Triazolo[4,5-d]pyrimidines. XII.¹⁾ Reactions of 6-Benzoyl-6,7-dihydro-3-phenyl-3*H*-1,2,3-triazolo-[4,5-d]pyrimidines (Triazolopyrimidine Reissert Compounds) with Acid, Base, and Electrophile

Ken-ichi Tanji,**,^a Susumu Sato,^b Yoshihiko Kanamaru,^b Chihoko Iijima,^a Akira Miyashita,^a and Takeo Higashino^a School of Pharmaceutical Sciences, University of Shizuoka,^a 395 Yada, Shizuoka 422, Japan and Central Research Laboratories, S S Pharmaceutical Co., Ltd.,^b 1143 Nanpeidai, Narita 286, Japan. Received July 15, 1991

In the treatment of 6-benzoyl-6,7-dihydro-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine-7-carbonitrile (1, triazolo-pyrimidine Reissert compound) and 6-benzoyl-6,7-dihydro-5-methyl-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine-7-carbonitrile (2, 5-methyltriazolopyrimidine Reissert compound) with an acid, the ring fission of the pyrimidine ring proceeded to give the triazole derivatives (3—7). Alkaline hydrolysis of 2 and 1 gave 5-methyl-3-phenyl- (10) and 3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidines (9), respectively. The anions, generated from 1 and 2 with sodium hydride (NaH), underwent aromatization to give the 3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine-7-carbonitriles (12 and 14). Compounds 1 and 2 reacted with arylaldehydes in the presence of NaH to give corresponding 3*H*-1,2,3-triazolo[4,5-*d*]pyrimidin-7-ylmethyl benzoates (15 and 17).

Keywords 3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine; Reissert compound; ring fission; aromatization; Reissert compound anion; 3*H*-1,2,3-triazolo[4,5-*d*]pyrimidin-7-ylmethyl benzoate

We have elucidated the reactivities of 3-benzoyl-3,4dihydro-4-quinazolinecarbonitrile (quinazoline Reissert compound), 2a,b) 3-benzoyl-3,4-dihydro-2-methyl-4-quinazolinecarbonitrile (2-methylquinazoline Reissert compound),³⁾ 5-benzoyl-4,5-dihydro-1-phenyl-1*H*-pyrazolo-[3,4-d]pyrimidine-4-carbonitrile (pyrazolopyrimidine Reissert compound), 4) and 1-benzoyl-1,6-dihydro-9-phenyl-9Hpurine-6-carbonitrile (purine Reissert compound)⁵⁾ with acid, alkali, sodium hydride, and electrophiles. As a continuation of these studies, the chemical reactivities of 6-benzoyl-6,7-dihydro-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-7-carbonitrile (1, triazolopyrimidine Reissert compound) and 6-benzoyl-6,7-dihydro-5-methyl-3-phenyl-3H-1,2,3-triazolo [4,5-d] pyrimidine-7-carbonitrile (2, 5-methyltriazolopyrimidine Reissert compound) with acid, base, and electrophiles were investigated. In the present paper, we describe the results obtained in the above reactions, and compare the reactivities of 1 and 2 with those of quinazoline and 2-methylquinazoline Reissert compounds.

According to the procedure⁶⁾ reported previously, compounds **2** and **1** were prepared from 5-methyl- and 3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidines in satisfactory yields.

Acid Hydrolysis It is known that the quinazoline Reissert compound^{2a)} is hydrolyzed in an acid medium to give the ring fission product, 2-(2-aminophenyl)-2-benz-

amidacetonitrile. The 2-methylquinazoline Reissert compound reacted with aqueous hydrochloric acid in a different way, yielding the oxazole derivative, 4-(2-acetamidophenyl)-5-amino-2-phenyloxazole.

