506

Zinc Deficient Bovine Erythrocyte Superoxide Dismutase Has Low Specific Activity

Junzo Hirose,*,a Hiroyuki Kano,b Yoshinori Kidani,b Hiroyuki Iwamoto,a and Keitaro Hiromia

Department of Food Science and Technology, Faculty of Engineering, Fukuyama University, Higashimura-cho Sanzo, Fukuyama, Hiroshima 729-02, Japan and Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467, Japan. Received July 25, 1991

Zinc deficient bovine superoxide dismutase (Cu₂E₂SOD (E = empty)) was prepared and purified by high performance liquid chromatography (HPLC). Each peak was characterized as to protein, copper content and specific activity. The Cu₂E₂SOD peak fractionated by HPLC has a low specific activity at pH 7.8 (about 10% of the native enzyme (Cu₂Zn₂SOD)). With the addition of zinc ions, the specific activity of Cu₂E₂SOD was quantitatively restored to that of the native enzyme. This behavior implies that the zinc ion is very important for the appearance of enzyme activity.

Keywords copper zinc superoxide dismutase; zinc deficient superoxide dismutase; high performance liquid chromatography; copper binding

Bovine erythrocyte superoxide dismutase (Cu₂Zn₂SOD¹⁾) has two identical subunits, each of which contain one copper(II) and one zinc(II) ion. The X-ray crystallographic analysis of bovine superoxide dismutase has been performed by Tainer et al. at 2 Å resolution.2) The main feature of the metal binding region is such that copper and zinc ions coordinate to the same imidazole ring of the histidine 61 residue.2) The bridging His 61 residue in turn plays an important role, because the bond between the copper ion and the bridging imidazole is disrupted when the copper(II) ion is reduced to a copper(I) ion by an O₂ ion.^{2,3)} A proton then binds to the nitrogen atom of the disrupted imidazole in the His residue, and this proton on the imidazole may be utilized by O_2^{2-} in the substrate catalytic cycle.^{2,3)}

The copper ions at the copper-binding site are absolutely necessary for the enzyme activity. 3) Roe et al. proposed that the zinc ion is important for stabilizing the conformation of the enzyme.4) Fee et al.5) proposed that zinc deficient bovine erythrocyte superoxide dismutase (Cu₂E₂SOD) has almost the same activity as that of the native enzyme (Cu₂Zn₂SOD) at pD 9.3 using pulse-radiolysis analysis. Recently, Bertini et al.6 showed that Cu₂E₂SOD derivatives, both wild types and mutants, have low activity at a physiological pH of 7.4. In literature, 5-9) the specific activity of Cu₂E₂SOD varies widely, from 20% to 80%. Metal coordination at the zinc site would be expected to facilitate deprotonation from the disrupted His 61 residue.^{2,3)} However, the role of the zinc ion is not yet clear.

In the previous paper, 10) Cu₂CuESOD and Cu₂E₂SOD. could not be purified by high performance liquid chromatography (HPLC). But in this paper, Cu₂CuESOD and Cu₂E₂SOD purified by HPLC were characterized, and the role of zinc ions in the native enzyme was discussed.

Materials and Methods

Chemicals and Reagents Bovine superoxide dismutase (Cu₂Zn₂SOD) was purified from bovine erythrocytes using the method of McCord and Fridovich. 11) The apo-bovine superoxide dismutase (E₂E₂SOD) (E= empty) was prepared by dialysis against ethylenediaminetetraacetic acid (EDTA) (10⁻³ M) at pH 3.8 (0.01 M acetate buffer) and then 0.1 M sodium chloride (0.01 M acetate buffer) to remove excess EDTA.¹⁰⁾ The zinc-free bovine superoxide dismutase (Cu₂E₂SOD) was prepared by two different methods: method I, the copper ions were slowly added to E₂E₂SOD at a [Cu²⁺]/[E₂E₂SOD] ratio of 2.0 in 0.01 M 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 5.5)8,9); method II, the native enzyme (Cu_2Zn_2SOD) was dialyzed by $0.01\,\mathrm{M}$ acetate buffer (pH 3.8). $^{12)}$ In the latter method, the zinc ions in the native enzyme were selectively removed. Apparatus and Conditions for HPLC The copper and zinc content

was measured with Shimadzu AA-630-12 flame and AA-670G flameless atomic absorption spectrophotometers.

Chem. Pharm. Bull. 40(2) 506-508 (1992)

A high-performance liquid charomatograph (Shimadzu LC-3A) was equipped with a TSK-gel DEAE-2SW column (4.6 i.d. × 250 mm) connected to its precolumn (4.6 i.d. × 50 mm) and an ultraviolet (UV) detector (Shimadzu SPD-2A; at 260 nm). The elution system (flow rate, 0.5 ml/min) had a linear gradient from 0.006 M K₂HPO₄-HCl buffer (pH 7.0) containing 10⁻⁴ m ethylenediaminediacetic acid (EDDA) to a 0.05 m K₂HPO₄-HCl buffer (pH 7.0) containing 10⁻⁴ M EDDA (gradient rate; 0.5%/min).¹⁰⁾ Twenty μl of the enzyme solution (about $10^{-4}\,\text{M}$) was injected into the HPLC column. The enzyme activity was measured immediately after fractionation, then the fractionated solution was concentrated and dialyzed against metal-free distilled water to measure the metal content of the enzyme.

