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Fuzzy Adaptive Least Squares Applied to Structure—Activity and Structure-Toxicity Correlations
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A 1991 version of fuzzy adaptive least squares (FALS91) has been developed to analyze structure-activity rating
data for generation of QSAR (quantitative structure-activity relationship) models. Improvements were made in this
version especially to the error-correcting feedback adaptation of discriminant functions to avoid falling into a local
optimum. This paper showed effective applications of FALS91 to structure—activity correlation of 29 antihypertensive
arylacryloylpiperazine derivatives and structure-toxicity correlation of human acute toxicity of 504 organic chemicals
as typical examples of small- and large-scale data sets, respectively. These examples demonstrated the high reliability
of FALS91 in both recognition and leave-one-out prediction.

Keywords activity rating; antihypertensive activity; human acute toxicity; fazzy set; membership function; pattern recogni-

tion; structure—activity correlation; structure-toxicity correlation

Introduction

Biological activity and toxicity of chemical substances are
often described in the form of activity ratings. For
correlation of molecular structure with activity rating, we
developed the adaptive least-squares (ALS) method,' =%
which has been successfully used for a decade.*~® Activity
ratings comprise not only statistical vagueness such as
inaccuracy of measurements and individual differences in a
living body but also intrinsic vagueness such as subjective
criteria for classification. Such indefiniteness can be treated
by the concepts of fuzzy variance. According to the
technique of the fuzzy set theory,” we have introduced a
membership function to ALS, to develop the fuzzy ALS
(FALS). The membership function is assumed to be a fuzzy
degree of membership in classes. A trial product, FALS89,
was outlined in a previous paper.®

In the 1991 version of FALS (FALS91),” improvements
were made especially to the error-correcting feedback
adaptation of discriminant functions to avoid falling into
a local optimum. In this paper, effective applications of
FALS91 are shown to quantitative structure-activity re-
lationship (QSAR) studies of 29 antihypertensive aryl-
acryloylpiperazine derivatives and human acute toxicity of

504 organic chemicals as typical examples of large and
small sets of data, respectively.

Methods

FALS91 Like ALS, FALS is a nonparametric pattern classifier, and
formulates QSAR in a single equation (Eq. 1), irrespective of the number
of activity ratings, by an error-correcting feedback adaptation.

Z=wo+wWi X +WyXy+ " +wpx, m
In this equation, x,=kth descriptor (k=1,2,---,p) for structures, w,
(k=0,1,2, - -, p)=weight coeflicient, and Z=discriminant score. For a

set of n compounds with p structural descriptors, Eq. 1 can be rewritten
as Eq. 2.

Z=XW )

where the discriminant score vector Z consists of Z; (i=1,2, - - -, n), the
data matrix X consists of x;, (i=1,2, - -,mk=0,1,2, -+, p; x;0=1), and
the weight vector W consists of w, (k=0,1,2, -, p).

In the m-class discrimination, starting scores, a; (j=1,2, - - -, m), for the
members of class j are assumed, and class boundaries, b; (j=1,2,- ",
m—1), are fixed in advance.

aj=4<jgna+%)/n—2 3

bi=(aj+a;.,)2 @

In Eq. 3, n, and n; are the number of samples in classes g and j, respectively.

discriminant function
ZO=wl+whx, +wix,
.. (1)
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Fig. 1. Process of FALS91 Calculation
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Classes are usually numbered in ascending order of potency.

The process of FALS91 calculation is shown in Fig. 1. Forcing factors,
S, (i=1,2,--+,n), are assumed in place of Z in Eq. 1 (or Eq. 2) for
compounds, and W is calculated using the ordinary least squares, as

wh=xx)"1x sV (&)

The iterative learning of W is done by error-correcting feedback adaptation
of § as follows. The initial forcing factors, S{¥, are taken to be

S?):aj (6)

where a;=the starting score for class j to which compound i was observed
to belong. The adaptation of S'is carried out in two steps: step 1 (2<1<20)
for rough but wide adaptation to avoid falling into a local optimum, and
step 2 (¢>20) for minute correction to obtain the best discriminant function.
t is the iteration time.