The triazolopyrimidine Reissert compound 1 was hydrolyzed in the same medium to give the ring fission products, 5-amino- α -benzamido-1-phenyl-1H-1,2,3-triazole-4-acetonitrile (3) and 5-amino- α -benzamido-1-phenyl-1H-1,2,3-triazole-4-acetamide (4), in the same way as observed for the quinazoline Reissert compound. In the case of 2, under the same conditions, two types of ring fission occurred, yielding 5-acetamido- α -benzamido-1-phenyl-1H-1,2,3-triazole-4-acetonitrile (5), 5-acetamido- α -benzamido-1-phenyl-1H-1,2,3-triazole-4-acetamide (6) and 5-acetamido-4-(5-amino-2-phenyl-4-oxazolyl)-1-phenyl-1H-1,2,3-triazole (7). The mechanism of the formation of the ring fission products might be similar to that already proposed by us^{2a,3)} for the reaction of the quinazoline and 2-methylquinazoline Reissert compounds with an acid.

Alkaline Hydrolysis It is known that the hydrolysis of quinazoline^{2a)} and 2-methylquinazoline³⁾ Reissert compounds in an alkaline medium gives quinazoline and 2-methylquinazoline,³⁾ respectively, *via* attack of the hydroxide ion at the carbonyl carbon, followed by loss of a cyanide ion.

A similar reaction between **2** and 2 N sodium hydroxide in methanol gave 5-methyl-3-phenyl-3*H*-1,2,3-triazolo-

© 1992 Pharmaceutical Society of Japan

514 Vol. 40, No. 2

[4,5-d]pyrimidine (10), together with methyl benzoate (11). In contrast, compound 1 underwent ring fission under the same conditions and α -benzamido-5-(methoxymethyleneamino)-1-phenyl-1H-1,2,3-triazole-4-acetonitrile (8) was obtained, together with 3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine (9) and 11.

The mechanism of formation of the ring fission product **8** is assumed to involve preferential addition of methoxide ion to the C^5 , N^4 -double bond, followed by cleavage of the C^5 , N^6 -single bond.

Reaction with Sodium Hydride It is known that the

anions generated from 1-benzoyl-1,2-dihydro-2-quinoline-carbonitrile (quinoline Reissert compound)⁷⁾ and 2-benzoyl-1,2-dihydro-1-isoquinolinecarbonitrile (isoquinoline Reissert compound)⁸⁾ undergo rearrangement through aziridine intermediates in an intramolecular process, giving 2-benzoylquinoline and 1-benzoylisoquinoline, respectively. In contrast, that of the quinazoline Reissert compound^{2a)} undergoes aromatization to give 4-quinazolinecarbonitrile and that of the 2-methylquinazoline Reissert compound³⁾ undergoes both rearrangement and aromatization, giving 4-benzoyl-2-methylquinazoline and 2-methyl-4-quinazoline-carbonitrile.

Aromatization proceeded in the reaction of 1 with sodium hydride (NaH), yielding 3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-7-carbonitrile (12), together with 9. In the case of 2, only aromatization took place in the different way from that of the 2-methylquinazoline Reissert compound, resulting in the formation of 5-methyl-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-7-carbonitrile (14), 10, α ,3-diphenyl-5-methyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7-ylmethyl benzoate (15), and 7,7'-bis[5-methyl-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine] (16). The mechanism of aromatization may be similar to that for the reaction of the quinazoline^{2 α}) and pyrazolopyrimidine⁴) Reissert com-

pounds with sodium hydride, already reported.

Reaction with Electrophiles The introduction of carbon chains into the 4-position on the quinazoline ring was achieved by reactions of quinazoline^{2b)} and 2-methylquinazoline³⁾ Reissert compound anions with aldehydes and aryl (alkyl) halides.

In connection with reactions involving the formation of Reissert compound anions, the reactions of 1 and 2 with aldehydes in the presence of NaH were investigated. The anions of 1 and 2 reacted with arylaldehydes and octanal, affording the corresponding benzoates (17a—d, 18, 15, and 21) and by-products (9, 13, 19, and 10) which were formed by aromatization.

In the treatment of 1 with 2,4-dinitrochlorobenzene in the presence of NaH, arylation occurred to give 4-(2,4-dinitrophenyl)-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]-pyrimidine (20), together with 12 and 9. In the case of 2, only aromatization proceeded under the same conditions, yielding 10, 13a, and 14.

