## Synthesis and Characterization of Furanose and Pyranose Derivatives of 3-Deoxy-D-glycero-D-galacto-2-nonulosonic Acid (KDN)<sup>1,2)</sup>

Mitsunobu Nakamura, Hiroaki Takayanagi, Kimio Furuhata and Haruo Ogura\*

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan. Received September 25, 1991

The products of Fischer's methyl glycosylation of 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) revealed existence of an the anomeric equilibrium between  $\alpha,\beta$ -furanose and  $\alpha,\beta$ -pyranose of KDN. In spite of the anomeric equilibrium, peracetylation of KDN and its derivatives by acetic anhydride with pyridine gave only  $\alpha$ - and  $\beta$ -pyranose derivatives. The obtained methyl glycosides and hexa-O-acetyl derivatives were characterized by X-ray, nuclear magnetic resonance and circular dichroism spectral analyses.

Keywords KDN; anomeric equilibrium; furanose; X-ray crystal analysis; <sup>1</sup>H-NMR

An anomeric equilibrium among possible structural isomers of monosaccharides is widely recognized as being important in monosaccharide chemistry. Three types of ulosonic acid occur in nature (Fig. 1), and the anomeric equilibria of N-acetylneuraminic acid (Neu5Ac) and 3-deoxy-D-manno-2-octulosonic acid (KDO) have been revealed. Neu5Ac in solution comes to equilibrium between  $\alpha$ -pyranose and  $\beta$ -pyranose,<sup>3)</sup> but the furanose type of Neu5Ac is absent owing to the acetamide moiety substituted at the C-5 position. KDO equilibrates between  $\alpha,\beta$ -furanose and  $\alpha,\beta$ -pyranose in solution. Stereoselective syntheses of furanose or pyranose derivatives of KDO have been achieved under various reaction conditions.<sup>4,5)</sup> Since 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN, 1) was isolated from rainbow trout egg,60 several O- and N-pyranosides of 1 have been synthesized.<sup>7-10)</sup> Further study of the biological functions of 1 and Neu5Ac requires more complex derivatives of 1 and its isomers.

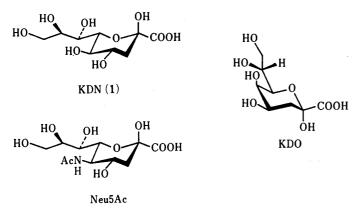



Fig. 1. Structures of KDN, Neu5Ac and KDO

Synthesis of such derivatives requires a knowledge of the anomeric equilibrium of 1. In this paper, we wish to report the anomeric equilibrium between  $\alpha, \beta$ -furanose and  $\alpha, \beta$ -pyranose of 1, as determined by examination of the products of Fischer's methyl glycosylation of the methyl ester of 1. Peracetylation of 1 and its derivatives gave only  $\alpha$ - and  $\beta$ -pyranose derivatives. These furanose and pyranose derivatives were characterized by X-ray, nuclear magnetic resonance (<sup>1</sup>H-NMR) and circular dichroism (CD) spectral analyses.

<sup>1</sup>H-NMR Spectrum of 1 <sup>1</sup>H-NMR measurement is a direct method for detecting the structural isomers of a monosaccharide in solution. We attempted to detect the furanose signal of 1 in the <sup>1</sup>H-NMR spectrum. Figure 2 shows the <sup>1</sup>H-NMR spectrum (1—3 ppm) of 1 in D<sub>2</sub>O. Only the signals of α- and β-pyranose of 1 were observed (α:  $\beta$ =1:10), and even when the <sup>1</sup>H-NMR spectrum of 1 was measured in acidic solution (DCl-D<sub>2</sub>O) and basic solution (pyridine- $d_5$ -D<sub>2</sub>O), no furanose signal was observed.

Fischer's Methyl Glycosylation We chose Fischer's methyl glycosylation to reveal the anomeric equilibrium of 1 because it is a simple and poorly stereoselective reaction. Treatment of methyl 3-deoxy-D-glycero-D-galacto-2-nonulosonate (3) with the strong cation exchange resin Dowex-50 (H<sup>+</sup>) in methanol afforded a mixture of methyl glycosides of 1. We could not isolate each product from this mixture, so the mixture was acetylated, and methyl (methyl 4,6,7,8,9-penta-O-acetyl-3-deoxy-D-glycero- $\alpha$ - and - $\beta$ -D-galacto-2-nonulofuranosid)onates (4, 5) and methyl (methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero- $\alpha$ - and - $\beta$ -D-galacto-2-nonulopyranosid)onates (6, 7) were isolated by chromatography (Chart 1). The ratio among these

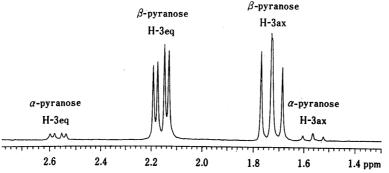



Fig. 2. <sup>1</sup>H-NMR Spectrum of 1

TABLE I

| ъ.  | Temp. | Time | Yield (%) |    |   |     |  |  |  |  |  |
|-----|-------|------|-----------|----|---|-----|--|--|--|--|--|
| Run | (°C)  | (h)  | 4         | 5  | 6 | 7   |  |  |  |  |  |
| 1   | 20    | 240  | 32        | 48 | 0 | . 5 |  |  |  |  |  |
| 2   | 70    | 1    | 21        | 39 | 1 | 16  |  |  |  |  |  |
| 3   | 70    | 3    | 15        | 33 | 2 | 27  |  |  |  |  |  |
| 4   | 70    | 5    | 2         | 4  | 5 | 67  |  |  |  |  |  |
| 5   | 70    | 15   | 0         | 0  | 4 | 74  |  |  |  |  |  |

Fig. 3. Anomeric Equilibrium of 1

glycosides varied depending upon the glycosylation conditions, as shown in Table I. When the glycosylation was run at 20 °C,  $\alpha$ - and  $\beta$ -furanosides (4, 5) were mainly obtained (run 1). When the glycosylation was run at 70 °C for 15 h,  $\beta$ -pyranoside (7) was mainly obtained (run 5). These results indicated that the furanosides are formed by kinetic control and the pyranosides are formed by thermodynamic control. The anomeric equilibrium of 1

12:  $R^1 = COOMe, R^2 = OAc$ 13:  $R^1 = OAc, R^2 = COOMe$ 

14:  $R^1 = OH, R^2 = COOMe$ 

TABLE II

| Run | Temp. | Time |     | Yield (%) |    |
|-----|-------|------|-----|-----------|----|
|     | (°C)  | (h)  | 12  | 13        | 14 |
| 1   | 0     | 1    | 4 . | 42        | 35 |
| 2   | 20    | 1    | ·7  | 68        | 0  |
| 3   | 50    | 1    | 6   | 60        | 0  |
| 4   | 70    | 1    | 6   | 52        | 0  |

can be expressed as shown in Fig. 3.

The obtained acetylated methyl glycosides 4, 5, 6 and 7 were deacetylated by  $K_2CO_3$  in methanol to give methyl (methyl 3-deoxy-D-glycero- $\alpha$ - and - $\beta$ -D-galacto-2-nonulofuranosid)onates (8, 9) and methyl (methyl 3-deoxy-D-glycero- $\alpha$ - and - $\beta$ -D-galacto-2-nonulopyranosid)onates (10, 11) in quantitative yields, respectively.

