Three New Withanolides, Physagulins A, B and D from Physalis angulata L.1)

Kazushi Shingu, Shoji Yahara, Toshihiro Nohara*, and Hikaru Okabe

Faculty of Pharmaceutical Sciences, Kumamoto University,^a Oe-honmachi 5–1, Kumamoto 862, Japan and Faculty of Pharmaceutical Sciences, Fukuoka University,^b 8–19–1 Nanakuma, Jonan-ku, Fukuoka 814–01, Japan. Received January 16, 1992

Three new withanolides, physagulins A (1), B (2) and D (3), were obtained from the methanolic extract of the fresh leaves and stems of *Physalis angulata* L. (Solanaceae). Their structures were established as (20S,22R)- 15α -acetoxy- 5β , 6β -epoxy- 14α -hydroxy-1-oxowitha-2,16,24-trienolide (1), (20S,22R)- 15α -acetoxy- 5α -chloro- 6β , 14α -dihydroxy-1-oxowitha-2,16,24-trienolide (2) and (20S,22R)- 1α , 3β ,27-trihydroxywitha-5,24-dienolide 3-O- β -D-glucopyranoside (3) by spectroscopic means.

Keywords Physalis angulata; Solanaceae; withanolide; physagulin

Several physalin derivatives were previously isolated from *Physalis angulata* L.²⁾ Withagulatin A (4),³⁾ also reported by Chen's group, was an ergostane-type steroidal lactone possessing a characteristic partial structure, 14α -hy-

droxy-15 α -acetoxy-16-ene system on ring D. In addition, withaminimin (5)⁴⁾ from *Physalis minima* was reported by Ray's group.

During a search for constituents possessing antitumor

Table I. ¹H-NMR Spectra of Physagulins A (1), B (2), D Hexaacetate (3a), Withagulatin A (4), Withaminimin (5), Withanolide E (7), Daturataturin B Heptaacetate (8a) and Pubescenin Pentaacetate (9)

H (Solvent)	(CDCl ₃)	1 (Pyridine-d ₅)	4 (CDCl ₃)	7 (CDCl ₃)	(CDCl ₃)	5 (CDCl ₃)	3a (CDCl ₃)	8a (CDCl ₃)	9 (CDCl ₃)
1		· · · · · · · · · · · · · · · · · · ·		1			5.05 m	5.07 br s	5.05 t (2.5)
2	6.02 dd (9.9, 2.7)	6.18 dd (10.0, 2.4)	6.14 d (10)	6.03 dq (10, 2.5, 1)	5.90 dd (10.3, 2.6)	5.87 dd (10.4, 2.5)			,
3	6.88 ddd (9.9, 6.2, 2.2)	6.84 ddd (10.0, 5.5, 1.8)	6.97 dd (10, 5.8)	6.58 ddd (10, 5, 2)	6.62 ddd (10.3, 5.1, 3.0)	6.58 ddd (10, 5, 2)	3.82 m	3.88 m	3.82 m
4	2.99 dt (19.1, 2.6)	3.01 br d (19.1)	3.76 dd (5.8, 2.0)	(10, 0, 2)	3.33 d (19.8)	3.19 dt (20, 2.5)			
6	3.25 d (2.6)	3.25 br s	3.34 br s	3.20 br s	3.96 br s	3.60 br t (2)	5.53 m	5.77 d (4.0)	5.52 d (5.5)
15	5.23 d (2.8)	5.81 d (2.5)	5.19 d (2.7)	5.33 d (2.5)	5.29 d (2.6)	5.33 d (2.5)		(1.0)	(5.5)
16	5.67 d	6.07 d (2.5)	5.63 d (2.7)	5.60 br d (2.5)	5.65 d (2.6)	5.60 br d (2.5)			
18	(2.8) 1.09 s	(2.3) 1.32 s	(2.7) 1.06 s	(2.5) 1.16 s	1.15 s	1.16 s	0.71 s	0.70 s	0.69 s
19	1.27 s	1.39 s	1.40 s	1.42 s	1.27 s	1.21 s	1.06 s	1.05 s	1.05 s
21	1.13 d	1.22 d	1.07 d	1.12 d	1.12 d	1.12 d	1.00 d	1.03 d	0.91 d
	(7.0)	(7.0)	(7.0)	(7)	(6.6)	(7)	(6.6)	(6.6)	(6.6)
22	4.26 ddd	4.37 dt	4.21 ddd	4.34 ddd	4.33 m	4.34 ddd	4.42 br d	4.41 br d	4.53 dt
	(12.8, 6.2, 3.7)	(12.8, 3.7)	(12.0, 7.0, 3.0)	(12, 7, 4)		(12, 7, 4)	(9.5)	(9.9)	
27	1.86 s	1.83 s	1.81 s	1.87 s	1.85 s	1.87 s	4.90 d	4.91 d	1.56 s
							(11.7)	(11.5)	
							4.86 d	4.86 d	
							(11.7)	(11.5)	
28 15- <i>O</i> -Ac	1.93 s 1.96 s	1.51 s 2.00 s	1.90 s 1.91 s	1.98 s	2.00 s 2.05 s	1.98 s	2.05 s	2.05 s	1.48 s
Glc-1							4.58 d	4.58 d	4.58 d
							(8.0)	(8.0)	(8)
Glc-2							4.94 dd	4.94 dd	4.93 dd
							(9.5, 8.0)	(9.6, 8.0)	(9.3, 8)
Glc-3							5.20 t	5.18 t	5.20 t
							(9.5)	(9.6)	(9.3)
Glc-4							5.05 dd	5.05 t	5.05 dd
Glc-5							(9.9, 9.5) 3.68 ddd	(9.6) 3.68 ddd	(9.3, 8.5) 3.68 ddd
0.00							(9.9, 4.9, 2.5)	(9.6, 5.0, 2.5)	(8.5, 4.9, 2.4)
Glc-6							4.09 dd	4.10 dd	4.09 dd
							(12.1, 2.5)	(12.3, 2.5)	(12.2, 2.4)
							4.24 dd	4.23 dd	4.23 dd
							(12.1, 4.9)	(12.3, 5.0)	(12.2, 4.9)
Other-OA	Ac							2.00, 2.02, 2.04	
							2.06, 2.07, 2.08	2.05, 2.08	