The triazolopyrimidine and 5-methyltriazolopyrimidine Reissert compounds have almost the same reactivities as the quinazoline and 2-methylquinazoline Reissert compounds, respectively, with acid, alkali, and sodium hydride. The anions of 1 and 2 reacted with aldehydes to give the benzoates, and the formation of the benzoates indicates that 1 and 2 are potentially available as synthetic intermediates for introduction of a functionalized group at the 7-position by the use of electrophiles.

Experimental

All melting points are uncorrected. Infrared (IR) spectra were measured with a JASCO A-102 diffraction grating IR spectrophotometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were taken at 60 MHz and 23 °C with a Hitachi R-24B ¹H-NMR spectrometer. Chemical shifts are expressed in parts per million (ppm) downfield from tetramethylsilane as an internal standard. The following abbreviations are used: s=singlet, d=doublet, t=triplet, m=multiplet, b=broad.

Acid Hydrolysis of the Triazolopyrimidine Reissert Compound (1) A solution of 1^{6} (0.33 g, 1 mmol) and 20% aqueous HCl (4 ml) in dimethyl sulfoxide (DMSO) (4 ml) was stirred at room temperature for 30 min. The mixture was poured onto ice-water and extracted with CHCl₃. The crude product was purified by SiO₂ column chromatography. The fraction elut-

ed with CHCl₃ gave 5-amino- α -benzamido-1-phenyl-1H-1,2,3-triazole-4-acetonitrile (3) as colorless needles from benzene–MeOH, mp 178—180 °C. Yield 64 mg (20%). The fraction eluted with CHCl₃–MeOH (100:1) gave 5-amino- α -benzamido-1-phenyl-1H-1,2,3-triazole-4-acetamide (4) as a pale yellow oil. Yield 235 mg (70%).

Acid Hydrolysis of the 5-Methyltriazolopyrimidine Reissert Compound (2) When 2⁶⁾ (0.34 g, 1 mmol) was treated with 20% aqueous HCl in the same manner as described for acid hydrolysis of 1, the fraction obtained from SiO₂ column chromatography with CHCl₃ as an eluent gave 5-acetamido-4-(5-amino-2-phenyl-4-oxazolyl)-1-phenyl-1*H*-1,2,3-triazole (7) as colorless needles from CHCl₃–MeOH, mp 199—202 °C. Yield 32 mg (9%). The first fraction eluted with CHCl₃–MeOH (100:1) gave 5-acetamido-α-benzamido-1-phenyl-1*H*-1,2,3-triazole-4-acetonitrile (5) as colorless crystals from CHCl₃–MeOH, mp 97—99 °C. Yield 212 mg (59%). The second fraction eluted with CHCl₃–MeOH (100:1) gave 5-acetamido-α-benzamido-1-phenyl-1*H*-1,2,3-triazole-4-acetamide (6) as colorless prisms from CHCl₃–MeOH, mp 232—236 °C. Yield 64 mg (17%).

Alkaline Hydrolysis of 1 A mixture of 1 (0.33 g, 1 mmol), 2 N NaOH (0.5 ml), and MeOH (20 ml) was stirred at 0 °C for 5 min. The reaction mixture was poured onto ice-water, acidified with acetic acid, and extracted with CHCl₃. The crude product was purified by SiO₂ column chromatography. The first fraction eluted with benzene gave methyl benzoate (11) (38 mg, 28%). The second fraction eluted with benzene gave α-benzamido-5-methoxymethyleneamino-1-phenyl-1H-1,2,3-triazole-4-acetonitrile (8) as colorless needles from benzene, mp 130—131 °C. Yield 158 mg (44%). The fraction eluted with benzene—CHCl₃ (1:1) gave 3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine (9) as yellow needles, mp 113—115 °C (lit.9) mp 114—115 °C). Yield 85 mg (43%).