Peracetylation of 1 and its Derivatives The hexa-Oacetylated pyranose derivatives of 1 were synthesized previously. 7,10) We attempted to synthesize hexa-O-acetylated derivatives of  $\alpha$ - and  $\beta$ -furanose of 1 from three starting materials (Chart 2). Treatment of 3 with acetic anhydride and pyridine at various temperature (0-70 °C) afforded methyl 2,4,5,7,8,9-hexa-O-acetyl-3-deoxy-D-glycero-α- and  $-\beta$ -D-galacto-2-nonulopyranosonates (12, 13) and methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-D-galacto-2nonulopyranosonate (14). The desired furanose derivatives were not obtained. The reaction conditions and yields are summarized in Table II. The acetylation and subsequent esterification of KDN ammonium salt (2) also gave 12 and 13; this method was employed in our previous study.<sup>7)</sup> On the other hand, the acetylation and subsequent esterification of 1 gave 12, 13 and 2,4,5,8,9-penta-O-acetyl-3-deoxy-D-glycero-β-D-galacto-2-nonulopyranosono-1,7-lactone (15). In this reaction, many spots were detected on thin layer chromatography and we could not isolate another product. The structure of 15 was elucidated by <sup>1</sup>H-NMR comparison with the corresponding Neu5Ac derivative. 11)

Characterization of Furanose and Pyranose Derivatives of 1 The structures of crystalline compounds were elucidated by X-ray diffraction analysis. Figure 4 shows the crystal structures of the penta-O-acetylated methyl glycosides (4—7), and Fig. 5 shows those of the hexa-O-

April 1992 881

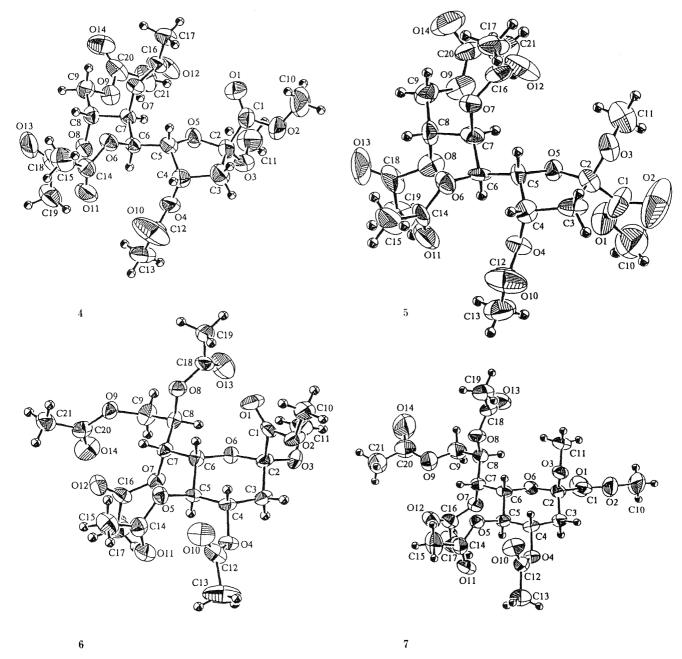



Fig. 4. Crystal Structures of 4-7

acetylated derivatives (12, 13). The crystal structure of the deacetylated methyl glycosides (8, 9, 11) have been reported previously. These crystal structures indicated that the conformations of the pyranose derivatives were  ${}^{1}C_{4}$  form, and those of the furanose derivatives were  ${}^{2}C_{4}$  form. The positional parameters and  $B_{eq}$  for 4, 5, 6, 7, 12 and 13 are listed in Table III—VIII.

Table IX shows the <sup>1</sup>H-NMR data for the methyl glycosides (4—11), the hexa-O-acetyl derivatives (12, 13) and 14. The H-3 signals of the furanosides are observed at lower fields than those of the pyranosides. The H-5 signals of 6, 7 and the H-6 signals of 4, 5 are observed at lower field than those of its deacetylated derivatives owing to acetylation shifts. The coupling constants  $J_{3,4}$  and  $J_{4,5}$  of the furanosides are smaller than those of the pyranosides. The configuration at the C-2 position of the pyranose derivatives was evaluated by applying the empirical rule that the H-3'(eq) signal of an  $\alpha$ -anomer is usually

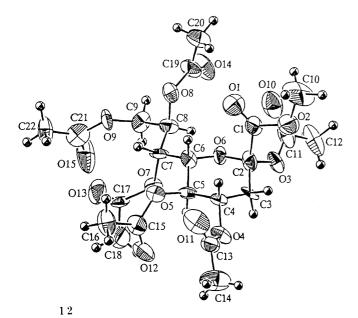

observed at lower field than that of a  $\beta$ -anomer,<sup>7)</sup> but those of the furanose derivatives could not be elucidated by this approach.

Figure 6 shows the CD spectra of the deacetylated methyl glycosides (8—11). The previous study of 1 indicated that the peak around 220—230 nm is due to the  $n-\pi^*$  Cotton effect of the carboxyl group and the negative Cotton effect was assigned to the  $\alpha$ -anomer and the positive one to the  $\beta$ -anomer. In Fig. 6, the spectra of the methyl pyranosides (10, 11) are in accordance with the above results, but no characteristic peak was observed in the spectra of the methyl furanosides (8, 9).

## Conclusion

The products of Fischer's methyl glycosylation of 1 revealed the anomeric equilibrium between  $\alpha,\beta$ -furanose and  $\alpha,\beta$ -pyranose of 1. These results indicate that the furanosides were formed by kinetic control and the

882 Vol. 40, No. 4



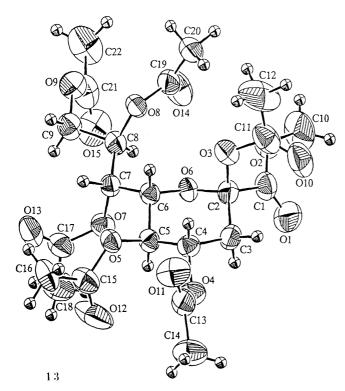



Fig. 5. Crystal Structures of 12 and 13

pyranosides by thermodynamic control. In spite of the anomeric equilibrium, peracetylation of 1, 2 and 3 by acetic anhydride with pyridine gave only  $\alpha$ - and  $\beta$ -pyranose derivatives. The obtained methyl glycosides and hexa-O-acetyl derivatives of 1 were characterized by X-ray,  $^1$ H-NMR and CD spectral analyses. The X-ray crystal analysis showed that the conformations of the furanosides were  $E^4$  form and those of the pyranosides were  $^1C_4$  form. The  $^1$ H-NMR spectra provided many characteristic data to distinguish the furanose and the pyranose derivatives of 1. The  $^1$ H-NMR and CD spectral analyses failed to elucidate the configurations at the C-2 position of the furanose derivatives.

## Experimental

Melting points were measured with a Yamato melting point apparatus

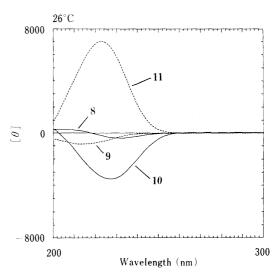



Fig. 6. CD Curves of 8-11 in MeOH

and the results are uncorrected. Optical rotations were measured with a JASCO JIP-4 digital polarimeter. Thin layer chromatography (TLC) was performed on silica gel (Merck) plates, and spots were detected by spraying with 5% sulfuric acid solution. Fast atom bombardment mass spectra (FAB-MS), and infrared (IR) spectra were measured with JEOL JMS-DX300 and JASCO FT/IR-7300 instruments, respectively. CD spectra were measured in a 0.1 cm cell with a JASCO J-720 spectropolarimeter. The <sup>1</sup>H-NMR spectra were measured with a Varian VXR-300 spectrometer. Trimethylsilane (TMS) in CDCl<sub>3</sub> or sodium 3-(trimethylsilyl)-1-propanesulfonate (DDS) in D<sub>2</sub>O was used as an internal reference. Column chromatography was conducted on Silica gel 60 (70—230 mesh).

Methyl Esterification of 1 A solution of 1 (5.00 g, 18.6 mmol) and dry Dowex-50 (H  $^+$ ) resin (5.00 g) in dry MeOH (100 ml) was stirred for 48 h at room temperature, then filtered, and the filtrate was evaporated to dryness. The residual syrup was purified on a column of silica gel with CHCl<sub>3</sub>–MeOH (10:1) to yield 3 (4.04 g, 77%) as an amorphous powder. [α] $_{\rm D}^{26}$  –13.0° (c=0.55, MeOH). FAB-MS m/z: 283 (M  $^+$  +1). Anal. Calcd for C<sub>10</sub>H<sub>18</sub>O<sub>9</sub>: C, 42.55; H, 6.43. Found: C, 42.29; H, 6.51. IR  $v_{\rm max}^{\rm KBr}$  cm  $^{-1}$ : 3385, 1744, 1067, 1033.  $^{1}$ H-NMR (300 MHz, D<sub>2</sub>O) δ: 1.53 (1H, dd, J=13.0, 11.8 Hz, 3-H<sub>ax</sub>), 1.93 (1H, dd, J=13.0, 5.0 Hz, 3-H<sub>eq</sub>), 3.25 (1H, dd, J=10.2, 9.2 Hz, 5-H), 3.32 (1H, dd, J=11.9, 6.4 Hz, 9-H), 3.40 (1H, ddd, J=9.4, 6.4, 2.3 Hz, 8-H), 3.49 (3H, s, COOCH<sub>3</sub>), 3.53 (1H, dd, J=9.4, 0.8 Hz, 7-H), 3.66 (1H, ddd, J=11.8, 9.2, 5.0 Hz, 4-H), 3.67 (1H, dd, J=10.2, 0.8 Hz, 6-H).