At iteration 2 and thereafter, the forcing factor S¢*! (1> 1) is adapted
using the correction term C{ as

STH=20+Cp ™
In step 1, the following correction term® is used for C{.
0.1/6{"+0.4572+0.1 Z0<b,_,
C$”={ 0 b <ZP<b; @®
—0.1/(30"+0.4524+0.1 ZP>b,
Here, 6{ (>0) is the distance between Z{ and the nearer boundary, by
or b;, for compound i which is a member of class j. A weight vector giving
the best discrimination within 20 iterations is selected as the starting vector

in step 2. The maximum Spearman’s rank correlation coefficient with a
local minimum apparent variance of errors® was used for the criterion of
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the best discrimination in the step 1 calculation.
In step 2, the following correction term® is used for C{.
co_ { o /0-MGPMF  Z{P<a, o
—o/(I-MGPFI  Z{>aq,

In Eq. 9, a is a constant usually taken to be 0.5. MG is the membership
grade, which is the value of a membership function, M(Z), assumed to
give the grade of membership of classes for compounds. MG ranges from
0to 1, and is taken to be 0.5 at the class boundaries. F/ is the parameter
for fuzziness of the boundary between classes, and usually taken to be
0.1. A bell-shaped membership function, M(Z) for class jis assumed as®

Y[ +{(Z~b,- )/FI-1}*] Z<b,_,+Fl
M(Z)={ 1 by_y+FI<Z<b—Fl
Y1 +{®;~2/FI-1}*]  b~FI<Z

Additionally, M(Z) is taken to be 1 when Z <b, — F! for class 1 and when
Z>b,,_, +Fl for class m. The iterative least squares calculation is carried
out so as to minimize X(S;—Z,)%, or ZC? from Egs. 2, 5, and 7. Therefore,
as is obvious from Eq. 9, we can expect to obtain a discriminant function
giving maximum ZMG; over the set of n compounds. As the criterion for
the best discrimination in step 2, the product of mean membership grade
(MMG) and Spearman’s rank correlation coefficient (Rg) is used; R
supplements the information about overall accuracy of discrimination.
The results of FALS91 are validated by the leave-one-out prediction.!®
The discriminant function with a scientifically reasonable subset of
descriptors giving the best leave-one-out prediction is finally adopted.
As we have outlined, the main points of FALS91 differing from FALS89
are the use of the ALS81 correction term® in the step 1 calculation and

(10)

TaBLE I. Structure and Activity of 29 Antihypertensive Arylacryloylpiperazines
Rl
N\ |
N _ _R2
MeO N 0
NH,
Obs Recog Leave-one-out

No. R! R29 4RI Zo I (2-OR) Rating®
Rating® MG Rating MG
1 H 4-iso-PrPh 2.36 —0.15 0.00 1 1 1.000 1 1.000
2 H 2-MeOPh 0.49 -0.27 1.00 1 1 1.000 1 1.000
3 H 2-EtOPh 1.18 -0.24 1.00 1 1 1.000 1 1.000
4 H 3,5-diMeOPh 0.56 0.24 0.00 1 2 0.004 2 0.002
5 H 3-NO,Ph 0.03 0.71 0.00 1 1 1.000 1 1.000
6 H 3,4-diCIPh 2.19 0.60 0.00 1 1 1.000 1 1.000
7 H 3-CF,Ph 1.17 0.43 0.00 1 1 1.000 1 1.000
8 H 3-MeOPh 0.28 0.12 0.00 1 2 0.000 2 0.000
9 H 4-ClPh 1.01 0.23 0.00 1 1 1.000 1 1.000
10 H 4-BrPh 1.26 0.23 0.00 1 1 1.000 1 1.000
11 H 5-Cl-2-Th 0.89 0.26 0.00 1 1 1.000 1 0.994
12 H 3-MePh 1.01 —0.07 0.00 2 2 1.000 2 1.000
13 H 4-MePh 0.95 -0.17 0.00 2 2 1.000 2 1.000
14 H 4-iso-PrOPh 1.53 —045 0.00 2 2 0.998 2 0.734
15 H 2,3,4-triMeOPh —-0.09 —0.42 1.00 2 2 1.000 2 1.000
16 H 5-Me-2-Th 0.69 -0.14 0.00 2 3 0.080 3 0.044
17 H 2-MePh 0.83 -0.17 0.00 3 3 0.548 2 0.136
18 Me Ph 0.20 0.00 0.00 3 3 1.000 3 1.000
19 H 3-Fu -1.29 0.04 0.00 3 4 0.000 4 0.000
20 H 5-Me-2-Fu 0.04 0.15 0.00 3 3 1.000 3 0.997
21 Me " 2-Th —-0.13 0.03 0.00 3 3 1.000 3 1.000
22 H 3-Me-2-Th 0.48 -0.14 0.00 3 3 1.000 3 1.000
23 H Ph 0.00 0.00 0.00 3 3 1.000 3 1.000
24 H 2-Th —0.36 0.03 0.00 3 3 0.999 4 0.036
25 H 4-MeOPh 0.19 -0.27 0.00 4 4 0.925 4 0.515
26 H 4-EtOPh 092 —0.24 0.00 4 3 0.000 3 0.000
27 H 2-Fu —0.84 0.32 0.00 4 3 0.006 3 0.002
28 Me 2-Fu -0.71 0.32 0.00 4 3 0.002 3 0.001
29 H 3-Th —0.61 0.04 0.00 4 4 1.000 4 1.000

a) Ph: phenyl; Fu: furyl; Th: thienyl. b) Ratings (ED: dose for blood pressure lowering of more than 15%): 1, ED>10mg/kg; 2, ED=10; 3, ED=3; 4, ED=1.