Chemical shifts are in δ /ppm; coupling constants (in Hz) are in parentheses; abbreviations: s = singlet, d = doublet; t = triplet; q = quartet; m = multiplet; br = broad.

August 1992 2089

activities in solanaceous plants, we found a new withanolide, physagulin C (6),⁵⁾ from the fresh leaves and stems of *Physalis angulata* L. This compound was a new type of withanolide having a ring D substituted by many oxygen atoms. In a continuing study on the constituents of this plant, we have now isolated three new withanolides, physagulins A (1), B (2) and D (3) along with two already known withagulatin A (4) and withaminimin (5) from the fresh leaves and stems of the title plant. We here report the isolation and structure elucidation of the new withanolides.

Physagulin A (1), a white powder, exhibited absorption bands at $1738 \,\mathrm{cm}^{-1}$ (acetyl group), $1712 \,\mathrm{cm}^{-1}$ (α, β unsaturated δ -lactone) and $1676\,\mathrm{cm}^{-1}$ (α,β -unsaturated carbonyl) in the infrared (IR) spectrum. The positive fast atom bombardment mass spectrum (FAB-MS) displayed peaks at m/z 533 [M+Na]⁺, 511 [M+H]⁺, 493 $[M-H_2O+H]^+$, 451 $[M-AcOH+H]^+$, 433 $[M-H_2OH+H]^+$ $H_2O - AcOH + H$] and 415 $[M - 2H_2O - AcOH + H]$. The proton nuclear magnetic resonance (1H-NMR) spectrum (in CDCl₃, Table I) of 1 was compared with that of withangulatin A (4), and the respective signals could be assigned as follows: six methyl protons [δ 1.09 (s, H₃-18), δ 1.13 (d, $J = 7.0 \,\text{Hz}$, $H_3 - 21$), δ 1.27 (s, $H_3 - 19$), δ 1.86 (s, H_3 -27), δ 1.93 (s, H_3 -28) and δ 1.96 (s, 15-O-acetylmethyl)], three oxygen methine protons [δ 3.25 (d, J=2.6 Hz, H-6), δ 4.26 (ddd, J = 12.8, 6.2, 3.7 Hz, H-22) and δ 5.23 (d, $J=2.8\,\mathrm{Hz}$, H-15)], three olefinic protons [δ 5.67 (d, $J = 2.8 \,\mathrm{Hz}$, H-16), δ 6.02 (dd, J = 9.9, 2.7 Hz, H-2) and δ