Methyl Glycosylation of 3 by Fischer's Method A typical experimental procedure was as follows. A solution of 3 (1.00 g, 3.54 mmol) and dry Dowex-50 (H<sup>+</sup>) (2.0 g) in dry-MeOH was stirred for 3 h at 70 °C. The solution was filtered and the filtrate was evaporated to dryness. The residual syrup was dissolved in pyridine (7.00 g, 88.5 mmol), and acetic anhydride (9.03 g, 88.5 mmol) was added dropwise to the solution at 5 °C. The mixture was stirred for 8 h at room temperature, poured into 0.5 N HCl (180 ml) and extracted with ethyl acetate (50 ml × 3). The extract was washed with sodium hydrogen carbonate solution and brine, dried and concentrated. The residual syrup was purified on a column of silica gel with ether–hexane (1:1--3:1) to yield 4, 5, 6 and 7.

- **4**: Colorless prisms, mp 96—98 °C (ether-hexane).  $[\alpha]_{0}^{22}$  +70.3° (c = 0.25, CHCl<sub>3</sub>). FAB-MS m/z: 507 (M<sup>+</sup>+1). Anal. Calcd for C<sub>21</sub>H<sub>30</sub>O<sub>14</sub>: C, 49.80; H, 5.79. Found: C, 49.88; H, 5.81. IR  $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 1748, 1373, 1240, 1213.
- 5: Colorless prisms, mp 114—115 °C (ether).  $[\alpha]_{0}^{26} + 4.7^{\circ}$  (c = 0.21, CHCl<sub>3</sub>). FAB-MS m/z: 507 (M<sup>+</sup> + 1). Anal. Calcd for  $C_{21}H_{30}O_{14}$ : C, 49.80; H, 5.79. Found: C, 49.82; H, 6.08. IR  $\nu_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 1747, 1373, 1238, 1216, 1038.
- 6: Colorless prisms, mp 115—116 °C (ether).  $[\alpha]_{\rm D}^{26}$  -17.0° (c=0.15, CHCl<sub>3</sub>). FAB-MS m/z: 507 (M<sup>+</sup>+1). Anal. Calcd for C<sub>21</sub>H<sub>30</sub>O<sub>14</sub>: C, 49.80; H, 5.79. Found: C, 49.72; H, 6.04. IR  $v_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 1755, 1371, 1221, 1058.
- 7: Colorless needles, mp 117—118 °C (ether–hexane).  $[\alpha]_{\rm D}^{26}$  –6.3° (c = 0.13, CHCl<sub>3</sub>). FAB-MS m/z: 507 (M<sup>+</sup> + 1). Anal. Calcd for C<sub>21</sub>H<sub>30</sub>O<sub>14</sub>: C, 49.80; H, 5.79. Found: C, 49.90; H, 6.05. IR  $\nu_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 1751, 1373, 1244, 1058.

Table III. Positional Parameters and  $B_{eq}$  for 4

TABLE V. Positional Parameters and  $B_{eq}$  for 6

|            |             |            |            |                      | -7         |            |            |            |              |  |  |  |  |  |
|------------|-------------|------------|------------|----------------------|------------|------------|------------|------------|--------------|--|--|--|--|--|
| Atom       | x           | у          | z          | $B_{\rm eq}$         | Atom       | x          | у          | z          | $B_{\rm eq}$ |  |  |  |  |  |
| O1         | 0.2005 (5)  | 0.4991     | 1.1145 (4) | 6.0 (2)              | O1         | 0.693 (1)  | 0.4353 (2) | 0.486 (1)  | 5.3 (5)      |  |  |  |  |  |
| O2         | -0.0526(5)  | 0.5294 (4) | 1.0881 (5) | 8.0 (3)              | <b>O</b> 2 | 0.9411 (8) | 0.4271 (2) | 0.5722 (8) | 3.9 (4)      |  |  |  |  |  |
| O3         | -0.0893(4)  | 0.3569 (4) | 1.0063 (4) | 5.7 (2)              | O3         | 0.9714 (8) | 0.4531 (2) | 0.2171 (8) | 3.4 (3)      |  |  |  |  |  |
| O4         | -0.0653(4)  | 0.3417 (4) | 0.6512 (3) | 5.2 (2)              | O4         | 1.0617 (8) | 0.3292 (2) | 0.2531 (8) | 3.4 (3)      |  |  |  |  |  |
| O5         | 0.1342 (4)  | 0.3685 (4) | 0.9303 (3) | 4.7 (2)              | O5         | 0.7137 (8) | 0.3184 (2) | 0.2168 (8) | 3.0 (3)      |  |  |  |  |  |
| O6         | 0.3304 (4)  | 0.3775 (3) | 0.6523 (3) | 4.1 (1)              | O6         | 0.7706 (7) | 0.4145 (2) | 0.1572 (7) | 2.7 (3)      |  |  |  |  |  |
| <b>O</b> 7 | 0.4832 (3)  | 0.3630 (3) | 0.9352 (3) | 3.6 (1)              | <b>O</b> 7 | 0.6167 (7) | 0.3678 (2) | -0.1126(8) | 3.0 (3)      |  |  |  |  |  |
| O8         | 0.3871 (4)  | 0.1724 (3) | 0.7232 (3) | 4.1 (1)              | O8         | 0.4031 (8) | 0.4254 (2) | 0.1805 (8) | 3.4 (3)      |  |  |  |  |  |
| O9         | 0.5296 (4)  | 0.1442 (3) | 1.0053 (3) | 4.4 (1)              | O9         | 0.2496 (8) | 0.3908 (2) | -0.1118(8) | 3.3 (3)      |  |  |  |  |  |