¢) Class boundaries: b,,.0.175; b,, 0.515; b5, 0.860.
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the use of a single F/ value common to all the boundaries. Compared with
the FALS89 correction term,® the ALS81 correction term gives rougher
but wider searching to avoid falling into a local optimum, although it
gives no convergence in step 1. The use of a single FI value assures the
obtaining of maximum XMG; in the step 2 calculation.

Calculation All calculations were carried out on a Sony NWS-830
computer and a Kobe Steel KTR-BO08 transputer attached to an Epson
PC-286VF microcomputer.

Results and Discussion

Structure-Activity Correlation of Antihypertensive Aryl-
acryloylpiperazine Derivatives The first example of the ap-
plication of FALS9I1 studied 29 arylacryloylpiperazine de-
rivatives with antihypertensive activity, which have been
well studied by ALS,'" functional-link net (FUN-
CLINK),'? and neural networks.!2*3 For comparison, we
analyzed the same set of Sekiya’s data'? using FALS91.
The structural and activity data are listed in Table L

The FALS91 analysis gave Eq. 11 as the best QSAR
model. The results of ALS81,' FUNCLINK,!? and neural
networks? are also shown here.
FALS91

Z=—1.0884RI—2.423X0—1.8581(2-OR)-+0.806 (11)
(CI=091) (CI=0.68) (CI=0.57)
n=29(4gr), recog: Nnu,;,=7(0), R;=0914, MMG=0.743
leave-one-out: n,,;,,=9(0), R;=0.886, MMG=0.671
ALS81
L=—1.0184RI-2.357Z0 —1.8381(2-OR) +0.769 (12)
n=29(4gr), recog: n,,,=7(0), Rg=0.914
leave-one-out: n,;,;=11(0), Rs=0.859
FUNCLINK
Ig= —8.0354RI+2.882 cos(nZs) —4.2441(2-OR) + 2.882 (13)
n=29(4gr), recog: n,,,=7(0), Rs=0.914
leave-one-out: n,,,;=8(0), R;=0.898
neural network (N,,q.=10, a=0.7, =0.9)!?
n=29(4gr), recog: n,;=00), Ry=1.000 (14)
leave-one-out: n,;,,=13(5), Rs=0.642

In these equations, ARI is the difference of the high
performance liquid chromatography (HPLC) retention
index from that for compound 23, Z¢ is the sum of the
Hammett constants for aromatic substituents in R?, and
I(2-OR) is the indicator variable for the presence of
2-alkoxyphenyl structure in R?, CI is the contribution
index?, n is the number of compounds, n,,, is the number
misclassified, and the figure in parentheses after that is the
number misclassified by two ratings. The squared
correlation matrix for the three parameters included in
Eq. 11 is listed in Table II. There appears no possibility of
chance correlation from this matrix.

Equation 11 with negative coefficients for all the
descriptors indicates that less hydrophobic compounds with

TaBLe II. Squared Correlation Matrix of Descriptors in Eq. 11
ARI o I1(2-OR)
4RI 1.000
2o 0.007 [.000
1(2-0OR) 0.000 0.177 1.000

Vol. 40, No. 4

electron-donating aromatic substituents in R? are favorable
to activity, and the presence of 2-alkoxyphenyl structure in
R? reduces the potency. The discrimination results were
quite reliable: Rg=0.914 in the recognition, and R;=0.886
in the leave-one-out prediction. The results of each
compound are listed in Table I.

Equation 11 derived using FALS91 is very similar to
Eq. 12 obtained by ALS81 which has been successfully used
for a decade. Thus it can be said that the results of FALS91
are as reliable as those of ALS81. Moreover, Eq. 11 is
statistically superior to Eq. 12 in the leave-one-out pre-
diction. FUNCLINK further improves the leave-one-out
prediction by use of non-linear descriptor, cos(nZa) (Eq.
13); the validity of the use of non-linear descriptors is not
always assured, however. Using the neural network (Eq.
14), all the compounds were correctly classified in the
recognition. In contrast to this prominent recognition
ability, the leave-one-out prediction is terribly poor. In
addition to this, the neural networks do not construct any
clear QSAR models. This data set from the Sekiya group'?
is very interesting, since it distinctly reveals the characteris-
tics of the four methods.