Alkaline Hydrolysis of 2 When 2 (0.34 g, 1 mmol) was treated with 2 N

Alkaline Hydrolysis of 2 When 2 (0.34 g, 1 mmol) was treated with 2 N NaOH in the same manner as described for alkaline hydrolysis of 1, the first fraction obtained from SiO₂ column chromatography with benzene as an eluent gave 11 (84 mg, 62%). The second fraction eluted with benzene gave 5-methyl-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine (10) as colorless needles, mp 156—157 °C (lit. ⁶¹ mp 158—159 °C). Yield 171 mg (81%).

Reaction of 1 with Sodium Hydride Sodium hydride (60% in oil; 50 mg, 1.25 mmol) was added to a solution of 1 (0.33 g, 1 mmol) in tetrahydrofuran (THF) (14 ml). The mixture was refluxed for 7 min. The reaction mixture was poured onto ice-water, neutralized with acetic acid, and extracted with CHCl₃. The crude product was purified by SiO₂ column chromatography. The first fraction eluted with petroleum benzin-benzene (1:1) gave O-benzoylmandelonitrile (13a). Yield 67 mg (32%). The second fraction gave 3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine-7-carbonitrile (12) as colorless scales from petroleum benzin-benzene, mp 166—167 °C (lit. 10) mp 166—167 °C). Yield 38 mg (30%). The fraction eluted with benzene—CHCl₃ (1:1) gave 9. Yield 27 mg (20%).

Reaction of 2 with Sodium Hydride When 2 (0.34 g, 1 mmol) was treated with sodium hydride in the same manner as described for reaction of 1 with sodium hydride, the fraction obtained from SiO_2 column chromatography with petroleum benzin-benzene (1:1) gave 13a. Yield 48 mg (41%). The fraction eluted with benzene gave 5-methyl-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine-7-carbonitrile (14) as colorless needles from petroleum benzin-benzene, mp 149—151 °C. Yield 111 mg (47%). The first fraction eluted with benzene-CHCl₃ (1:1) gave α ,3-diphenyl-5-methyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidin-7-ylmethyl benzoate (15) as colorless needles from petroleum benzin-benzene, mp 104—106 °C. Yield 34 mg (8%). The second fraction eluted with benzene-CHCl₃ (1:1) gave 10. Yield 59 mg (28%). The third fraction eluted with benzene-CHCl₃ (1:1) gave 7,7'-bis-[5-methyl-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine] (16) as red scales from ethyl acetate, mp 274—276 °C. Yield 17 mg (8%).

General Procedure for the Reaction of 1 with Arylaldehydes in the Presence of Sodium Hydride Sodium hydride (60% in oil; 50 mg, 1.25 mmol) was added to a solution of 1 (0.33 g, 1 mmol) and an arylaldehyde (1 mmol) in THF (14 ml). The mixture was refluxed for 7 min. The reaction mixture was poured onto ice-water, neutralized with acetic acid, and extracted with CHCl₃. The crude product was purified by SiO₂ column chromatography. The fraction eluted with petroleum benzin gave 13a. The fraction eluted with benzene gave the corresponding α -aryl-3-phenyl-5-methyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7-ylmethyl benzoate (17a—d). The fraction eluted with benzene–CHCl₃ (1:1) gave 9.

Reaction of 1 with Octanal in the Presence of Sodium Hydride When $1 (0.33 \, \mathrm{g}, 1 \, \mathrm{mmol})$ was treated with octanal in the same manner as described for reaction of 1 with arylaldehydes, the fraction obtained from SiO_2 column chromatography with benzene as an eluent gave 1-cyanoctyl

Table I. Melting Points, Elemental Analytical, and Mass Spectral Data for 3—8 and 14—16