| O10        | -0.1304(9)  | 0.4054 (5) | 0.4471 (5) | 12.4 (4)             | O10        | 0.981 (1)  | 0.2903 (2) | 0.455 (1)  | 5.6 (5)      |  |  |  |  |  |
| O11        | 0.1969 (5)  | 0.2960 (4) | 0.4765 (4) | 6.6 (2)              | 011        | 0.827 (1)  | 0.2878 (2) | 0.004 (1)  | 5.2 (5)      |  |  |  |  |  |
| O12        | 0.4769 (5)  | 0.3077 (4) | 1.1425 (4) | 6.0 (2)              | O12        | 0.470 (1)  | 0.3178 (2) | -0.1038(9) | 4.1 (4)      |  |  |  |  |  |
| O13        | 0.5401 (6)  | 0.1591 (5) | 0.5778 (5) | 9.6 (3)              | O13        | 0.451 (1)  | 0.4839 (2) | 0.140 (1)  | 6.4 (5)      |  |  |  |  |  |
| O14        | 0.7537 (6)  | 0.1282 (4) | 1.1654 (4) | 7.3 (2)              | O14        | 0.282 (1)  | 0.3739 (2) | -0.384 (1) | 6.2 (5)      |  |  |  |  |  |
| C1         | 0.0682 (7)  | 0.4846 (5) | 1.0644 (6) | 4.8 (3)              | Cl         | 0.826 (2)  | 0.4285 (3) | 0.458 (1)  | 3.0 (5)      |  |  |  |  |  |
| C2         | 0.0042 (6)  | 0.4133 (5) | 0.9571 (5) | 4.8 (2)              | C2         | 0.898 (1)  | 0.4219 (3) | 0.273 (1)  | 3.2 (5)      |  |  |  |  |  |
| C3         | -0.0819 (7) | 0.4526 (5) | 0.8173 (6) | 6.2 (3)              | C3         | 1.015 (1)  | 0.3909 (3) | 0.267 (1)  | 3.0 (5)      |  |  |  |  |  |
| C4         | 0.0048 (6)  | 0.4202 (5) | 0.7134 (5) | 4.7 (2)              | C4         | 0.940 (1)  | 0.3546 (3) | 0.293 (1)  | 2.7 (5)      |  |  |  |  |  |
| C5         | 0.1648 (6)  | 0.4004 (4) | 0.8043 (5) | 3.9 (2)              | C5         | 0.800 (1)  | 0.3498 (2) | 0.172 (1)  | 2.6 (5)      |  |  |  |  |  |
| C6         | 0.2609 (5)  | 0.3330 (4) | 0.7507 (4) | 3.2 (2)              | C6         | 0.688 (1)  | 0.3814 (3) | 0.184 (1)  | 2.9 (5)      |  |  |  |  |  |
| C7         | 0.3884 (5)  | 0.2944 (4) | 0.8637 (4) | 3.2 (2)              | <b>C</b> 7 | 0.557 (1)  | 0.3802 (2) | 0.051 (1)  | 2.7 (5)      |  |  |  |  |  |
| C8         | 0.4915 (6)  | 0.2338 (4) | 0.8065 (5) | 3.7 (2)              | C8         | 0.479 (1)  | 0.4164 (3) | 0.022 (1)  | 3.1 (5)      |  |  |  |  |  |
| C9         | 0.6115 (6)  | 0.1880 (4) | 0.9164 (5) | 4.3 (2)              | C9         | 0.366 (1)  | 0.4179 (3) | -0.128 (1) | 4.1 (6)      |  |  |  |  |  |
| C10        | -0.015 (1)  | 0.5996 (7) | 1.187 (l)  | 11.7 (6)             | C10        | 0.897 (1)  | 0.4368 (3) | 0.748 (1)  | 4.5 (6)      |  |  |  |  |  |
| C11        | -0.0142(8)  | 0.3159 (6) | 1.1340 (7) | 7.3 (4)              | C11        | 0.880 (1)  | 0.4854 (3) | 0.220 (2)  | 4.9 (6)      |  |  |  |  |  |
| C12        | -0.1314 (7) | 0.3423 (6) | 0.5155 (6) | 6.5 (3)              | C12        | 1.069 (2)  | 0.2991 (3) | 0.348 (2)  | 4.4 (7)      |  |  |  |  |  |
| C13        | -0.1861(8)  | 0.2570 (6) | 0.4621 (7) | 8.0 ( <del>4</del> ) | C13        | 1.214 (2)  | 0.2777 (4) | 0.294 (2)  | 9 (1)        |  |  |  |  |  |
| C14        | 0.2891 (7)  | 0.3531 (5) | 0.5171 (5) | 4.8 (2)              | C14        | 0.742 (1)  | 0.2881 (3) | 0.123 (2)  | 3.7 (6)      |  |  |  |  |  |
| C15        | 0.3765 (9)  | 0.4024 (6) | 0.4343 (6) | 7.8 <b>(</b> 4)      | C15        | 0.653 (2)  | 0.2574 (3) | 0.194 (2)  | 5.5 (7)      |  |  |  |  |  |
| C16        | 0.5127 (6)  | 0.3638 (5) | 1.0777 (S) | 3.9 (2)              | C16        | 0.559 (1)  | 0.3370 (3) | -0.176 (1) | 3.3 (6)      |  |  |  |  |  |
| C17        | 0.5954 (6)  | 0.4441 (5) | 1.1340 (5) | 5.0 (2)              | C17        | 0.630 (1)  | 0.3283 (3) | -0.349 (1) | 5.7 (7)      |  |  |  |  |  |
| C18        | 0.4216 (8)  | 0.1432 (5) | 0.6079 (6) | 5.5 (3)              | C18        | 0.403 (1)  | 0.4606 (3) | 0.227 (2)  | 4.2 (6)      |  |  |  |  |  |
| C19        | 0.2933 (9)  | 0.0901 (5) | 0.5235 (6) | 7.0 (3)              | C19        | 0.328 (1)  | 0.4642 (3) | 0.402 (2)  | 4.7 (6)      |  |  |  |  |  |
| C20        | 0.6139 (9)  | 0.1208 (4) | 1.1307 (6) | 5.3 (3)              | C20        | 0.219 (1)  | 0.3699 (3) | -0.251 (2) | 3.7 (6)      |  |  |  |  |  |
| C21        | 0.511 (1)   | 0.0864 (5) | 1.2172 (7) | 7.4 (4)              | C21        | 0.097 (1)  | 0.3433 (3) | -0.210 (1) | 4.4 (6)      |  |  |  |  |  |

