CCVs in Fig. 1 are also shown here using the open square
line. Most of the leave-one-out CCVs showed good
agreement with this line, except for two or three which had
greater deviation. We then examined these deviating CCVs.
For PI, , or MR,, the deviation was recognized when
compound 11 was eliminated. The F value for compound
11 is 0.52, the maximum value of F in the set. As shown in
Table I, the second largest value of Fis 0.16, and the third
is 0.10. Obviously, the difference of 0.52 from 0.16 is much
greater than that of 0.16 from 0.10; therefore, 0.52 of F can
be considered an extraordinary value. For F and R, two
CCVs are markedly apart from others; these resulted from
the elimination of compounds 3 and 11. The PI; , value of
compound 3 is 5.0, the maximum and discrete value of
PI, ,. The second and the third largest PI, , are 3.92 and
3.66, respectively. Therefore, it can be said that the exis-
tence of such an “outer discrete value” in the parameters
will greatly affect the leave-one-out prediction.

b) GDR: The CCVs of the four parameters in the QSAR
model by GDR are also drawn in Fig. 1. Like FUNCLINK,
there was negative correlation of all four with the activity.
The CCVs of F and R by GDR showed good agreement
with those by FUNCLINK.

S

AL T
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R bl 22 T2 T
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Fig. 1.
—[]—, FUNCLINK; —&—, GDR.
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Contribution Curves for the Parameters in the QSAR Models of Carboquone Derivatives Obtained Using FUNCLINK and GDR
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The leave-one-out CCVs of the parameters are shown in
Fig. 3, along with the four CCVs for the entire data in Fig.
1, which were marked with open squares. Clearly, most of
the 37 leave-one-out CCVs behave differently from the CCV

Leave-one-out Contribution Curves for the Parameters in the GDR Model

from others;

with open squares. In addition, four curves for P/, , and
three curves for MR, F, and R are noticeably apart away
these resulted from the elimination of
compounds 6, 18, 22, and 35. None of them contain outer
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discrete parameter values. The reason for the great
deviation, therefore, is not the same as in the case of
FUNCLINK. In Table I, we find that PI, , of compound
6 is 3.00, and the two adjacent PI, , values are 3.66
and 2.60. Therefore, 3.00 may be considered an “inner
discrete value” of PI, ,. Similary, MR, of compounds 18
and 35, and PI, , of compound 35 are all such inner discrete
values. It seems that the QSAR models of GDR are easily
affected by inner discrete values of the parameters in the
leave-one-out prediction.

Conclusions

QSAR analyses of the 37 carboquone derivatives with
antileukemic activity and of the 51 benzodiazepine de-
rivatives with antipentylentetrazole activity were con-
ducted. The results showed that the QSAR models of GDR
usually give excellent fitting of the activity values, but the
leave-one-out prediction is unsatisfactory. On the other
hand, the QSAR equation modeled by FUNCLINK not
only gives good fitting of the activity values, but also good
leave-one-out prediction.

The CCVs of the parameters in FUNCLINK and GDR
for the entire set of carboquone derivatives showed that
the parameters contributed to the activity in a well-regulated
nonlinear pattern, and, further, that the contributions of
the four parameters were all reverse to the activity like those
in MRA. In the leave-one-out CCVs, however, much greater
deviations occurred in GDR than FUNCLINK for all four
parameters.

In conclusion, the QSAR models of GDR depend upon
each individual compound in the data set more than
FUNCLINK models. This contributes to the excellent
reproduction of the activity, and is also responsible for the
poor predictive ability. On the other hand, the models of
FUNCLINK usually well reproduce and also well predict
the activity, even though they are sometimes greatly affected
by outer discrete values of the data.

It seems that the poor predictability caused by the greater
dependence on each compound in GDR arises from its
characteristic network structure. In the pattern discrimina-
tion, for example, a three-layer GDR network can form

2969

arbitrarily complex decision regions, and can therefore
separate populations of patterns even though such
distributions might be intermeshed spatially in pattern
space.!” The GDR network can be expected to give good
predictive results only in cases where data used for training
the network are extremely precise and include every kind
of possible pattern. In such cases, however, no prediction
may any longer be needed. Generally speaking, GDR is not
considered suitable for QSAR analysis aimed at drug design.
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