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RING CONTRACTION IN THE FLUORINATION OF METHYL 2-0-BENZYL-3,6-DIDEOXY- AND METHYL
2,3-DI-0-BENZYL-6-DEOXY- ¢ -D-HEXOPYRANOSIDES WITH DIETHYLAMINOSULFUR TRIFLUORIDE (DAST)

Yoko MORI and Naohiko MORISHIMA*
School of Nursing, Kitasato University, 2-1-1 Kitasato, Sagamihara 228, Japan

Fluorination of methyl 2-0-benzyl-3,6-dideoxy- g -D-ribo- and « -D-arabino-hexo-
pyranosides (1 and 4) with diethylaminosulfur trifluoride (DAST) yielded methyl 2-0-
benzyl-3,5,6-trideoxy-5-fluoro- 8 -L-arabino- and B -L-ribo-hexofuranosides (3 and 6),
respectively, along with the corresponding 4¥deoxy—4—fluoro—a-D—hexopyranosides with
retained configuration at C-4. The reaction of methyl 2,3-di-0-benzyl -6-deoxy- ¢ -D-
glucopyranoside (7) with DAST predominantly afforded methyl 2,3-di-O-benzyl-5,6-di-
deoxy-5-fluoro- g -L-altrofuranoside (9).
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Among a large number of strategies for the introduction of fluorine into carbohydrates,
diethylaminosulfur trifluoride (DAST) is known as a useful reagent for the direct replacement of
hydroxyl group by fluorine.!-*> However, unusual reactions caused by the action of DAST have also
been reported.*’

In our attempts at direct fluorination using DAST at 4-position of 3,6-dideoxyhexopyranosides,
it was found that the substitution of the equatorial 4-hydroxyl group by fluorine proceeded with
exclusive retention of configuration.®> Investigation of the by-products in those reactions revealed
the formation of the fluorides having furanoid structure such as 3 and 6. There have been reports
of similar results on the iodination of methyl 2,3-0-isopropyridene- g -L-rhamnopyranoside, ¢ the
deamination of the 4-amino derivatives of methyl g -L-manno-7> and a -D-glucopyranosides,®’ and
the hydrolysis of methyl 4-0-(4-nitrobenzenesul fonyl)- ¢ -D-glucopyranoside.®’ The ring-contracted
5—fluorides'were obtained in the fluorination of racemic methyl N-acetylacosaminides with sulfur
tetrafluoride-hydrogen fluoride.!® This communication provides an example of ring contraction of
hexopyranoside induced by DAST.

When methyl 2-0-benzyl-3,6-dideoxy- @ -D-ribo-hexopyranoside (1) was treated with 1.2 molar
equivalents of DAST in dichloromethane at -13°C for 0.5 h and then at room temperature for 1.5 h,
methyl 2-0-benzyl-3,4,6-trideoxy-4-fluoro- @ -D-ribo-hexopyranoside (2) and methyl 2-0-benzyl-3,5,6-
trideoxy-5-fluoro- B8 -L-arabino-hexofuranoside

(3) were isolated through silica gel column Me
chromatography in yields of 66% and 17%, % DAST F MMQ

respectively. The reaction of the g -D- BnOOMe CHZClz Br‘OOMe Me 0OBn
arabino isomer 4 with DAST under the same 2

reaction conditions as those for 1 gave the

4-fluoride 5 in 28% yield and methyl 2-0- Me OBn Me OBn £0
benzyl-3,5,6-trideoxy-5-fluoro- 8 -L-ribo-  HO 0 DAST F% + F@Me
hexofuranoside (6) in 21% yield along with OMe  CH2Cl2 ‘OMe Me