Table IV. Positional Parameters and  $B_{eq}$  for 5

TABLE VI. Positional Parameters and  $B_{eq}$  for 7

|            |            |                                         | 4          |              | The state of the s |            |            |                                         |                      |  |  |  |  |  |  |
|------------|------------|-----------------------------------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------------------------------------|----------------------|--|--|--|--|--|--|
| Atom       | x          | у                                       | z          | $B_{\rm eq}$ | Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | х          | у          | z                                       | $B_{\rm eq}$         |  |  |  |  |  |  |
| 01         | 0.4169 (7) | 1.0279 (5)                              | 0.149 (1)  | 7.5 (7)      | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9859 (6) | 0.1434 (2) | 1.1651 (8)                              | 6.6 (4)              |  |  |  |  |  |  |
| O2         | 0.2848 (7) | 0.9942 (6)                              | 0.059 (2)  | 15 (1)       | O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0446 (6) | 0.1158 (2) | 0.9257 (9)                              | 6.9 (4)              |  |  |  |  |  |  |
| O3         | 0.3588 (5) | 0.8573 (5)                              | 0.025 (1)  | 4.7 (5)      | O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7781 (5) | 0.1202 (2) | 0.8482 (6)                              | 4.1 (2)              |  |  |  |  |  |  |
| O4         | 0.4640 (6) | 0.9105 (5)                              | 0.4140 (9) | 4.3 (5)      | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6842 (5) | -0.0070(1) | 1.0203 (5)                              | 3.7 (2)              |  |  |  |  |  |  |
| O5         | 0.4927 (5) | 0.8977 (4)                              | 0.1398 (8) | 3.7 (4)      | O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4489 (5) | 0.0497 (1) | 1.0852 (6)                              | 3.7 (2)              |  |  |  |  |  |  |
| O6         | 0.6342 (6) | 0.7988 (4)                              | 0.3760 (8) | 4.2 (5)      | <b>O</b> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7323 (5) | 0.1241 (1) | 1.1202 (6)                              | 3.5 (2)              |  |  |  |  |  |  |
| <b>O</b> 7 | 0.6720 (6) | 0.7631 (5)                              | 0.1142 (8) | 4.1 (5)      | <b>O</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5518 (5) | 0.1192 (1) | 1.3799 (6)                              | 3.9 (2)              |  |  |  |  |  |  |
| O8         | 0.8070 (6) | 0.9120 (5)                              | 0.2641 (9) | 5.0 (5)      | · O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4645 (6) | 0.1955 (1) | 1.0726 (6)                              | 4.7 (3)              |  |  |  |  |  |  |
| O9         | 0.8447 (6) | 0.8875 (5)                              | -0.006 (1) | 5.5 (5)      | <b>O</b> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3433 (7) | 0.1880 (2) | 1.401 (1)                               | 7.9 (4)              |  |  |  |  |  |  |
| O10        | 0.386 (1)  | 0.8606 (6)                              | 0.578 (1)  | 9.5 (8)      | O10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5301 (6) | -0.0206(2) | 0.8335 (7)                              | 5.7 (3)              |  |  |  |  |  |  |
| O11        | 0.6784 (8) | 0.8889 (5)                              | 0.512 (1)  | 6.7 (6)      | O11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4532 (7) | -0.0028(2) | 1.2686 (8)                              | 6.9 (4)              |  |  |  |  |  |  |
| O12        | 0.648 (1)  | 0.8033 (7)                              | -0.091 (1) | 9.5 (8)      | O12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3461 (6) | 0.0890 (2) | 1.4171 (7)                              | 5.2 (3)              |  |  |  |  |  |  |
| O13        | 0.9249 (8) | 0.8628 (7)                              | 0.385 (1)  | 12 (1)       | O13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5814 (7) | 0.2584 (2) | 1.070 (1)                               | 7.7 <b>(4</b> )      |  |  |  |  |  |  |
| O14        | 0.9164 (8) | 0.8205 (6)                              | -0.156(1)  | 9.6 (8)      | O14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.251 (1)  | 0.2480 (3) | 1.454 (2)                               | 14.9 (8)             |  |  |  |  |  |  |
| C1         | 0.361 (1)  | 0.9802 (9)                              | 0.110 (2)  | 7 (1)        | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.960 (1)  | 0.1247 (3) | 1.046 (1)                               | 5.1 (4)              |  |  |  |  |  |  |
| C2         | 0.392 (1)  | 0.9012 (7)                              | 0.128 (1)  | 4.1 (8)      | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8191 (8) | 0.1072 (2) | 1.000 (1)                               | 3.9 (4)              |  |  |  |  |  |  |
| C3         | 0.354 (1)  | 0.8652 (7)                              | 0.255 (1)  | 4.7 (7)      | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8196 (8) | 0.0570 (2) | 1.001 (1)                               | 3.9 ( <del>4</del> ) |  |  |  |  |  |  |
| C4         | 0.4416 (9) | 0.8476 (8)                              | 0.337 (1)  | 4.5 (8)      | C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6765 (7) | 0.0393 (2) | 0.9894 (8)                              | 3.5 (3)              |  |  |  |  |  |  |
| C5         | 0.5134 (8) | 0.8395 (6)                              | 0.233 (1)  | 3.3 (7)      | C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5874 (7) | 0.0604 (2) | 1.114 (1)                               | 3.5 (3)              |  |  |  |  |  |  |
| C6         | 0.6158 (9) | 0.8504 (6)                              | 0.274 (1)  | 3.5 (7)      | C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5959 (7) | 0.1103 (2) | 1.105 (1)                               | 3.4 (3)              |  |  |  |  |  |  |
| C7         | 0.687 (1)  | 0.8385 (6)                              | 0.166 (1)  | 3.8 (7)      | <b>C</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5118 (7) | 0.1336 (2) | 1.2253 (8)                              | 3.5 (3)              |  |  |  |  |  |  |
| C8         | 0.7960 (8) | 0.8422 (8)                              | 0.206 (1)  | 4.4 (8)      | C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5299 (8) | 0.1830 (2) | 1.224 (1)                               | 4.4 (4)              |  |  |  |  |  |  |
| C9         | 0.862 (1)  | 0.8314 (8)                              | 0.091 (1)  | 5.1 (8)      | C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.471 (1)  | 0.2067 (2) | 1.366 (1)                               | 6.0 ( <del>5</del> ) |  |  |  |  |  |  |
| C10        | 0.387 (1)  | 1.103 (1)                               | 0.140 (2)  | 11 (1)       | C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7825 (8) | 0.1663 (2) | 0.818 (1)                               | 5.7 (5)              |  |  |  |  |  |  |
| C11        | 0.396 (1)  | 0.8780 (8)                              | -0.100 (1) | 7 (1)        | C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7825 (8) | 0.1663 (2) | 0.818 (1)                               | 5.7 ( <del>5</del> ) |  |  |  |  |  |  |
| C12        | 0.436 (1)  | 0.910 (1)                               | 0.535 (2)  | 7 (1)        | C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6009 (8) | -0.0333(2) | 0.935 (1)                               | 4.0 (4)              |  |  |  |  |  |  |
| C13        | 0.466 (1)  | 0.9768 (7)                              | 0.604 (1)  | 7 (1)        | C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.610 (1)  | -0.0797(2) | 0.992 (1)                               | 5.6 (4)              |  |  |  |  |  |  |
| C14        | 0.665 (1)  | 0.8259 (8)                              | 0.491 (1)  | 4.8 (9)      | C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3927 (8) | 0.0170 (3) | 1.173 (1)                               | 4.7 (4)              |  |  |  |  |  |  |
| C15        | 0.673 (1)  | 0.7667 (9)                              | 0.586 (1)  | 10 (1)       | C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.251 (1)  | 0.0099 (3) | 1.129 (1)                               | 7.2 ( <del>5</del> ) |  |  |  |  |  |  |
| C16        | 0.649 (1)  | 0.755 (1)                               | -0.013 (2) | 6 (1)        | C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.454 (1)  | 0.0970 (2) | 1.466 (1)                               | 4.5 ( <del>4</del> ) |  |  |  |  |  |  |
| C17        | 0.6284 (9) | 0.674 (1)                               | -0.044 (1) | 8 (1)        | C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.510 (1)  | 0.0836 (3) | 1.623 (1)                               | 7.1 (5)              |  |  |  |  |  |  |
| C18        | 0.877 (1)  | 0.913 (1)                               | 0.355 (2)  | 7 (1)        | C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.501 (1)  | 0.2338 (3) | 1.008 (1)                               | 5.7 ( <del>5</del> ) |  |  |  |  |  |  |
| C19        | 0.877 (1)  | 0.9878 (7)                              | 0.417 (1)  | 8 (1)        | C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.429 (1)  | 0.2421 (3) | 0.870 (1)                               | 7.6 (6)              |  |  |  |  |  |  |
| C20        | 0.875 (1)  | 0.8763 (8)                              | -0.127 (2) | 5 (1)        | C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.246 (1)  | 0.2096 (3) | 1.442 (1)                               | 6.8 ( <del>6</del> ) |  |  |  |  |  |  |
| C21        | 0.856 (1)  | 0.9373 (7)                              | -0.216 (1) | 7 (1)        | C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.125 (1)  | 0.1857 (3) | 1.491 (1)                               | 7.4 (6)              |  |  |  |  |  |  |
|            | 7.0.       | *************************************** |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            | *************************************** |                      |  |  |  |  |  |  |

Deacetylation of 4, 5, 6 and 7. A typical experimental procedure was as follows. Anhydrous potassium carbonate (68.2 mg, 0.494 mmol) was added to a solution of 4 (500 mg, 0.987 mmol) in MeOH (50 ml) at room temperature. The mixture was stirred for 1 h at room temperature, neutralized with acetic acid (100 mg) and evaporated to dryness. The residual syrup was purified on a column of silica gel with CHCl<sub>3</sub>-MeOH (10:1) to give 8 in quantitative yield.

8: Colorless plates, mp 80—82 °C (MeOH-ether).  $[\alpha]_{2}^{26}$  +43.0° (c=0.15, MeOH). FAB-MS m/z: 297 (M<sup>+</sup>+1). Anal. Calcd for C<sub>11</sub>H<sub>20</sub>O<sub>9</sub>: C, 44.59; H, 6.80. Found: C, 44.40; H, 6.86. IR  $v_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3367, 1744, 1082 1040

9: Colorless plates, mp 121—122 °C (iso-PrOH).  $[\alpha]_D^{26}$  -46.8° (c=0.27, MeOH). FAB-MS m/z: 297 (M<sup>+</sup>+1). Anal. Calcd for  $C_{11}H_{20}O_9$ : C, 44.59; H, 6.80. Found: C, 44.65; H, 6.81. IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3345, 1743,

Table VII. Positional Parameters and  $B_{eq}$  for 12

1296, 1102, 1033.

10:  $[\alpha]_D^{26} - 28.2^{\circ}$  (c = 1.13, MeOH). FAB-MS m/z: 297 (M<sup>+</sup> +1). Anal. Calcd for  $C_{11}H_{20}O_9 \cdot 1/3H_2O$ : C, 43.71; H, 7.11. Found: C, 43.69; H, 7.21. IR  $\nu_{\max}^{KBr}$  cm<sup>-1</sup>: 3406, 1736, 1071, 1039.

11: Colorless needles, mp 123—125 °C (MeOH-ether).  $[\alpha]_D^{26}$  -54.5° (c=0.25, MeOH). FAB-MS m/z: 297 (M<sup>+</sup>+1). Anal. Calcd for  $C_{11}H_{20}O_9 \cdot H_2O$ : C, 42.04; H, 7.06. Found: C, 41.91; H, 6.93. IR  $v_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 3491, 1734, 1293, 1165, 1040.

