Solution Forms of an Antitumor Cyclic Hexapeptide, RA-VII in Dimethyl Sulfoxide- d_6 from Nuclear Magnetic Resonance Studies

Hideji Itokawa,* Hiroshi Morita and Koichi Takeya

Department of Pharmacognosy, Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan. Received September 24, 1991

Using high-resolution proton nuclear magnetic resonance (1 H-NMR) and carbon-13 nuclear magnetic resonance (13 C-NMR) experiments, we have assigned three discernible configurational isomers observed in dimethyl sulfoxide- d_6 (DMSO- d_6) for an antitumor cyclic hexapeptide, RA-VII isolated from *Rubia cordifolia*. The largest isomer, amounting to 64%, has been assigned as conformer A with only a *cis* configuration between Tyr-5 and Tyr-6. The second configurational isomer, accounting for 32%, has adopted *cis* configurations between both Tyr-5 and Tyr-6 and between Ala-2 and Tyr-3. The third isomer, amounting to 4%, was determined to have *cis* configurations for all of the three *N*-methyl amide bonds.

Keywords RA-VII; conformational analysis; Rubia cordifolia; antitumor agent; cyclic hexapeptide

Introduction

Cyclic hexapeptides, RA series, isolated from *Rubia cordifolia* and *R. akane*, are potent antitumor agents. We have already disclosed the structures of RA-I—RA-X,¹⁾ RAI-III and RAI-VI²⁾ and their antitumor activities.³⁾ As part of our ongoing program to study their structure–activity relationship, we have undertaken conformational analysis of RAs using the spectroscopic and computational methods.^{1b,4,5)}

In an apolar solvent, for example, in CDCl₃, the presence of two stable conformational states, *i.e.* conformers A and B, were observed.⁴⁾ These conformers could result from isomerization about one N-methyl amide bond between Ala-2 and Tyr-3 with an isomerization rate slow enough to give separate, signals in the nuclear magnetic resonance (NMR) spectra. In a polar solvent such as dimethyl sulfoxide- d_6 (DMSO- d_6), on the other hand, three different conformers A, B and C were observed in the NMR spectra.⁴⁾

A detailed knowledge of the conformations of RA-VII under a polar solvent such as DMSO- d_6 is considered to be the basis for structure-activity relationships allowing

Fig. 1. 500-MHz ¹H-NMR Spectrum of RA-VII in DMSO-d₆

Asterisks mark the peaks ascribable to conformer C. Some of the tops of the methoxyl and N-methyl proton signals ascribable to conformers A and B were cut off. Tetramethylsilane was used as an internal standard.

the design of new derivatives with higher activity. In this paper, by use of various two-dimentional proton and carbon-13 NMR (¹H and ¹³C-NMR) experiments, the structural elucidation of three different conformers of RA-VII in DMSO-d₆ is reported.

Results and Discussion

In the previous paper,⁴⁾ we were unable to clearly elucidate the three conformers, named conformers A, B and C, of RA-VII in DMSO- d_6 solution. Figure 1 showed a one-dimensional (1-D) ¹H-NMR spectrum of RA-VII in DMSO- d_6 . The population of three conformers, A, B and C, was in the ratio of 64:32:4, and a very complicated

Table I. ¹H-NMR Chemical Shifts of RA-VII, δ (ppm) from Tetramethylsilane in DMSO- d_6 at 303 K (J/Hz, 500 MHz)

