VERSATILE ROUTES TO CHIRAL 4-SUBSTITUTED 2-OXAZOLIDINONES AND α -AMINO ACIDS. USE OF CHIRON, [4+2] CYCLOADDUCTS OF DIALKYL AZODICARBOXYLATES AND 2-OXAZOLONES

Hirofumi MATSUNAGA, a Tadao ISHIZUKA, a Nobuhiro MARUBAYASHI b and Takehisa KUNIEDA *, a

Faculty of Pharmaceutical Sciences, Kumamoto University,^a Oe-honmachi, Kumamoto 862, Japan and Yoshitomi Research Laboratories,^b Yoshitomi-cho, Fukuoka 871, Japan

The thermal reaction of $3-[(1S)-2-alkoxy-1-apocamphanecarbonyl]-2-oxazolones with dialkyl azodicarboxylates results in exclusive formation of [4+2] type cycloadducts with moderate levels of diastereofacial selection, which serve as versatile chiral synthons for a wide variety of 4-alkyl and 4-aryl-2-oxazolidinones as well as <math>\alpha$ -amino acids. KEYWORDS 2-oxazolone; azodicarboxylate; [4+2] cycloaddition; deacylation; chiral synthon; organocuprate; 2-aminoalcohol; 2-oxazolidinone; α -amino acid

We previously developed a promising methodology to utilize a simple heterocycle, 2-oxazolone (1), as a building block for β -aminoalcohols of biological interest, in which highly regio- and diastereoselective electrophilic additions at the 4,5-olefinic moiety were involved as key steps.¹⁾ On the other hand, the 4,5-unsubstituted 2-oxazolones were reported to act as good dienophiles in thermal [4+2] cycloaddition reactions only when reactive dienes such as cyclopentadiene and benzofuran were employed under forcing conditions of prolonged heating at elevated temperature.^{2,3)}

We have now found that the thermal cycloadditions of 2-oxazolones (1) to dialkyl azodicarboxylates (2) smoothly proceed under quite mild conditions (at 80 °C) to give excellent yields of the regioselectively controlled [4+2] cycloadducts (3). None of the other plausible addition products, such as diazetidines (4) (1,2-addition) and isoxazolidines (5) (1,3-addition), was spectroscopically detectable (Chart 1).⁴⁾

Thus, 3-[(IS)-2-alkoxy-1-apocamphanecarbonyl]-2-oxazolones (6) were treated with a series of azodicarboxylates in boiling benzene for 6 ~19 h to give excellent yields of the diastereomeric mixture of 7 and 8, which were readily separable by chromatography on silica gel, with moderate diastereoselectivity (TABLE I). The use of bulky R^2 and R^3 groups in the reactants improved the diastereoselectivity to as much as 72% d.e., and the highly congested 2-neopentyloxy-1-apocamphanecarboxylic acid appears to be the chiral auxiliary of choice in the present cycloadditions.

The structures of the isomeric cycloadducts thus formed were elucidated as 1,4-cycloaddition products on the basis of the spectral data (1 H- and 13 C-NMR, IR, MS). In view of the variety of conceivable addition modes, X-ray crystallographic analysis of the key adduct 7 ($R^2=R^3=Me$) was performed, providing unequivocal proof of the [4+2] addition structure (Fig. 1).⁵⁾

The optically pure cycloadducts were rapidly cleaved in quantitative yields with a catalytic amount of p-toluenesulfonic acid in methanol to form trans-4-methoxy oxazolidinones, as illustrated by the facile conversion of 9 to 10. Though removal of the sterically congested N-acyl group from 10 was difficult even

Fig.1. Perspective View of the Cycloadduct (7) $(R^2=R^3=Me)$

1078 Vol. 40, No. 4

with reagents such as lithium benzylmercaptide⁶⁾ and hydroperoxide,⁷⁾ due to the low reactivity and the accompanying endocyclic cleavage,⁸⁾ the reductive system derived from LiBH₄ and methanol (1:2) was found to be exceptionally effective at 0 °C and compound 10 was readily deacylated to *trans*-4-methoxy-5-hydrazino-2-oxazolidinone (11) in satisfactory yield (above 70%) with recovery of the reduced auxiliary.⁹⁾