Acetylation of 3 A typical experimental procedure was as follows. The methyl ester 3 (1.00 g, 3.54 mmol) was added slowly to a mixture of pyridine (5.04 g, 63.8 mmol) and acetic anhydride (6.51 g, 63.8 mmol) at  $0\,^{\circ}$ C. The mixture was stirred for 1 h at  $0\,^{\circ}$ C, poured into  $0.5\,\text{N}$  HCl (130 ml) and extracted with ethyl acetate (50 ml × 3). The extract was washed with sodium hydrogen carbonate solution and brine, dried and

TABLE VIII. Positional Parameters and  $B_{eq}$  for 13

|              |           |           | 1          |             |            |            | - 1         |             |             |  |  |  |  |
|--------------|-----------|-----------|------------|-------------|------------|------------|-------------|-------------|-------------|--|--|--|--|
| Atom         | х         | у         | z          | $B_{ m eq}$ | Atom       | х          | у           | z           | $B_{ m eq}$ |  |  |  |  |
| 01           | 0.469 (2) | 0.1017    | 0.1794 (8) | 6.1 (9)     | 01         | 0.7018 (4) | 0.28797 (8) | 0.3339 (5)  | 7.2 (2)     |  |  |  |  |
| O2           | 0.432 (2) | 0.347 (3) | 0.1318 (7) | 7 (1)       | O2         | 0.4569 (4) | 0.27845 (7) | 0.2619 (4)  | 5.9 (2)     |  |  |  |  |
| O3           | 0.765 (1) | 0.371 (3) | 0.1234 (6) | 4.0 (7)     | O3         | 0.4767 (3) | 0.32791 (6) | 0.0280 (3)  | 4.4 (1)     |  |  |  |  |
| 04           | 0.726(1)  | 0.454 (3) | 0.3528 (7) | 3.9 (7)     | O4         | 0.8455 (3) | 0.40476 (7) | 0.0816 (3)  | 4.5 (1)     |  |  |  |  |
| <b>O</b> 5   | 0.779 (1) | 0.103 (3) | 0.3740 (5) | 3.1 (6)     | O5         | 0.5460 (3) | 0.44133 (5) | 0.1239 (3)  | 3.6 (1)     |  |  |  |  |
| <b>O</b> 6   | 0.814 (1) | 0.162 (2) | 0.1924 (6) | 3.2 (7)     | O6         | 0.4743 (3) | 0.35251 (5) | 0.2802 (3)  | 3.5 (1)     |  |  |  |  |
| · <b>O</b> 7 | 1.090 (1) | 0.010(2)  | 0.2772 (6) | 3.8 (7)     | <b>O</b> 7 | 0.4047 (3) | 0.41573 (6) | 0.4810 (3)  | 4.2 (1)     |  |  |  |  |
| O8           | 0.782 (1) | -0.200(2) | 0.1741 (6) | 3.5 (7)     | O8         | 0.1446 (3) | 0.36098 (6) | 0.2455 (3)  | 3.8 (1)     |  |  |  |  |
| O9           | 1.075 (1) | -0.360(3) | 0.2389 (6) | 4.0 (7)     | O9         | -0.0733(3) | 0.38167 (7) | 0.4863 (3)  | 4.9 (1)     |  |  |  |  |
| O10          | 0.685 (2) | 0.178 (3) | 0.0527 (8) | 7 (1)       | O10        | 0.6314 (4) | 0.28371 (8) | -0.0555(4)  | 7.0(2)      |  |  |  |  |
| O11          | 0.536(2)  | 0.371 (3) | 0.4239 (7) | 7 (1)       | O11        | 0.8062 (4) | 0.42777 (8) | -0.1663(4)  | 6.5 (2)     |  |  |  |  |
| O12          | 0.989(2)  | 0.218 (3) | 0.4320 (6) | 6.0 (9)     | O12        | 0.7088 (5) | 0.47127 (8) | 0.2840 (5)  | 9.1 (2)     |  |  |  |  |
| O13          | 1.097 (2) | -0.145(3) | 0.3726 (8) | 6 (1)       | O13        | 0.3193 (4) | 0.47177 (7) | 0.4492 (4)  | 6.9 (2)     |  |  |  |  |
| O14          | 0.829(2)  | -0.196(3) | 0.0625 (6) | 6.1 (9)     | O14        | 0.1213 (5) | 0.31210 (8) | 0.3983 (5)  | 7.3 (2)     |  |  |  |  |
| O15          | 1.346 (2) | -0.357(3) | 0.2554 (7) | 9 (1)       | O15        | 0.0384 (5) | 0.3664 (1)  | 0.7240 (4)  | 7.6 (2)     |  |  |  |  |
| <b>C</b> 1   | 0.522 (3) | 0.227 (3) | 0.166 (1)  | 4 (1)       | C1         | 0.5869 (6) | 0.2965 (1)  | 0.2652 (6)  | 4.7 (2)     |  |  |  |  |
| C2           | 0.712(2)  | 0.296 (3) | 0.181 (1)  | 4 (1)       | C2         | 0.5674 (5) | 0.3322 (1)  | 0.1762 (5)  | 3.8 (2)     |  |  |  |  |
| C3           | 0.707(1)  | 0.410 (3) | 0.2377 (8) | 3.1 (9)     | C3         | 0.7196 (4) | 0.3507 (1)  | 0.1421 (5)  | 4.1 (2)     |  |  |  |  |
| C4           | 0.692(2)  | 0.335 (3) | 0.3053 (9) | 2.7 (9)     | C4         | 0.6949 (4) | 0.38826 (9) | 0.0833 (5)  | 3.7 (2)     |  |  |  |  |
| C5           | 0.806(2)  | 0.192 (3) | 0.3130 (8) | 3 (1)       | C5         | 0.5894 (4) | 0.40800 (9) | 0.1964 (4)  | 3.4 (2)     |  |  |  |  |
| C6           | 0.793 (2) | 0.081 (3) | 0.2559 (8) | 3 (1)       | C6         | 0.4396 (4) | 0.38730 (8) | 0.2186 (4)  | 3.3 (2)     |  |  |  |  |
| <b>C</b> 7   | 0.922(2)  | -0.055(3) | 0.2573 (7) | 4 (1)       | C7         | 0.3260 (4) | 0.40490 (9) | 0.3336 (4)  | 3.4 (2)     |  |  |  |  |
| C8           | 0.946(2)  | -0.124(3) | 0.1878 (9) | 4 (1)       | C8         | 0.1935 (5) | 0.38076 (9) | 0.3855 (5)  | 3.6 (2)     |  |  |  |  |
| C9           | 1.085 (2) | -0.251(3) | 0.186 (1)  | 4 (1)       | C9         | 0.0588 (5) | 0.4031 (1)  | 0.4463 (5)  | 4.4 (2)     |  |  |  |  |
| C10          | 0.258 (2) | 0.308 (4) | 0.113 (1)  | 10 (2)      | C10        | 0.4528 (7) | 0.2447 (1)  | 0.3476 (7)  | 8.5 (3)     |  |  |  |  |
| C11          | 0.755 (3) | 0.309 (4) | 0.060 (1)  | 6 (2)       | C11        | 0.5204 (6) | 0.3018 (1)  | -0.0775 (6) | 5.6 (3)     |  |  |  |  |
| C12          | 0.821 (2) | 0.401 (4) | 0.007 (1)  | 7 (1)       | C12        | 0.4104 (7) | 0.3002 (2)  | -0.2174(7)  | 9.4 (4)     |  |  |  |  |
| C13          | 0.647 (3) | 0.469 (4) | 0.409 (1)  | 4 (2)       | C13        | 0.8874 (5) | 0.4238 (1)  | -0.0517 (6) | 4.7 (2)     |  |  |  |  |
| C14          | 0.692(2)  | 0.599 (4) | 0.451 (1)  | 8 (2)       | C14        | 1.0490 (6) | 0.4379 (1)  | -0.0299 (6) | 6.5 (3)     |  |  |  |  |
| C15          | 0.870(3)  | 0.132 (3) | 0.431 (1)  | 4 (1)       | C15        | 0.6148 (6) | 0.4713 (1)  | 0.1782 (5)  | 4.8 (2)     |  |  |  |  |
| C16          | 0.818 (2) | 0.043 (4) | 0.490 (1)  | 5 (1)       | C16        | 0.5599 (5) | 0.5031 (1)  | 0.0867 (5)  | 5.4 (2)     |  |  |  |  |
| C17          | 1.153 (2) | -0.055(3) | 0.339 (1)  | 4 (1)       | C17        | 0.3914 (5) | 0.4503 (1)  | 0.5257 (6)  | 5.1 (2)     |  |  |  |  |
| C18          | 1.331 (2) | 0.020 (4) | 0.348 (1)  | 8 (2)       | C18        | 0.4761 (7) | 0.4569 (1)  | 0.6793 (7)  | 8.4 (3)     |  |  |  |  |
| C19          | 0.749 (3) | -0.214(3) | 0.109 (1)  | 5 (1)       | C19        | 0.1179 (5) | 0.3257 (1)  | 0.2688 (6)  | 5.0 (2)     |  |  |  |  |
| C20          | 0.556 (2) | -0.256(4) | 0.099 (1)  | 6 (1)       | C20        | 0.0885 (6) | 0.3073 (1)  | 0.1125 (7)  | 6.3 (3)     |  |  |  |  |
| C21          | 1.213 (3) | -0.421(4) | 0.271 (1)  | 5 (1)       | C21        | -0.0665(7) | 0.3649 (1)  | 0.6327 (6)  | 6.0 (3)     |  |  |  |  |
| C22          | 1.186 (2) | -0.525(3) | 0.322 (1)  | 5 (1)       | C22        | -0.2152(7) | 0.3449 (1)  | 0.6556 (6)  | 8.2 (3)     |  |  |  |  |
|              |           |           |            |             |            |            |             |             |             |  |  |  |  |