Table II. 13 C-NMR Data (δ /ppm) for Physagulins A (1), B (2), D (3), Withagulatin A (4), Withaminimin (5), Withanolide E (7) and Daturataturin B (8)

	1	4	7	2	_	3	
Carbon	(CDCl ₃)				(CDCL)	(C_5D_5N)	8 (C ₅ D ₅ N)
	(CDC13)	(CDC13)	(CDCI ₃)	(CDCI ₃)	(CDCI ₃)	(C ₅ D ₅ N)	(C_5D_5N)
C-1	203.7	202.4	203.2	201.0	204.1	72.3	72.3
C-2	128.8	131.4	129.8	128.4	128.7	37.8	37.6
C-3	144.9	142.8	143.9	141.7	141.3	73.9	73.8
C-4	32.9	69.6	32.9	37.0	36.0	39.1	38.9
C-5	61.5	63.2	62.2	81.1	77.2	139.2	142.7
C-6	63.8	63.2	64.2	74.0	74.3	124.0	127.8
C-7	24.9	24.7	26.2	26.6	26.5	32.2	64.7
C-8	34.9	34.7	34.1	35.2	35.4	32.1	34.0
C-9	39.3	39.3	36.9	36.9	35.4	41.5	39.2
C-10	48.3	47.6	48.9	52.8	52.2	42.1	42.9
C-11	23.4	21.9	22.9	22.8	23.2	20.5	20.4
C-12	37.8	37.5	34.3	38.5	38.8	39.6	39.4
C-13	52.1	52.0	54.5	52.1	52.2	42.8	42.7
C-14	81.3	81.5	82.3	82.1	82.3	56.4	52.2
C-15	83.6	83.6	30.1	83.4	83.4	24.6	24.6
C-16	121.1	120.8	37.7	120.6	120.4	27.3	27.4
C-17	161.9	162.4	87.8	160.8	161.3	52.1	49.7
C-18	16.0	17.7	20.6	16.7	16.8	11.7	11.7
C-19	15.1	15.9	14.6	15.6	15.1	19.6	18.3
C-20	35.3	35.4	80.0	35.4	36.1	39.1	38.2
C-21	17.5	17.3	19.5	17.0	17.2	13.5	13.5
C-22	77.9	79.4	80.3	78.3	78.5	78.1	78.2
C-23	32.7	33.1	32.5	32.1	32.4	29.8	29.8
C-24	148.7	148.4	151.1	150.6	150.3	153.9	153.9
C-25	122.1	122.2	121.4	121.3	121.4	127.3	122.9
C-26	166.3	166.4	166.6	167.6	167.5	166.3	166.4
C-27	12.4	12.4	12.3	12.3	12.4	56.1	56.2
C-28	20.4	20.3	20.6	20.7	20.6	20.1	20.1
15-OAc	21.3	21.3		21.4	21.4		
	169.8	170.0		170.5	170.6		
glc-1						102.7	102.9
glc-2						75.2	75.2
glc-3						78.4	78.5
glc-4						71.4	71.5
glc-5						78.3	78.4
glc-6						62.5	62.7