Compd.	mp (°C)	Formula	Analysis (%) Calcd (Found)			MS Calcd
			С	Н	N	- (Observed)
3	178180	C ₁₇ H ₁₄ N ₆ O	64.14 (64.00	4.43 4.42	26.40 26.06)	,
4	Oil	$C_{17}H_{16}N_6O_2$	`		,	336.1335 (336.1319)
5	97—99	$C_{19}H_{16}N_6O_2$				360.1335 (360.1346)
6	232236	$C_{19}H_{18}N_6O_3$	60.31 (60.36	4.80 4.80	22.21 22.32)	
7	199—202	$C_{19}H_{16}N_6O_2$				360.1335 (360.1341)
8	130—131	$C_{19}H_{16}N_6O_2$	63.32 (62.79	4.48 4.47	23.32 23.00)	
14	149—151	$C_{12}H_8N_6$	61.01 (61.09	3.41 3.39	35.58 35.61)	
15	104—105	$C_{25}H_{19}N_5O_2$	71.24 (70.75	4.54 4.61	16.62 16.31)	
16	274—276	$C_{22}H_{16}N_{10}$				420.1558 (420.1552)

Table II. Melting Points, Elemental Analytical, and Mass Spectral Data for 17a—d, 18, 20, and 21

Compd.	mp (°C)	Formula	Analysis (%) Calcd (Found)			MS Calcd (Observed)
			С	Н	N	(Observed)
17a	148—150	C ₂₄ H ₁₇ N ₅ O ₂	70.75	4.20	17.19	
			(70.66	4.22	16.93)	
17b	130—131	$C_{24}H_{16}CIN_5O_2$	65.23	3.65	15.85	
			(65.03	3.63	15.77)	
17c	125—126	$C_{25}H_{19}N_5O_2$	71.25	4.54	16.62	
			(71.08)	4.53	16.61)	
17d	127—130	$C_{25}H_{19}N_5O_3$	68.64	4.38	16.01	
			(68.17	4.42	15.52)	
18	Oil	$C_{25}H_{24}N_5O_2$	69.91	6.34	16.30	
			(69.82	6.47	15.84)	
20	158159	$C_{16}H_{19}N_7O_4$	52.90	2.50	26.99	
			(53.11	2.49	26.70)	
21	Oil	$C_{26}H_{29}N_5O_2$				443.2336
						(443.2328)

benzoate (19). Yield 83 mg (32%). The first fraction eluted with benzene–CHCl₃ (1:1) gave α -heptyl-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7-ylmethyl benzoate (18) as a pale yellow oil. Yield 52 mg (12%). The second fraction eluted with benzene–CHCl₃ (1:1) gave 9. Yield 40 mg (19%).

Reaction of 1 with 2,4-Dinitrochlorobenzene in the Presence of Sodium Hydride When 1 (0.33 g, 1 mmol) was treated with 2,4-dinitrochlorobenzene in the same manner as described for reaction of 1 with arylaldehydes, the fraction obtained from SiO₂ column chromatography with benzene as an eluent gave 12. Yield 9 mg (4%). The fraction eluted with benzene-CHCl₃ (1:1) gave 7-(2,4-dinitrophenyl)-3-phenyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidine (20) as yellow prisms from petroleum benzin-benzene, mp 158—159 °C. Yield 26 mg (7%). The fraction eluted with CHCl₃ gave 9. Yield 16 mg (8%).

Reaction of 2 with Benzaldehyde in the Presence of Sodium Hydride Sodium hydride (60% in oil; 50 mg, 1.25 mmol) was added to a solution of 2 (0.34 g, 1 mmol) and benzaldehyde (116 mg, 1 mmol) in THF (14 ml). The mixture was refluxed for 30 min. The reaction mixture was poured onto ice-water, neutralized with acetic acid, and extracted with CHCl₃. The crude product was purified by SiO₂ column chromatography. The fraction eluted with petroleum benzin gave 13a. Yield 119 mg (50%). The first fraction eluted with benzene gave 15. Yield 215 mg (51%). The second fraction eluted with benzene gave 10. Yield 63 mg (30%).