TABLE IX. Proton Chemical-Shift and Spin-Coupling Data at 300 MHz for 4-14

| Compound Solvent | Chemical shift (ppm)    |      |      |      |      |      |      |      |      | Coupling constant (Hz) |                  |                                 |                    |           |                  |            |           |           |                  |                  |           |                   |            |
|------------------|-------------------------|------|------|------|------|------|------|------|------|------------------------|------------------|---------------------------------|--------------------|-----------|------------------|------------|-----------|-----------|------------------|------------------|-----------|-------------------|------------|
|                  | Solvent                 | 3    | 3′   | 4    | 5    | 6    | 7    | 8    | 9    | 9′                     | OCH <sub>3</sub> | CO <sub>2</sub> CH <sub>3</sub> | OCOCH <sub>3</sub> | $J_{3,3}$ | J <sub>3,4</sub> | $J_{3',4}$ | $J_{4,5}$ | $J_{5,6}$ | J <sub>6,7</sub> | J <sub>7,8</sub> | $J_{8,9}$ | J <sub>8,9'</sub> | $J_{9,9'}$ |
| 4                | CDCl <sub>3</sub>       | 2.19 | 2.51 | 5.27 | 4.18 | 5.51 | 5.48 | 5.10 | 4.06 | 4.25                   | 3.33             | 3.73                            | 1.96—2.10          | 15.3      | 0.5              | 5.8        | 3.6       | 9.1       | 2.4              | 7.8              | 6.0       | 2.9               | 12.5       |
| 5                | CDCl <sub>3</sub>       | 2.37 | 2.52 | 5.37 | 4.14 | 5.56 | 5.60 | 5.12 | 4.13 | 4.30                   | 3.25             | 3.82                            | 1.99-2.13          | 15.5      | 1.1              | 5.9        | 3.6       | 9.3       | 2.8              | 7.8              | 5.9       | 2.9               | 12.4       |
| 6                | CDCl <sub>3</sub>       | 1.91 | 2.65 | 4.91 | 4.86 | 4.18 | 5.36 | 5.45 | 4.14 | 4.28                   | . 3.32           | 3.82                            | 2.00-2.18          | 13.0      | 11.8             | 4.5        | 9.5       | 10.0      | 2.2              | 9.3              | 5.0       | 2.5               | 12.5       |
| 7                | CDCl <sub>3</sub>       | 1.83 | 2.51 | 5.30 | 4.88 | 4.05 | 5.40 | 5.29 | 4.14 | 4.70                   | 3.25             | 3.80                            | 1.97—2.12          | 13.0      | 11.4             | 5.3        | 10.0      | 10.0      | 2.2              | 5.4              | 6.8       | 2.2               | 12.5       |
| 8                | $D_2O$                  | 2.25 | 2.45 | 4.49 | 4.20 | 4.12 | 3.70 | 3.72 | 3.60 | 3.81                   | 3.18             | 3.76                            |                    | 14.6      | 0.5              | 5.2        | 3.7       | 9.6       | 0.5              | 0.0              | 5.5       | 2.1               | 11.4       |
| 9                | $D_{2}O$                | 2.36 | 2.46 | 4.47 | 4.07 | 4.14 | 3.69 | 3.70 | 3.58 | 3.80                   | 3.18             | 3.76                            |                    | 15.0      | 1.1              | 5.2        | 3.0       | 9.2       | 1.0              | 0.0              | 5.4       | 2.4               | 11.4       |
| 10               | $D_{2}^{2}O$            | 1.67 | 2.55 | _    | 3.46 | 3.67 | _    | . —  | 3.56 | _                      | 3.29             | 3.80                            |                    | 12.9      | 11.4             | 4.8        | 9.3       | 9.7       | 0.5              | _                | 4.5       |                   | 11.8       |
| 11               | $D_{2}O$                | 1.65 | 2.26 | 3.89 | 3.49 | 3.73 | 3.79 |      | 3.63 |                        | 3.19             | 3.77                            |                    | 13.5      | 11.5             | 5.2        | 9.0       | 10.0      | 0.8              | _                | _         | 2.1               |            |
| 12               | CDCI,                   | _    | 2.65 | 5.23 | 4.92 | 4.71 | 5.37 | 5.23 | 4.10 | 4.30                   |                  | 3.76                            | 2.00-2.11          | 13.2      | 11.2             | 5.0        | 9.2       | 10.2      | 2.2              | 8.0              | 4.8       | 2.5               | 12.6       |
| 13               | CDCl <sub>3</sub>       | 2.06 | 2.60 | 5.24 | 4.95 | 4.17 | 5.37 | 5.13 | 4.12 | 4.42                   |                  | 3.77                            | 1.99-2.14          | 13.6      | 11.6             | 5.1        | 9.8       | 10.2      | 2.3              | 6.3              | 5.8       | 2.4               | 12.5       |
| 14               | Pyridine-d <sub>5</sub> | 2.24 | 2.64 | 5.78 | 5.36 | 4.84 | 5.78 | 5.45 | 4.32 | 4.76                   |                  | 3.53                            | 1.811.96           | 12.9      | 11.4             | 5.1        | 9.6       | 10.0      | 2.0              | 5.2              | 7.0       | 2.5               | 12.2       |

concentrated. The residual syrup was purified on a column of silica gel with ether-hexane (1:1-3:1) to yield 12, 13 and 14.

12: Colorless needles, mp 96—97 °C (ether-hexane).  $[\alpha]_{\rm D}^{26}+10.5^{\circ}$  (c=0.44, CHCl<sub>3</sub>). FAB-MS m/z: 535 (M<sup>+</sup>+1). Anal. Calcd for C<sub>22</sub>H<sub>30</sub>O<sub>15</sub>: C, 49.44; H, 5.66. Found: C, 49.66; H, 5.75. IR  $\nu_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 1765, 1372, 1237, 1058.

13: Colorless needles, mp 104—105 °C (ether).  $[\alpha]_D^{26}$  –24.3° (c=0.31, CHCl<sub>3</sub>). EI-MS m/z: 534 (M<sup>+</sup>). Anal. Calcd for  $C_{22}H_{30}O_{15}$ : C, 49.44; H, 5.66. Found: C, 49.49; H, 5.70. IR  $\nu_{max}^{KBr}$  cm<sup>-1</sup>: 1752, 1372, 1238, 1056.

14: Colorless prisms, mp 106—107 °C (ether-hexane).  $[\alpha]_{\rm L}^{26} + 0.7^{\circ} (c=0.28, {\rm CHCl_3}). {\rm FAB-MS} \ m/z: 493 \ ({\rm M^+}+1). \ Anal. {\rm Calcd} \ {\rm for} \ {\rm C_{20}H_{28}O_{14}}: {\rm C}, 48.78; {\rm H}, 5.73. {\rm Found: C}, 49.07; {\rm H}, 5.87. {\rm IR} \ v_{\rm max}^{\rm KBr} \ {\rm cm^{-1}}: 3413, 1752, 1240, 1214, 1050.$ 

Acetylation and Esterification of 2 The ammonium salt 2 (1.00 g, 3.51 mmol) was added slowly to a mixture of pyridine (4.99 g, 63.1 mmol) and acetic anhydride (6.44 g, 63.1 mmol) at room temperature. The mixture was stirred for 5 h at room temperature, then MeOH (3 ml) was added to the solution at 5 °C, and the whole was evaporated to dryness. The amorphous residue was dissolved in N,N-dimethylformamide (10 ml), and anhydrous cesium carbonate (571 mg, 1.75 mmol) and iodomethane (2.49 g, 17.5 mmol) were added at room temperature. The whole was stirred for 24 h at room temperature, poured into water (100 ml) and extracted with ethyl acetate (50 ml × 3). The extract was washed with sodium hydrogen carbonate solution and brine, dried and concentrated. The residual syrup was purified on a column of silica gel with etherhexane (3:1—1:1) to yield 12 (75 mg, 4%) and 13 (863 mg, 46%).