				·		
Amina aaid	RA-VII					
Amino acid	Proton	Conformer A	В	С		
D-Ala-1	H _a	$4.35 J_{\alpha\beta} = 6.9$	$4.17 J_{\alpha\beta} = 7.0$	$3.89 \ J_{\alpha\beta} = 7.0$		
	H_{β}	$1.08 \ J_{\alpha N} = 8.5$	$1.02 J_{\alpha N} = 6.9$	$1.05 J_{\alpha N} = 5.5$		
	H _N	7.81	7.72	7.91		
Ala-2	H_{α}	$4.60 \ J_{\alpha\beta} = 6.8$	$4.20 J_{\alpha\beta} = 6.4$	$4.15 J_{\alpha\beta} = 6.5$		
	H_{β}	$1.17 J_{\alpha N} = 7.3$	$0.74 J_{\alpha N} = 9.0$	$0.67 J_{\alpha N} = 9.6$		
	H_N	8.47	8.56	8.87		
Tyr-3	H_{α}	$3.83 J_{\alpha\beta 1} = {}^{a)}$	$4.38 J_{\alpha\beta 1} = 10.8$	$5.19 \ J_{\alpha\beta 1} = 11.0$		
	$H_{\beta_1(pro-R)}$	$3.12 J_{\alpha\beta 2} = a^{\alpha}$	$2.82 J_{\alpha\beta 2} = 3.7$	$2.76 J_{\alpha\beta 2} = 2.6$		
	H _{β2(pro-S)}	$3.12 J_{8182} = a^{3}$	$3.05 J_{\beta 1 \beta 2} = 14.6$	$3.26\ J_{\beta 1\beta 2} = {}^{a)}$		
	2113	$7.05 J_{\delta \varepsilon} = 8.6$	$7.08 J_{\delta\epsilon} = 8.6$	$7.08 J_{\delta\epsilon} = 8.6$		
	2Η _ε	6.88	6.86	6.86		
	MeN	2.85	2.79	2.68		
	MeO	3.73	3.73	3.70		
Ala-4	H_{α}	$4.60 J_{\alpha\beta} = 6.7$	$4.47 J_{\alpha\beta} = 6.8$	$4.91 \ J_{\alpha\beta} = 6.3$		
	H_{β}	$0.92 J_{\alpha N} = 8.2$	$1.16 J_{\alpha N} = 7.3$	$1.57 J_{\alpha N} = 9.2$		
	H _N	6.66	6.59	6.73		
Tyr-5	H_{α}	$5.32 J_{\alpha\beta 1} = 11.4$	$5.32 J_{\alpha\beta 1} = 11.4$	$4.23 J_{\alpha\beta 1} = {}^{a)}$		
	H _{β1(pro-S)}	$3.46 J_{\alpha\beta 2} = 2.9$	$3.52 J_{\alpha 82} = 2.9$	$3.60 J_{\alpha\beta 2} = a^{a}$		
	T1 82(pro-R)	$2.61 J_{\beta 1 \beta 2} = 11.4$	$2.67 J_{\beta_1\beta_2} = 11.4$	$3.60 J_{\beta 1 \beta 2} = a$		
	$\Pi_{\delta 1}$	$7.27 J_{\delta 1 \delta 2} = 2.1$	$7.28 J_{\delta 1 \delta 2} = 2.2$	$7.31 J_{\delta 1 \delta 2} = 2.6$		
	H _{ø2}	$7.43 J_{\delta 1 \varepsilon 1} = 8.5$	$7.48 J_{\delta 1 e 1} = 8.5$	$7.42 J_{\delta 1 \varepsilon 1} = 8.1$		
	$H_{\epsilon 1}$	$6.76 J_{\delta 2 \epsilon 2} = 8.4$	$6.76 J_{\delta 2 \varepsilon 2} = 8.4$	$6.85 J_{\delta 2\epsilon 2} = 8.5$		
	$H_{\epsilon 2}$	$7.12 J_{\varepsilon 1 \varepsilon 2} = 2.2$	$7.11 J_{\epsilon_1 \epsilon_2} = 2.3$	$7.17 J_{\varepsilon 1 \varepsilon 2} = 2.2$		
	MeN	2.93	3.02	2.74		
Tyr-6	H_{α}	$4.50 J_{\alpha\beta 1} = {}^{a)}$	$4.64 \ J_{\alpha\beta 1} = 12.0$	$4.77 J_{\alpha\beta 1} = 7.0$		
	H _{β1(pro-R)}	$3.10 J_{\alpha\beta 2} = a^{a}$	$3.10 J_{\alpha \beta 2} = 3.7$	$2.91 J_{\alpha\beta 2} = 7.0$		
	1182(pro-S)	$2.82 J_{8182} = a$	$2.82 J_{\beta_1\beta_2} = a^{\alpha_1}$	$2.91 J_{8182} = a^{-1}$		
	1181	$6.62 J_{\delta 1 \delta 2} = 1.4$	$6.62 J_{\delta 1 \delta 2} = 1.7$	$6.72 J_{\delta 1 \delta 2} = 1.4$		
	H ₈₂	$4.48 J_{\delta 1 \varepsilon 1} = 8.3$	$4.52 J_{\delta 1 \epsilon 1} = 8.3$	$4.48 J_{\delta 1 \epsilon 1} = 8.5$		
	H_{ε_1}	6.88	6.88	6.94		
	MeN	2.50	2.43	2.52		
	MeO	3.81	3.82	3.83		

a) Not determined in the present study.