Enzyme Activity and Protein Concentration The enzyme activity was measured at pH 7.8 with 0.1 mm EDTA (McCord and Fridovich¹¹⁾). The Shimadzu UV-200 spectrophotometer was thermostated at 25±0.5°C. The concentration of protein was determined by the method of Lowry, with bovine serum albumin as a standard.

Results

The HPLC chromatograms of Cu₂E₂SOD obtained by methods I and II as described in the Materials and Methods section are shown in Fig. 1. The HPLC chromatogram of Cu₂E₂SOD obtained by method I has one small peak and two main peaks (Fig. 1). In order to characterize peaks 1, 2 and 3, these peaks were fractionated and copper, protein content, and specific activity of each peak was determined (Table I). In Table I, peak 3 can be assigned to Cu₂Cu₂SOD on the basis of its copper content (3.81/enzyme) and high specific activity (4100 unit/mg). The retention time and specific activity of peak 3 is completely consistent with that of Cu₂Cu₂SOD prepared by the method of the literature. 10) The copper content of peak 2 was

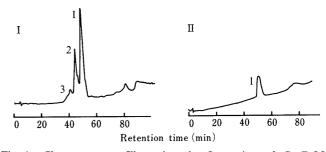


Fig. 1. Chromatograms Illustrating the Separation of Cu₂E₂SOD Prepared by Methods I and II

I: Cu_2E_2SOD prepared by method I. II: Cu_2E_2SOD prepared by method II.

February 1992 507

TABLE I. Copper Content and Specific Activity (pH 7.8) of Each Peak Fractionated by HPLC in Cu₂E₂SOD Obtained by Methods I and II

	Method I			Method II
	Peak 1	Peak 2	Peak 3	Peak 1
Protein (M)	3.12×10^{-5}	1.56×10^{-5}	0.80×10^{-5}	3.9×10^{-5}
Copper (M)	5.90×10^{-5}	4.26×10^{-5}	3.05×10^{-5}	6.2×10^{-5}
[Cu ²⁺]/[enzyme]	1.89	2.73	3.81	1.60
Activity (Units/mg of protein)	546	2235	4100	515

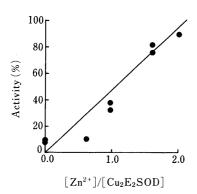


Fig. 2. Recovery of Enzyme Activity by Adding Various Amounts of Zinc Ions to $\text{Cu}_2\text{E}_2\text{SOD}$

Various concentrations of the zinc ion were added to $1.0\times10^{-4}\,\mathrm{M}$ Cu₂E₂SOD at pH 7.4. Enzyme activity was measured by the xanthine–xanthine oxidase method at pH 7.8.¹¹⁾

2.73 copper ion per enzyme and the specific activity was about a half of Cu₂Cu₂SOD. Therefore, peak 2 must be Cu₂CuESOD. The copper content of peak 1 was 1.89 Cu per enzyme molecule, but it had very low specific activity (546 unit/mg). From its copper content, peak 1 will be assigned to Cu₂E₂SOD. On the basis of these results, it is indicated that Cu₂E₂SOD prepared by method I is a mixture of Cu₂Cu₂SOD, Cu₂CuESOD, and Cu₂E₂SOD. Thus, method I is not a good method for preparing Cu₂-E₂SOD. Surprisingly, Cu₂E₂SOD fractionated by HPLC has very low specific activity at pH 7.8 (about 12% of the native enzyme (4500 unit/mg)). The specific activity of Cu₂CuESOD is equal to half the specific activity of Cu₂Cu₂SOD (Cu₂Cu₂SOD has the same activity as that of Cu₂Zn₂SOD¹⁰⁾). The metal binding to the zinc site is very important to the appearance of the enzyme activity.

In Fig. 1, the chromatogram of Cu₂E₂SOD obtained by method II has only one peak. This peak was also fractionated and its copper, protein content, and specific enzyme activity were measured. These values are also shown in Table I. The copper content of this peak was 1.6 atoms per enzyme. The specific activity of this peak was 515 units per mg of protein and is almost consistent with that of Cu₂E₂SOD prepared by method I and purified by HPLC. Method II is much better for preparing Cu₂E₂SOD than method I.

To make sure that Cu_2E_2SOD has very low specific activity, the recovery of enzyme activity following the addition of various concentrations of zinc ions to Cu_2E_2SOD obtained by method II is shown in Fig. 2. With the addition of zinc ions, the specific activity of Cu_2E_2SOD was quantitatively restored from 10% to 95%. At a $[Zn^{2+}]/[Cu_2E_2SOD]$ ratio of 2.0, the specific activity of

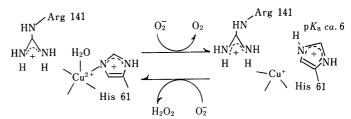


Chart 1. Reaction Mechanism of Cu₂E₂SOD in the Catalytic Cycle

Cu₂E₂SOD completely recovered to that of Cu₂Zn₂SOD. This behavior clearly indicates that Cu₂E₂SOD has very low activity (about 10% of Cu₂Zn₂SOD), but easily becomes Cu₂Zn₂SOD with the addition of zinc ions.