Acetylation and Esterification of 1 KDN 1 (1.00 g, 3.73 mmol) was added slowly to a mixture of pyridine (5.31 g, 67.1 mmol) and acetic anhydride (6.85 g, 67.1 mmol) at room temperature. The mixture was stirred for 1 h at room temperature, then MeOH (3 ml) was added at 5°C, and the whole was evaporated to dryness. The amorphous residue was dissolved in N,N-dimethylformamide (10 ml), and anhydrous cesium carbonate (608 mg, 1.87 mmol) and iodomethane (2.65 g, 18.7 mmol) were added at room temperature. The whole was stirred for 24 h at room temperature, poured into water (100 ml) and extracted with ethyl acetate (50 ml × 3). The extract was washed with sodium hydrogen carbonate solution and brine, dried and concentrated. The residual syrup was purified on a column of silica gel with ether-hexane (1:1—3:1) to yield 12 (20 mg, 1%), 13 (159 mg, 8%) and 15 (172 mg, 10%).

15: Colorless prisms, mp  $216-217^{\circ}\text{C}$  (dec.) (ether).  $[\alpha]_{2}^{27}+6.8^{\circ}$  (c=1.00, MeOH). FAB-MS m/z: 461 (M<sup>+</sup>+1). Anal. Calcd for  $C_{19}H_{24}O_{13}$ : C, 49.57; H, 5.22. Found: C, 49.81; H, 5.34. IR  $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 1740, 1375, 1220, 1129, 1051. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 2.07, 2.08, 2.10, 2.12, 2.16 (each 3H, s, OAc), 2.31 (2H, d, J=3.0Hz, 3-H<sub>ax</sub> and 3-H<sub>eq</sub>), 4.30 (1H, dd, J=12.5, 4.0 Hz, 9-H), 4.31 (1H, d, J=1.3 Hz, 6-H), 4.59 (1H, d, J=8.8 Hz, 7-H), 4.74 (1H, dd, J=12.5, 3.3 Hz, 9'-H), 4.82 (1H, dd, J=2.2, 1.3 Hz, 5-H), 5.17 (1H, m, 4-H), 5.49 (1H, ddd, J=8.8, 4.0, 2.3 Hz, 8-H).

X-Ray Diffraction Analysis The cell dimensions and diffraction intensities were measured on a Rigaku four-circle diffractometer (AFC-5R). The collected reflection intensities were corrected for Lorentz and polarization factors, but not for absorption. The structures were solved by direct methods using the program MITHRIL.<sup>13)</sup> The positions of all hydrogen atoms were calculated. Atomic scattering factors were taken from the International Tables for X-Ray Crystallography.<sup>14)</sup> All calculations were performed using the TEXSAN<sup>15)</sup> crystallographic software package of Molecular Structure Corporation.

Crystal Data for 4: Monoclinic space group  $P2_1$ , a=8.827(2) Å, b=15.573(5) Å, c=9.937(2) Å,  $\beta=103.95$  (2)°, Z=2,  $D_{calcd}=1.269$  g/cm<sup>3</sup>,

Cu radiation. The final residuals for 315 variables refined against 1872 data with  $|F| \ge 3\sigma(F)$  (3° < 20 < 140°) were R = 4.6 and 5.0%.

Crystal Data for 5: Orthorhombic space group  $P2_12_12_1$ , a=13.976(1) Å, b=18.146(2) Å, c=10.286(1) Å, Z=4,  $D_{calcd}=1.289$  g/cm<sup>3</sup>, Mo radiation. The final residuals for 316 variables refined against 1120 data with  $|F| \ge 3\sigma(F)$  (3° < 20 < 55°) were R=6.2 and 4.6%.

Crystal Data for 6: Orthorhombic space group  $P2_12_12_1$ , a=8.502(5) Å, b=37.29(2) Å, c=7.764(7) Å, Z=4,  $D_{calcd}=1.971$  g/cm<sup>3</sup>, Mo radiation. The final residuals for 316 variables refined against 1975 data with  $|F| \ge 3\sigma(F)$  (3° < 20 < 55°) were R=9.0 and 9.8%.

Crystal Data for 7: Orthorhombic space group  $P2_12_12_1$ , a = 9.936(2) Å, b = 30.457(5) Å, c = 8.492(2) Å, Z = 4,  $D_{calcd} = 1.309 \text{ g/cm}^3$ , Cu radiation. The final residuals for 316 variables refined against 1891 data with  $|F| \ge 3\sigma(F)$  (3° < 20 < 140°) were R = 6.7 and 7.4%.

Crystal Data for 12: Monoclinic space group  $P2_1$ , a=8.022(2) Å, b=8.416(2) Å, c=19.769(2) Å,  $\beta=92.38(1)^\circ$ , Z=2,  $D_{calcd}=1.331$  g/cm<sup>3</sup>, Cu radiation. The final residuals for 333 variables refined against 1115 data with  $|F| \ge 3\sigma(F)$  (3° < 20 < 140°) were R=7.9 and 6.4%.

Crystal Data for 13: Orthorhombic space group  $P2_12_12_1$ , a=8.6423(8) Å, b=37.623(3) Å, c=8.246(1) Å, Z=4,  $D_{calcd}=0.632/cm^3$ , Cu radiation. The final residuals for 334 variables refined against 2343 data with  $|F| \ge 3\sigma(F)$  (3° < 2 $\theta$  < 140°) were R=4.2 and 4.1%.

Acknowledgement This work was supported in part by a Grant-in-Aid for Scientific Research (63470129) from the Ministry of Education, Science and Culture, and by a grant from Suzuken Memorial Foundation.

## References

- 1) Part XXVII of the series "Studies on Sialic Acid."
- M. Nakamura, H. Takayanagi, K. Furuhata, and H. Ogura, in preparation.
- H. Friebolin, P. Kunzelmann, M. Supp, R. Brossmer, G. Keilich, and D. Ziegler, *Tetrahedron Lett.*, 22, 1383 (1981).
- D. Charon and L. Szabó, J. Chem. Soc. Perkin Trans. 1, 1979, 2369.
- 5) S. Nakamoto and K. Achiwa, Chem. Pharm. Bull., 36, 202 (1988).
- D. Nadano, M. Iwasaki, S. Endo, K. Kitajima, S. Inoue, and Y. Inoue, J. Biol. Chem., 261, 11550 (1986).
- M. Nakamura, K. Furuhata, and H. Ogura, Chem. Pharm. Bull., 36, 4807 (1988).
- M. Nakamura, K. Furuhata, and H. Ogura, Chem. Pharm. Bull., 37, 821 (1989).
- K. Ikeda, K. Kawai, and K. Achiwa, Chem. Pharm. Bull., 39, 1305 (1991).
- M. Nakamura, K. Furuhata, T. Yamasaki, and H. Ogura, Chem. Pharm. Bull., 39, 3140 (1991).
- N. Sugiyama, K. Sugai, N. Yamada, M. Goto, C. Ban, K. Furuhata, H. Takayanagi, and H. Ogura, Chem. Pharm. Bull., 36, 1147 (1988).
- R. Shirai, M. Nakamura, S. Hara, H. Takayanagi, and H. Ogura, Tetrahedron Lett., 29, 4449 (1988).
- C. J. Gilmore, MITHRIL, an integrated direct methods computer program, J. Appl. Cryst., 17, 42, Univ. of Glasgow, Scotland, 1984.
- 14) International Tables for X-Ray crystallography," Vol. IV, Kynoch Press, Birmingham, 1974, pp. 72—149.
- 15) TEXSAN, TEXRAY Structure Analysis Package, Molecular Structure Corporation, 1985.