6.88 (ddd, J=9.9, 6.2, 2.2 Hz, H-3)]. However, the H-4 proton signal observed at δ 3.76 (dd, J=5.8, 2.0 Hz) in 4 disappeared and a new signal occurred at δ 2.99 (dt, J = 19.1, 2.6 Hz) in 1. Moreover, since the H₃-19 proton signal shifted from δ 1.40 in 4 into δ 1.27 in 1, 1 was assumed to be lacking in the hydroxy group at C-4. In comparing the carbon-13 nuclear magnetic resonance (13C-NMR) data (Table II) for 1 with those of 4 and with anolide E (7),6) signal data for 1 were coincident with those of rings A and B in 7, and with those of rings C and D and side chain moiety in 4. All assignments of ¹H-NMR and ¹³C-NMR spectra could be supported by proton-proton correlation spectroscopy (¹H-¹H COSY) and carbon-13-proton correlated spectroscopy (13C-1H COSY) of 1. The stereochemistry of many asymmetric centers has been established by nuclear Overhauser effect (NOE) difference measurements (in pyridine- d_5). Irradiation at the signal due to H-15 (δ 5.81) enhanced the signal intensities of H₃-18 and H-16, and irradiation at the signal of H-18 (δ 1.32) resulted in higher signal intensities of H-15 and H-8. These NOE experiments led to establishment of the relative configurations at C-14 and C-15. Moreover, the circular dichroism (CD) spectrum of 1 showed a positive Cotton effect at 253 nm to confirm a 22R configuration, and a negative Cotton effect at 350 nm indicated cis-fusion of rings A and B.7 Based on these spectral data, the structure of physagulin A (1) was determined as shown in the formula.

Physagulin B (2), a white powder, showed peaks due to $[M]^{+}$ (m/z 546), $[M-H_2O+H]^{+}$ (m/z 531, 529), $[M-AcOH+H]^{+}$ (m/z 489, 487), $[M-H_2O-AcOH+$ H] $^+$ (m/z 471, 469) and [M - 2H $_2$ O-AcOH + H] $^+$ (m/z 451) in the positive FAB-MS. The above set of pair peaks suggested the occurrence of chlorine in the molecule. Beilstein Cu reaction was positive. The IR spectrum of 2 indicated the presence of an acetyl group (1734 cm⁻¹), an α,β -unsaturated δ -lactone group (1714 cm⁻¹) and an α,β -unsaturated carbonyl group (1694 cm⁻¹). Comparison of the ¹H-NMR and ¹³C-NMR spectral data (Tables I and II, respectively) of 2 with those of withaminimin (5) showed that the two were almost similar except the signals around C-5. Therefore, it was deduced that a chlorine atom was located at C-5. Furthermore, the signals around C-5 could be assigned as listed in Tables I and II by the ¹H-¹H COSY and ¹³C-¹H COSY measurements. The stereochemistries at C-14 and C-15 in 2 were established as R and S since they showed the same chemical shifts and coupling constants as those of 1. The positive Cotton effects at 247 and 340 nm in the CD spectrum of 2 indicated the 22R configuration and trans-fusion in rings A and B. Thus, the structure of physagulin B (2) was characterized as shown in the formula.

Physagulin D (3), a white powder, had a strong absorption band at $3432 \,\mathrm{cm}^{-1}$ (hydroxyl) and a characteristic band at $1698 \,\mathrm{cm}^{-1}$ (α,β -unsaturated δ -lactone) in its IR spectrum. The positive FAB-MS showed a [M+H]⁺ peak at m/z 621 and a [M-glucose+H]⁺ peak at m/z 459. The hexaacetate (3a) of 3 showed peaks due to [M+Na]⁺ (m/z 895), [M+H]⁺ (m/z 873), [M+Na-AcOH+H]⁺ (m/z 835) and [M-AcOH+H]⁺ (m/z 813) in the positive FAB-MS. Assignments of the respective ¹H-NMR signals in 3a were made by comparison with those of rings C, D and side chain moiety of daturataturin B heptaacetate (8a), ⁸⁾ and with those of rings A, B and the sugar moiety of pubescenin