Reaction of 2 with Octanal in the Presence of Sodium Hydride When

TABLE III. IR and ¹H-NMR Spectral Data for 3—10, 12, 14, and 15

Compd.	IR $v_{\text{max}}^{\text{KBr}}$ (cm $^{-1}$)	¹ H-NMR (CDCl ₃) (ppm)
3	3300 (NH)	5.90 (2H, s, NH ₂), 6.40 (1H, d, $J=6.0$ Hz,
	3400 (NH)	CHCN), 7.30—8.20 (10H, m, aromatic H),
		9,65 (1H, d, $J = 6.0$ Hz, NH)
4	1630 (C = O)	4.75—5.25 (2H, b, NH ₂), 5.75 (1H, d,
	3300 (NH)	J = 6.0 Hz, CHCN), $6.63 - 7.03 (2 H, b)$
		$CONH_2$), 7.03—7.95 (10H, m, aromatic H),
_	1645 (G - O)	8.10 (1H, d, $J = 6.0$ Hz, NH)
5	1645 (C = O)	2.15 (3H, s, CH_3), 6.26 (1H, d, $J=8.0 Hz$,
		CHCN), 7.20—7.95 (10H, m, aromatic H),
		8.33 (1H, d, $J = 8.0$ Hz, NH), 9.11 (1H, s,
$6^{a)}$	1640 (C - O)	NHAc)
0	1640 (C=O)	$2.02 (3H, s, COCH_3), 5.82 (1H, d, J=9.0 Hz,$
	1680 (C=O)	CHNH), 7.01—8.30 (12H, m, aromatic H and
		$CONH_2$), 8.67 (1H, d, $J=9.0$ Hz, $CHN\underline{H}$), 10.25 (1H, s, $NHAc$)
7	1680 (C=O)	2.12 (3H, s, CH ₃), 6.02 (2H, b, NH ₂),
,	1000 (C=0)	7.16—8.80 (10H, m, aromatic H), 10.34 (1H,
		s, NH)
8	1650 (C = O)	3.80 (3H, s, OCH ₃), 6.37 (1H, d, $J=8.0$ Hz,
Ü	1000 (0 0)	CHCN), 7.00—7.97 (10H, m, aromatic H),
		8.05(1H, s, N = CH), 8.47(1H, d, J = 8.0 Hz,
		NHCH)
9		7.40-8.50 (5H, m, N ³ -Ph), 9.31 (1H, s, C ⁵ -H),
		9.68 (1H, s, C ⁷ -H)
10		$2.93 (3H, s, CH_3), 7.40 - 8.50 (5H, m, N^3-Ph),$
		$9.50 (1H, s, C^7-H)$
$12^{a)}$		$7.50-8.50(5H, m, N^3-Ph), 9.58(1H, s, C^5-H)$
14		2.98 (3H, s, CH ₃), 7.30—7.85 (3H, m, N ³ -Ph),
		7.90—8.40 (2H, m, N ³ -Ph)
15	1720 (C = O)	2.82 (3H, s, CH ₃), 7.00—8.40 (16H, m, CH-O-
		and aromatic H)

a) ${}^{1}\text{H-NMR}$ in DMSO- d_{6} .