April 1992 1051

spectrum was indicated. At first, to assign the ¹H and ¹³C signals of three different conformers, various two-dimensional (2-D) NMR measurements were carried out. Com-

Table II. $^{13}\text{C-NMR}$ Chemical Shifts of RA-VII, δ (ppm) from Tetramethylsilane in DMSO- d_6 at 303 K (125 MHz)

Amino acid		RA-VII		
Amino acid	Carbon	Conformer A	В	С
D-Ala-1	C _a	46.48	47.30	48.87
	$\mathbf{C}_{\boldsymbol{\beta}}$	20.69	20.69	18.68
	$C_{C=0}$	171.27	171.17	170.13
Ala-2	C_{α}	43.58	43.00	42.05
	$\mathbf{C}_{\boldsymbol{\beta}}$	16.08	17.26	16.38
	$C_{c=o}$	172.20	170.94	171.96
Tyr-3	C_{α}	66.53	61.61	61.72
	C_{B}	32.29	32.45	31.93
	C,	130.72	129.63	a)
	C _s	130.12	129.93	129.82
	C_{ϵ}	113.60	113.82	a)
	$\mathbf{C}_{\boldsymbol{\zeta}}$	157.82	158.09	a)
	$C_{C=0}$	167.92	169.17	167.29
	C_N	39.15	29.49	29.55
	C_{o}	54.90	55.03	a)
Ala-4	$\mathbf{C}_{\mathbf{z}}$	45.47	47.48	46.23
	C_{β}	18.17	16.14	20.28
	$C_{c=0}$	170.44	169.68	173.09
Tyr-5	\mathbf{C}_{a}	53.53	53.31	59.67
	C_{β} C_{γ}	35.90	35.86	37.12
	C,	135.50	135.00	135.33
	$C_{\delta 1}^{'}$	132.62	132.62	133.18
	$C_{\delta 2}$	130.45	130.38	a)
	C_{e1}	123.61	123.82	123.52
	$C_{\epsilon 2}$	125.66	125.66	125.66
	C_{ζ}^{32}	157.68	157.99	157.15
	$C_{c=0}$	168.77	169.68	167.59
	C_N	30.00	29.86	30.42
Tyr-6	C_{α}	56.50	56.82	55.61
•	$\tilde{\mathbf{C}_{\pmb{\beta}}}$	34.65	34.82	33.48
	$\mathbf{C}_{\gamma}^{'}$	129.55	129.07	128.81
	$C_{\delta 1}^{'}$	121.10	120.90	121.10
	$C_{\delta 2}$	114.08	114.66	114.46
	$C_{\epsilon 1}$	112.69	112.69	113.33
	$C_{\epsilon 2}^{\epsilon 1}$	152.27	153.32	152.01
	C_{ζ}^{2}	145.82	145.76	145.76
	$C_{c=0}$	169.62	170.74	170.06
	C_N	29.02	28.79	29.20
	Co	55.74	55.74	a)

a) Not determined in the present study.

plete assignments of conformers A and B were possible using a combination of ${}^{1}H^{-1}H$ correlated spectroscopy (COSY), ${}^{1}H^{-13}C$ COSY and heteronuclear multiple bond correlation spectroscopy (HMBC),⁶⁾ which provides ${}^{1}H^{-13}C$ long range couplings. As shown in Fig. 1, we were lucky to resolve the signals around δ 5.0 ascribable to minor conformer C. Though some signals were ambiguous because of overlapping, homonuclear Hartmann–Hahn (HOHAHA)⁷⁾ spectrum was quite efficient for interpreting the intra-residue proton connectivities of each amino acid in conformer C. The assignments of ${}^{1}H$ and ${}^{13}C$ signals of conformers A, B and C in DMSO- d_6 are shown in Tables I and II.

The assignments of conformers A and B were almost identical with those observed in CDCl₃.4) In the ¹H assignment of conformer C, the chemical shift of Tyr-3-H_{α} (δ 5.19) was shifted to a lower field and that of Ala-2-CH₃ (δ 0.67) to a higher field, compared with those of conformer B (δ 4.38 and 0.74, respectively). The unusual low-field chemical shift of Ala-4-CH₃ (δ 1.57) and a high-field chemical shift of Tyr-5-H_{α} (δ 4.23) were shown. The α proton of D-Ala-1 (δ 3.89) was also shifted to a high field. In the ¹³C assignment of conformer C, the chemical shift of Tyr-3-C_a (δ 61.72), which was similar to that of conformer B (δ 61.61) with a cis configuration between Ala-2 and Tyr-3, was shifted to a higher field than that of conformer A (δ 66.53). The chemical shifts of Ala-4-CH₃ (δ 20.28) and Tyr-5-C_{α} (δ 59.67) were shown in a lower field than those of conformer B (δ 16.14 and 53.31, respectively). In this manner, conformer C showed a chemical shift similar to that of conformer B around Ala-2 and Tyr-3, but was deduced to possess different configurations and/or conformations around Ala-4 and Tyr-5.

To confirm the above hypothesis, the measurement of intraresidual nuclear Overhauser effects (NOEs) among each conformer was made by a phase sensitive nuclear Overhauser and exchange spectroscopy (NOESYPH) spectrum. The characteristic NOE relationships to determine the configurations of three N-methyl amide bonds were indicated in Fig. 2. In Fig. 3, the expansion plot of 4.0-5.5 ppm in NOESYPH spectrum, which showed signals representative of conformer C, was shown. By the NOE relationship, conformers A and B in DMSO- d_6 are completely identical with those in CDCl₃. On the other

Fig. 2. Molecular Structures of Three Different Conformers A, B and C of RA-VII in DMSO-d₆ The arrows show the NOE relationships confirmed by NOESYPH experiments.