The following conversions to 2-aminoalcohol derivatives (14) prove the synthetic versatility as chiral synthons (Chart 2). On treatment with organocuprates/BF₃OEt₂, the 4-methoxy derivative (11) underwent smooth replacement of the methoxy group with a wide variety of *prim*. to *tert*.-alkyls and aryls with full retention of configurations to give the *trans*-derivatives 12 exclusively (TABLE II). No *cis*-isomer could be detected in the NMR spectra (400 MHz). Subsequent protection of the NH-groups of 12 with Boc followed by reductive ring cleavage gave high to excellent yields (above 77%) of (R)-N-Boc-2-aminoalcohols (14), which serve as versatile intermediates. Thus, treatment with thionyl chloride resulted in exclusive formation of (R)-4-substituted 2-oxazolidinones (15), which worked as Evans' auxiliaries (TABLE III). Oxidation with pyridinium dichromate (PDC)¹⁰⁾ gave unnatural type α -amino acids such as (R)-tert-leucine (16, R⁴=t-Bu) and (R)-valine (16, R⁴=i-Pr) in 83% and 87% yields, respectively.

In conclusion, 3-acyl-2-oxazolones undergo smooth cycloaddition with dialkyl azodicarboxylates under mild conditions to give [4+2] cycloadducts, which serve as versatile synthons for a wide variety of optically active 4-substituted 2-oxazolidinones and α -amino acids.

TABLE I. Diastereoselective [4+2] Cycloaddition of Azodicarboxylates(2) to 2-Oxazolones(6)

Entry	R ³	R ²	Time (h)	Yield (%) ^{a)}	7 : 8 ^{b)}	(%d.e.)
1	Me	<i>i</i> -Pr	12	93	24 : 76	(52)
2	Pr	Bzl	6	86	18:82	(64)
3	CH ₂ CMe ₃	Me	12	83	16:84	(68)
4	CH ₂ CMe ₃	<i>i</i> -Pr	19	85	15 : 85	(70)
5	CH ₂ CMe ₃	Bzl	18	93	14:86	(72)

a) Isolated vields. b) Determined from ¹H-NMR (400 MHz) spectral data.

a) p-TosOH (0.05 eq.), MeOH; r.t., 5 min. b) LiBH₄ (4 eq.), MeOH (8 eq.), THF; 0 °C, 2.5h c) See Table 2. d) (Boc)₂O NEt₃, DMAP,CH₂Cl₂; r.t., 4h e) NaBH₄ (4 eq.), MeOH (4 eq.), EtOH; r.t., 24h f) SOCl₂ (8 eq.), THF; r.t., 3h g) PDC, DMF; r.t.

Chart 2

TABLE II. The BF3-Promoted Substitution of 4-Methoxy-2-oxazolidinone (11) by Organocuprates

Entry	Reagents	Product 12, R ⁵	Yield (%) ^{a)}
1	<i>i</i> -PrCuCNMgBr (4 eq.), LiCl (8.8 eq.)	<i>i</i> -Pr	85 (100)
2	(t-Bu) ₂ CuCN(MgBr) ₂ (4 eq.)	<i>t</i> -Bu	75 (87)
3	PhCuCNMgBr (4 eq.), LiCl (8.8 eq.)	Ph	85 (99)
4	(PhCH ₂) ₂ CuCN(MgCl) ₂ (4 eq.)	Bzl	79 (92)

a) Yields and *trans* stereochemistry were determined from ¹H-NMR (400 MHz) analysis. The values in parentheses are corrected yields based on unrecovered 11.