TABLE IV. IR and ¹H-NMR Spectral Data for 17a—d, 18, 20, and 21

Compd.	IR $v_{\text{max}}^{\text{KBr}}$ (cm ⁻¹)	¹ H-NMR (CDCl ₃) (ppm)
17a	1720 (C=O)	7.10—7.70 (6H, m, aromatic H), 7.70—8.40 (10H, m, aromatic H), 9.05 (1H, s, C ⁵ -H)
17b	1720 (C = O)	7.10—7.90 (11H, m, aromatic H), 7.95—8.40 (4H, m, aromatic H), 9.03 (1H, s, C ⁵ -H)
17c	1720 (C=O)	2.30 (3H, s, CH ₃), 7.11—7.90 (11H, m, aromatic H), 8.00—8.45 (4H, m, aromatic H), 9.15 (1H, s, C ⁵ -H)
17d	1720 (C = O)	3.78 (3H, s, OCH ₃), 6.80—8.50 (15H, m, aromatic H), 9.10 (1H, s, C ⁵ -H)
18	1720 (C=O)	0.83 (3H, t, J = 4.0 Hz, CH_3 (CH ₂) ₅ CH ₂ CH), 1.10—2.00 (10H, m, CH_3 (CH_2) ₅ CH ₂ CH), 2.00—2.80 (2H, m, CH_3 (CH_2) ₅ C H_2 CH), 6.50 (1H, t, J = 6.0 Hz, CH_2 C H -O), 7.30—7.90 (6H, m, aromatic H), 7.90—8.40 (4H, m, aromatic H), 9.10 (1H, s, C^5 -H)
20	1350 (NO ₂) 1550 (NO ₂)	7.40—8.40 (5H, m, aromatic H), 8.40—9.00 (3H, m, aromatic H), 9.30 (1H, s, C ⁵ -H)
21	1720 (C=O)	0.90 (3H, t, J =4.0 Hz, $C\underline{H}_3(CH_2)_5CH_2CH_2$ O), 1.08—2.02 (10H, m, $CH_3(C\underline{H}_2)_5CH_2CH_2$ O), 2.02—2.60 (2H, m, $CH_3(CH_2)_5C\underline{H}_2CH_2$ O), 2.85 (3H, s, C^5 - CH_3), 5.53 (1H, t, J =6.0 Hz, $CH_3(CH_2)_5CH_2C\underline{H}$ -O), 7.10–7.70 (6H, m, aromatic H), 7.90—8.40 (4H, m, aromatic H)

2 (0.34 g, 1 mmol) was treated with octanal in the same manner as described for reaction of 2 with benzaldehyde, the first fraction obtained from SiO_2 column chromatography with benzene–CHCl₃ (1:1) as an eluent gave 19. Yield 85 mg (33%). The second fraction eluted with benzene–CHCl₃ (1:1) gave α -heptyl-5-methyl-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidin-7-ylmethyl benzoate (21) as a colorless oil. Yield 208 mg (47%). The fraction

eluted with benzene-CHCl₃ (1:1) gave 10. Yield 106 mg (50%).

Reaction of 2 with 2,4-Dinitrochlorobenzene in the Presence of Sodium Hydride When 2 (0.34 g, 1 mmol) was treated with 2,4-dinitrochlorobenzene in the same manner as described for reaction of 2 with benzaldehyde, the fraction obtained from SiO_2 column chromatography with benzene as an eluent gave 13a. Yield 43 mg (18%). The fraction eluted with benzene-CHCl₃ (1:1) gave 14. Yield 64 mg (27%). The fraction eluted with CHCl₃ gave 10. Yield 99 mg (47%).

References

- Part XI: K. Tanji, H. Kato, and T. Higashino, Chem. Pharm. Bull., 39, 3037 (1991).
- a) T. Higashino, H. Kokubo, and E. Hayashi, Chem. Pharm. Bull., 32, 3900 (1984); b) Idem, ibid., 33, 950 (1985).

- T. Higashino, S. Sato, H. Suge, K. Tanji, A. Miyashita, and T. Katori, Chem. Pharm. Bull., 36, 930 (1988).
- T. Higashino, S. Sato, A. Miyashita, and T. Katori, Chem. Pharm. Bull., 34, 4569 (1986).
- K. Tanji, S. Sato, A. Miyashita, E. Oishi, and T. Higashino, *Chem. Pharm. Bull.*, 37, 187 (1989).
- T. Higashino, S. Sato, A. Miyashita, and T. Katori, *Chem. Pharm. Bull.*, 35, 4803 (1987).
- 7) W. E. McEwen and R. L. Cobb, Chem. Rev., 55, 511 (1955).
- 8) V. Boekelheide and J. Weinstock, J. Am. Chem. Soc., 74, 660 (1952).
- T. Higashino, T. Katori, and E. Hayashi, Chem. Pharm. Bull., 27, 2431 (1979).
- 10) T. Higashino, T. Katori, H. Kawaraya, and E. Hayashi, *Chem. Pharm. Bull.*, 28, 337 (1980).