Fig. 3. Expansion Plot in the Range of 4.0 to 5.5 ppm of NOESYPH Spectrum of RA-VII in DMSO- d_6 The shadow peaks are ascribable to conformer C.

hand, the cross peak between Tyr-3- H_{α} and Ala-2- H_{α} , in addition to that between Tyr-5- H_{α} and Tyr-6- H_{α} in Fig. 3, indicated the *cis* configurations in both of the N-methyl amide bonds. In addition, the configuration of the other N-methyl amide bond between Ala-4 and Tyr-5 was determined to be *cis* by the strong correlated cross peak between Ala-4- H_{α} and Tyr-5- H_{α} . The reason for the lower field chemical shift of Ala-4- CH_{3} in conformer C as indicated above was considered to be due to the deshielding effect of the aromatic ring in Tyr-5.

Based on the above ¹H and ¹³C assignments and NOE relationships, the largest isomer has been assigned as conformer A with only a *cis* configuration between Tyr-5 and Tyr-6, and the second isomer has adopted both *cis* configurations between Tyr-5 and Tyr-6 and between Ala-2 and Tyr-3. Then, the third isomer was determined to be *cis* configurations for all three N-methyl amide bonds. The conformational analysis of RAs in a vital system is in progress.

Experimental

Material RA-VII used in this experiment was isolated from Rubia cordifolia by the procedure cited in reference 1.

NMR Spectra The proton and carbon spectra were recorded on a Bruker spectrometer (AM500) and processed on a Bruker data station with an Aspect 3000 computer. 10 mg samples of RA-VII dissolved in $0.5\,\mathrm{ml}$ DMSO- d_6 in a 5 mm tube were used for the homonuclear measurement and 30 mg samples in $0.5\,\mathrm{ml}$ DMSO- d_6 in a 5 mm tube for

the heteronuclear measurement. The spectra were recorded at 300 K. The NOESYPH experiment was made with a mixing time of 0.6 s.

References

- a) H. Itokawa, K. Takeya, K. Mihara, N. Mori, T. Hamanaka, T. Sonobe and Y. Iitaka, Chem. Pharm. Bull., 31, 1424 (1983); H. Itokawa, K. Takeya, N. Mori, T. Hamanaka, T. Sonobe and K. Mihara, ibid., 32, 284 (1984); H. Itokawa, K. Takeya, N. Mori, T. Sonobe, S. Mihashi and T. Hamanaka, ibid., 34, 3762 (1986); b) H. Itokawa, H. Morita, K. Takeya, N. Tomioka, A. Itai and Y. Iitaka, Tetrahedron, 47, 7007 (1991); H. Itokawa, T. Yamamiya, H. Morita and K. Takeya, J. Chem. Soc., Perkin Trans. 1, 1992, 455.
- H. Itokawa, H. Morita, K. Takeya, N. Tomioka and A. Itai, Chem. Lett., 1991, 2217.
- H. Itokawa, K. Takeya, N. Mori, S. Kidokoro and H. Yamamoto, Plant Med., 50, 313 (1984); H. Itokawa, K. Takeya, N. Mori, M. Takanashi, H. Yamamoto, T. Sonobe and S. Kidokoro, Gann, 75, 929 (1984); H. Itokawa, K. Takeya, N. Mori, T. Sonobe, T. Hamanaka, S. Mihashi, M. Takanashi and H. Yamamoto, J. Pharmacobio-Dyn., 8, 63 (1985); T. Hamanaka, M. Ohgoshi, K. Kawahara, K. Yamakawa, T. Tsuruo and S. Tsukagoshi, ibid., 10, 616 (1987); T. Kato, Y. Suzumura, F.-Z. Liu, H. Tateno, T. Ogiu and K. Ota, Jpn. J. Cancer Res. (Gann), 80, 290 (1989).
- H. Morita, K. Kondo, Y. Hitotsuyanagi, K. Takeya, H. Itokawa, N. Tomioka, A. Itai and Y. Iitaka, Tetrahedron, 47, 2757 (1991).
- H. Itokawa, K. Saitou, H. Morita and K. Takeya, Chem. Pharm. Bull., 39, 2161 (1991).
- 6) A. Bax and M. F. Summers, J. Am. Chem. Soc., 108, 2094 (1986).
- 7) A. Bax and D. G. Davis, J. Magn. Reson., 65, 355 (1985).
- G. Bodenhauser, H. Koger and R. R. Ernst, J. Magn. Res., 58, 370 (1984).