Structure-Toxicity Correlation of Human Acute Toxicity
of 504 Organic Chemicals The second example of the
application of FALS91 concerns structure—toxicity correla-
tion for predicting acute human toxicity of miscellaneous
organic chemicals. Predicting human toxicity by computer
has been an extremely important subject, since human
toxicity cannot be experimentally measured. Toxicity
involves various combinations of hazardous effects on
multiple biological receptors, so toxicity ratings are often

TaBLe III. Typical Structures in the Three Ratings

Rating 1 (273 compds) Rating 2 (150 compds) Rating 3 (81 compds)

Fatty acids Barbiturates Nitrophenols
Carbohydrates Phenols Cyanides

Alcohols Anilines Organic phosphorous
Carboxylic esters Organic phosphorous compounds
Benzodiazepines compounds Cardiac glycosides

TaBLE IV. Results of FALS91 Analysis of 504 Organic Chemicals

Recognition Leave-one-out prediction
Number of
descriptors

Ny R MMG B N R mmc K

mis S MMG mis MMG

34 64 (0) 0.863 0.853 0.736 91 (0) 0.814 0.812 0.661
35 64 (0) 0.862 0.852 0.734 93 (0) 0.810 0.817 0.662
36 62 (0) 0.868 0.856 0.743 87 (0) 0.823 0.822 0.676
37 62 (0) 0.868 0.853 0.740 87 (0) 0.826 0.814 0.672
38 60 (0) 0.874 0.857 0.749 83 (0) 0.837 0.818 0.685
39 60 (0) 0.874 0.857 0.749 86 (0) 0.829 0.817 0.677
40 58 (0) 0.881 0.859 0.757 87 (0) 0.825 0.818 0.674
41 58 (0) 0.877 0.858 0.753 90 (0) 0.820 0.810 0.664
42 57 (0) 0.878 0.862 0.757 90 (0) 0.821 0.813 0.668
43 57 (0) 0.880 0.862 0.758 88 (0) 0.828 0.813 0.673
44 56 (0) 0.882 0.862 0.760 88 (0) 0.824 0.812 0.669
45 55 (0) 0.883 0.862 0.761 89 (0) 0.819 0.816 0.668
46 55 (0) 0.882 0.870 0.767 86 (0) 0.818 0.826 0.676
47 54 (0) 0.884 0.868 0.768 88 (0) 0.813 0.821 0.667
48 53 (0) 0.887 0.871 0.772 87 (0) 0.813 0.822 0.668
49 52 (0) 0.888 0.872 0.774 96 (0) 0.801 0.815 0.652
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TasLE V. Discriminant Function (Eq. 15) for Human Acute Toxicity of
Organic Chemicals

No.? Descriptor Coef. CI
1 B Partially arom. polycycles 1.381  0.37
2 B a,B-Unsat. lactones 3.100 0.34
3 B >N-COO-X (X: phenyl, hetero ring, 1.628 0.29

N=)
/C
4B Ph——C—C\ 1.551  0.23
N
5 B Aliph. cyanides 1394 0.20
6 A Benzene rings, quinone rings 0307 0.20
7B -P-0-X,-P-S-X(X:P,C=C,Ph, hetero 1.121  0.18
ring, -C-C-N<, -C-C-S-)
CIDCI-C
8B 1 1.525 0.18
Cl
Cl
9B Ar-X-Ar(X: >C=0, >N-, >CH-0~-, 0892 0.17
>CHCO-)

10 B Aziridines 1477  0.16

11 B Aliph. tertiary amines 0.531 0.16

12 A Proximity effect 0.050 0.13

13 A Heteroarom. rings with 1 hetero atom 0.572  0.13

14 B Tropines 1.589  0.12

N N N
15 B % @O 1452 0.11
16 B -PX,- (X: 2 or more kinds of atoms out 0413 0.10
of F,N, O, S)

17 B Nitrophenols 0983 0.10

18B -P(=0)XX:F,N) 0.791  0.08

19 C» Intramolecular hydrogen bonds 0.589  0.06

20 C® Ringsexcept benzene and fuzed rings with 0.088 0.04

benzene

21 B Arom. -CN 0.886 0.04

22 A logP calcd. 0.014 0.02

23 B X-C-Y(X:CN,halogen,NO,;Y:-C=0,  0.111 0.01

-0)