In a previous paper, $^{13)}$ it was shown that the cupric ion of Cu_2Zn_2SOD was completely reduced by $Fe(CN)_6^{4-}(10^{-2}\,\text{M})$ at pH 6.0. To know whether the redox potential of the copper ion in Cu_2E_2SOD is different from that of Cu_2Zn_2SOD , reduction of the cupric ion of Cu_2E_2SOD by $Fe(CN)_6^{4-}(10^{-2}\,\text{M})$ was attempted. The cupric ions of Cu_2E_2SOD were not reduced by $10^{-2}\,\text{M}$ Fe(CN)_6^{4-}. But, with the addition of zinc ions $(10^{-3}\,\text{M})$ to Cu_2E_2SOD , the cupric ions in Cu_2E_2SOD can be reduced by $Fe(CN)_6^{4-}$, because the zinc ion is bound to the zinc sites in Cu_2E_2SOD . This behavior may imply that the redox potential of the cupric ions in Cu_2E_2SOD is much lower than in Cu_2Zn_2SOD .

Discussion

In Table I, Cu₂E₂SOD has very low specific activity. This behavior indicates that the zinc ion is very important for the appearance of enzyme activity. Why does the zinc ion accelerate the catalysis of superoxide ions?

In the native enzyme, the proton of the nitrogen atom of the disrupted imidazole in His 61 is supplied to $O_2^{2^-}$ in the substrate catalytic cycle (in Chart 1). The same reaction will occur in Cu_2E_2SOD . But, the p K_a of the histidine residue detached from cuprous ions that are 6—7 and 14 are so different from that $(pK_a=10-11)^{3}$) of the native enzyme, that a proton of His 61 cannot easily be supplied to $O_2^{2^-}$ in the substrate catalytic cycle.³⁾ This may be the reason Cu_2E_2SOD has low specific enzyme activity.

Another explanation is also possible. In the experiment concerning the reaction between Cu_2E_2SOD and Fe- $(CN)_6^{4-}$, the copper ion of Cu_2E_2SOD is not reduced by $Fe(CN)_6^{4-}$. This behavior may imply that the redox potential of the cupric ion in Cu_2E_2SOD is much lower than that in Cu_2Zn_2SOD . The change of the redox potential of the copper ion in Cu_2E_2SOD may be correlated to the low activity of Cu_2E_2SOD .

References and Notes

- Cu₂Zn₂SOD is a native superoxide dismutase which has two copper ions in the copper binding sites and two zinc ions in the zinc binding sites. E₂E₂SOD represents the enzyme which has no metal ions (E indicates empty). Cu₂Cu₂SOD is the enzyme which has four copper ions in the copper and zinc binding sites. Cu₂CuESOD is the enzyme which has two copper ions in the copper sites and one copper ion in the zinc sites. Cu₂E₂SOD is the enzyme which has two copper ions in the copper sites.
- J. A. Tainer, E. D. Getzoff, J. S. Richardson, and D. C. Richardson, Nauture (London), 306, 284 (1983).
- B) S. J. Lippard, A. R. Burger, K. Ugurbil, J. S. Valentine, and

- M. W. Pantoliano, "Advances in Chemistry 162; Bioinorganic Chemistry-II," ed. by K. N. Raymond, American Chemical Society, Washington D. C., 1977, pp. 251—262.
- 4) J. A. Roe, A. Buttler, D. M. Scholler, J. S. Valentine, L. Markey, and K. J. Breslauer, *Biochemistry*, 27, 950 (1988).
- 5) J. A. Fee and C. Bull, J. Biol. Chem., 261, 13000 (1986).
- I. Bertini, L. Banci, M. S. Viezzoli, D. E. Cabeli, W. Tung, and R. A. Hollewell, Eur. J. Biochem., 196, 123 (1991).
- J. S. Valentine and M. W. Pantoliano, "Copper Proteins," ed. by T. G. Spiro, Wiley, New York, 1981, pp. 291—358.
- K. M. Beem, W. E. Rich, and K. V. Rajagopalan, J. Biol. Chem., 249, 7298 (1974).
- J. A. Fee and R. G. Briggs, Biochim. Biophys. Acta, 400, 439 (1975).
- J. Hirose, S. Toida, H. Kuno, S. Ozaki, and Y. Kidani, *Chem. Pharm. Bull.*, 36, 2103 (1988).
- 11) J. M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969).
- M. W. Pantoliano, J. S. Valentine, and L. A. Nafie, J. Am. Chem. Soc., 104, 6310 (1982).
- 13) S. Ozaki, J. Hirose, and Y. Kidani, *Inorg. Chem.*, 27, 3746 (1988).