TABLE III. Conversion of N-Boc-2-Aminoalcohols (14) to (R)-4-Substituted 2-oxazolidinones (15)^a)

R ⁵	<i>i</i> -Pr	<i>t</i> -Bu	Ph	CH ₂ Ph	
Yield (%)	100	100	100	97	

a) The aminoalcohol (14) was treated with SOCl2 in THF at room temperature for 3h.

REFERENCES AND NOTES

- a) T. Kunieda, T. Ishizuka, T. Higuchi and M. Hirobe, J. Org. Chem., 53, 3381 (1988);
 b) T. Ishizuka, S. Ishibuchi and T. Kunieda, ibid., 30, 3449 (1989);
 c) S. Ishibuchi, Y. Ikematsu, T. Ishizuka and T. Kunieda, Tetrahedron Lett., 32, 3523 (1991);
 d) T. Ishizuka and T. Kunieda, J. Synth. Org. Chem., Jpn., 49, 118 (1991).
- 2) K.-H. Scholz, H.-G. Heine and W. Hartmann, Justus Liebigs Ann. Chem., 1977, 2027.
- 3) J. A. Deyrup and H. L. Gingrich, Tetrahedron Lett., 1977, 3115.
- a) J. Firl and S. Sommer, Tetrahedron Lett., 1972, 4713; b) J. Firl and S. Sommer, ibid., 1971, 4193; c) E. K. von Gustorf, D. V. White, B. Kim, D. Hess and J. Leitich, J. Org. Chem., 35, 1155 (1970); d) J. Firl and S. Sommer, Tetrahedron Lett., 1970, 1929; e) J. Firl and S. Sommer, ibid., 1970, 1925; f) E. K. von Gustorf, D. V. White, J. Leitich and D. Hanneberg, ibid., 1969, 3113; g) E. K. von Gustorf, D. V. White and J. Leitich, ibid., 1969, 3109; h) J. Firl and S. Sommer, ibid., 1969, 1137; i) J. Firl and S. Sommer, ibid., 1969, 1133.
- 5) Crystal data for compound 7 ($R^2=R^3=Me$) [mp 195.3~196.0 °C, [α] $_D^{26}$ -279.7° (c. 0.97, CHCl₃)] : orthorhombic, P212121, a=12.258(1), b=18.482(2), c=9.009(1)Å. The structure was refined to an R-value of 5.3%.
- 6) R. E. Damon and G. M. Coppola, *Tetrahedron Lett.*, 31, 2849 (1990).
- 7) D. A. Evans, T. C. Britton and J. A. Ellman, *Tetrahedron Lett.*, 28, 6141 (1987).
- 8) Exocyclic deacylation of 10 to 11 by the conventional reagents resulted in only poor yields as follows.

Entry	Reagent	Conditions	Yield (%) ^a
1 Bu ₂ CuLi (8 eq.)		THF; -30 °C to 0 °C	16 (14)
2	LiOH (5 eq.)	MeOH-H ₂ O(5:1); r.t., 3h	0 ` ′
3	PhCH ₂ OLi (2 eq.)	THF; -78 °C to r.t.	11
4	PhCH ₂ SLi (1.5 eq.)	THF; 0 °C, 2h	23
5	LiOOH (2 eq.)	THF-H ₂ O(4:1); 0 °C to r.t.	23 (44)
6	LiBH ₄ (4 eq.)	THF; 0 °C to r.t.	21 ` ′

a) Isolated yields. The values in parentheses are recovery yields.

- 9) The amount of methanol is critical in the selective exocyclic deacylation and the LiBH₄:MeOH ratio of 1 to 2 was optimal under the conditions employed. Reactions of 10 with the reagents LiBH₄/MeOH in the ratios of 1:1 and 1:3 gave the 2-oxazolidinone (11) in 57% and 40% yields, respectively.
- 10) N. A. Sasaki, C. Hashimoto and P. Potier, Tetrahedron Lett., 28, 6069 (1987).