24 A C(sp? ring) —0.056 0.26

25 B @[? —1872 020

26 A Aliph, -OH —0.161 0.19

27 B Ureas, thioureas —0.741 0.15

28 A —COO-, -CSO- (acids, esters, thioesters) —0.255 0.14

29 A =N-(ring) -0.173  0.10

(0]
N
30 B (Q:L‘ ~0936 0.10
N

31B  -S-,-SO,~, -SO,N< —-0.370 0.10

32B -SO;H —0.364 0.09

33 B® Amphoteric substructures -1.870  0.08

34 AY (CX)®(CX:sum of weighted numbersof —0.055 0.07

carbon and halogen atoms)

35 CY Alkanes, cycloalkanes, alkenes and —0930 0.07

cycloalkenes

36 A C(sp, sp% non-ring) —0.049 0.05

37 B Aliph. secondary amines —0.115  0.02

38 B Aliph. ketones, aldehydes —0.082 0.02

Constant i 0.134

a) A: numerical variable; B: seminumerical variable (taken to be 0, 1, or 2 for the
absence, the presence of singular number, or the presence of plural number,
respectively); C: dummy variable. b) Ref. 17.

used for the expression of toxicity levels. The following
rating definitions based on a probable lethal dose were used
in this FALS91 study: rating 1 (non- or slightly toxic), above
0.5 g/kg; rating 2 (toxic), 0.05—0.5 g/kg; rating 3 (severely
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toxic), less than 0.05 g/kg.

The data were collected mainly from Gosselin’s
compilation'¥ which contains toxicological information
about acute poisonings arising through misuse of consumer
products. In addition, some estimated data of medicines'®
and general organic compounds'® were used. The data set
used for FALS91 analysis included 71 heteroaromatic
compounds, 203 compounds bearing aromatic hydrocarbon
or quinone ring(s), and 230 other miscellaneous organic
compounds. The typical structures included in the three
toxicity ratings are shown in Table III. As a matter of fact,
structural and pharmacological features for each class are
not particularly clear. For example, riboflavin (vitamin B,)
was assigned to rating 1 whereas menadione (vitamin K)
to rating 2, sulfisoxazole was assigned to rating 1 whereas
sulfamerazine to rating 2, and metharbital was assigned to
rating 2 whereas amobarbital to rating 3.

For the FALS91 analysis, most descriptors investigated
were those for molecular fragments and substructures, since
the set of compounds included diverse structures and
functionalities. The descriptors were divided into numgrical
and seminumerical parameters according to their effects on
toxicity. Numerical parameters included physicochemical
properties of compounds, and numbers of specified
structural fragments. Seminumerical parameters were also
used for the number of specified substructures, but in this
case, they were taken to be 1 or 2 denoting the presence of
singular number and plural number, respectively. The values
of logP (P: octanol/water partition coefficient) were
calculated using our simple method.!” Several dummy
variables were also investigated for the presence or absence
of specified structures.

The results of FALS91 analysis using 34 to 49 descriptors
are summarized in Table IV. In the recognition, a 49-
descriptor equation gave the best result with 89.7% correct
discrimination. However, the best leave-one-out prediction
was obtained with the 38-descriptor equation (Eq. 15) shown
in Table V.

In Table V, descriptors with positive coefficients and
those with negative coefficients are respectively listed in the
order of the contribution index which indicates the degree of
contribution of descriptors to discrimination. Partially
aromatic polycyclic structures, a,f-unsaturated lactones,
special carbamates, etc. are probable to enhance acute
toxicity, whereas sp? ring carbons, 1,2-methylenedioxy-
benzene structures, aliphatic alcohols, etc. probably con-
tribute to lowering toxicity. Those coefficients, however,
cannot be used to make inferences about the contribution
of each substructure; they are valid only when used in the
context of this multidimensional model. The maximum
squared correlation between the descriptors was 0.485
(between descriptors 6 and 24); this may indicate no serious
statistical problem in the derivation of Eq. 15. The correct
classification into three ratings by Eq. 15 was 88.1% in the
recognition and 83.5% in the leave-one-out prediction; a
reasonably accurate structure—toxicity model could be
generated for the estimation of human acute toxicity using
FALSO91.

Conclusion
The reliability of FALS91 shown in the two examples of
the application is quite good in spite of the diversity of
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structures and vagueness of potencies. In recent years,
QSAR’s in toxicity for large-scale sets of data have been
studied and their use attempted by regulatory agencies and
industry to screen compounds for possible health and
environmental hazards. The computerized pattern classifier,
FALS91, will become a useful tool for structure-activity
and structure-toxicity correlation studies.
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