34% recovery of 4. No 5-epi-fluoride was 4 5 6

isolated from both reactions.
In a similar reaction of the 2,3-di-0-benzyl derivative 7,t1’ methyl 2,3-di-0-benzyl-5,6-di-
deoxy-5-fluoro- g-L-altrofuranoside (9) was obtained in 38% yield as the major product along with
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Fig. 1. NOEs observed for 3
only 2% yield of the 4-fluoride 8, and 7 recovered (39%); no a-D-galacto isomer of 9 was produced.
The 'H- and *3C-NMR spectral data of the ring-contracted compounds (3, 6, and 9) are summarized
in Tables I and II, respectively. The NOEs observed for the protons of 3 are shown in Fig. 1. The
stereochemistry at C-4 of 3 was determined by the presence of the NOEs between H-2 and H-3b, H-3b
and H-4, H-3a and H-5, and H-3a and H-6's. Similarly, the NOEs observed between H-2 and H-3a, and
H-3b and H-4 of 6, and that observed between H-3 and H-5 of 9 were reasonable for their proposed
configuration at C-4.
The absolute configuration at C-5 was verified in the following synthetical manner. The
compound 6 was readily converted through hydrogenolysis and subsequent acetolysis into the 1,2-
“diacetate 10, which was deacetylated and then isopropylidenated to form 11. The 'H-NMR spectrum of
11 was identical with that of 13 independently prepared by the reaction of 3,6-dideoxy-1,2-0-iso-
propyl idene-4-0-methanesul fonyl- 8 -L-lyzo-hexofuranose (12, [a]3 -31.8° (c 0.9, chloroform))
with tetrabutylammonium fluoride in N,N-dimethylformamide. The specific rotations for 11 and 13,
measured in chloroform at 20°C, are +25.4° and -25.7° , respectively. Thus, it is ascertained that
11 is the enantiomer of 13, and this indicates that the proposed structure of 6 is correct. Details
of the syntheses of 1, 4, 11, 12, and 13 are to be published elsewhere.
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Stereospecific formation of singlé isomers of both the 4- and the 5-fluorides suggests that the
bicyclic oxonium ion I (Chart 1) formed by the participation of ring oxygen is a plausible interme-
diate for the production of the 4-fluoride (route a) and the 5-fluoride (route b). However, the ring
contraction concerted with the intramolecular attack of fluorine at C-5 (depicted as II), being
analogous to the formation of a furanoid structure through migration of a sulfonyloxyl group from
C-4 to C-5,'2> seems to be more presumable to the predominant formation of 9. Further experiments
for elucidating the mechanisms are in progress.
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Chart 1
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Table I. *H-NMR Data for 3, 6, 9, and 11(13) (Measured at 300 MHz in CDCl;)

: & (ppm)
Compound Ju. u (Hz)
(Jp, w (Hz))
H-1 H-2 H-3a* H-3b H-4 H-5 H-6's
4.73 3.97 1.99 2.28 3.92 4.53 1.37
3 -—4.0—t—10.8——11.6—'—6.5—t—6.2——¢§.2—
—7]—== 9 0
(11.0) (47.3) (24.4)
4.95 4.01 2.04 2.14 4.28 4.57 1.38
6 L ~0—t—49—~L—13.4—-—6.6——F2——6.2—
l_]_.3—|=_-—-.—-J—8.7_|
(13.0) (48.2) (24.5)
4.70 4.06 4.27 3.85 4.60 1.39
9 L—4.2——6.T—L 5.2 I—70—-—6.2—
(0.8) (12.5) (47.3) (24.5)
5.83 5.76 1.84 2.12 4.18 4.78 1.34
11(13) —3.7——49—t—13.2-3L—4 7T—J2—35——5.4—
~0 10.4

(19.1) (49.0) (24.1)

A H-3a represents a H-3 oriented to the same side as C-5.

Table II. 13C-NMR Data for 3, 6, 9, and 11 (Measured at 75.4 MHz in CDCl;)

6 (ppm)
Compound (Jc. ¢ (Hz))
C-1 C-2 C-3 C-4 C-5 C-6

3 101.7 78.3 30.5 78.7 91.9 17.3
(2.8) (26.5) (169.3) (22.1)

6 107.0 82.9 31.4 81.5 91.5 17.7
(3.2) (25.1) (170.2) (22.0)

9 101.8 84.3 82.9 83.1 90.3 17.5
(27.5) (169.6) (22.0)

11 105.5 80.3 32.8 80.1 89.5 17.5
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