2090 Vol. 40, No. 8

pentaacetate (9).9 Namely, the signals in ¹H-NMR spectrum for 3a could be assigned as follows: four methyl groups [δ 0.71 (s, H₃-18), 1.00 (d, J = 6.6 Hz, H₃-21), 1.06 (s, H_3 -19) and 2.05 (s, H_3 -28)], one hydroxymethyl group [δ 4.86 (d, J=11.7 Hz, H-27) and 4.90 (d, J=11.7 Hz, H'-27], and two oxygen methine protons [δ 4.42 (br d, $J=9.5 \, \text{Hz}, \text{ H-22}$), 3.82 (m, H-3)]. These proton signals indicated that the sugar moiety combined with C-3 as well as with daturataturin B (8). Furthermore, signals due to an acetoxymethine proton [δ 5.05 (m, H-1)], an olefinic proton [δ 5.53 (m, H-6)] and tetra-O-acetyl β -D-glucopyranosyl residue [δ 4.58 (d, J=8.0 Hz, glc H-1), 4.94 (dd, J=9.5, 8.0 Hz, glc H-2), 5.20 (t, J=9.5 Hz, glc H-3), 5.05 (dd, J=9.9, 9.5 Hz, glc H-4), 3.68 (ddd, J=9.9, 4.9, 2.5 Hz, glc H-5), 4.09 (dd, J=12.1, 2.5 Hz, glc H-6) and 4.24 (dd, J=12.1, 4.9 Hz, glc H'-6)] were in good agreement with those of pubescenin pentaacetate (9). The ¹H-NMR spectrum, therefore, suggested that 3a was a withanolide having an 1α -acetoxy- 3β -O-tetraacetyl- β -D-glucopyranosyl5-ene system. The 13 C-NMR spectrum (Table II) of **3** was also in good accordance with that of **8**, except for signals around C-7. Based on these spectral data and the observation of a positive Cotton effect at 253 nm suggesting a 22R configuration, the structure of physagulin D (**3**) was concluded as shown in the formula.

Regarding the three compounds here obtained, it is summarized that physagulin A (1) corresponds to the 4-deoxy derivative of 4, that physagulin B (2) can be derived by fission of the 5β , 6β -epoxy compound accompanied by introduction of naturally occurring chlorine atom and that physagulin D (3) is an intermediate substance as is 8 of the 1-one-2-ene withanolide.

Experimental

The optical rotations were measured on a JASCO DIP-360 automatic digital polarimeter and CD spectrum on a JASCO J-50A spectropolarimeter. The IR spectra were recorded with a Hitachi IR spectrometer, model 270-30. The ¹H- and ¹³C-NMR spectra were measured with a JEOL JNM-GX 400 NMR spectrometer and chemical shifts are given on

a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. The FAB-MS were measured with JEOL DX-303 HF spectrometer and taken in a glycerol matrix containing NaI. Thin layer chromatography was performed on precoated Kieselgel 60 F₂₅₄ (Merck) and detection was achieved by spraying 10% H₂SO₄ following by heating. Column chromatography was carried out on Kieselgel (270—30 mesh and 230—400 mesh, Merck) and Sephadex LH-20 (Pharmacia Fine Chemicals).

Extraction and Separation The fresh leaves and stems of *Physalis angulata* L. (Solanaceae) (2.0 kg), harvested at the botanical garden of Fukuoka University in September 1988, were extracted with MeOH and the extract was partitioned between 1-BuOH and H_2O . The 1-BuOH layer (38 g) was subjected repeatedly to column chromatography over silica gel using $CHCl_3: MeOH: H_2O=1:0:0\rightarrow 8:2:0.1\rightarrow0:1:0$ and Sephadex LH-20 using MeOH to give physagulins A (1, 28.6 mg), B (2, 200.0 mg), D (3, 150.0 mg), withaminimin (4, 70.0 mg) and withagulatin A (5, 90 mg).

Physagulin A (1) A white powder, $[\alpha]_D + 134.9^\circ$ (c = 0.56, MeOH). Positive FAB-MS m/z: 533 [M+Na]⁺, 511 [M+H]⁺, 493 [M-H₂O+H]⁺, 451 [M-AcOH+H]⁺, 433 [M-H₂O-AcOH+H]⁺, 415 [M-2H₂O-AcOH+H]⁺, 391, 355. IR (KBr): 3496, 1738, 1712, 1676 cm⁻¹. CD (c = 0.056, MeOH) [θ] (nm): -6800 (350) (negative max.), +57800 (253) (positive max.).

Physagulin B (2) A white powder, $[\alpha]_D + 159.5^\circ$ (c = 0.87, CHCl₃). Positive FAB-MS m/z: 529 $[M-H_2O+H]^+$, 487 $[M-AcOH+H]^+$, 469 $[M-H_2O-AcOH+H]^+$, 451 $[M-2H_2O-AcOH+H]^+$, 433, 345. IR (KBr): 3464, 1734, 1714, 1694 cm⁻¹. CD (c = 0.052, MeOH) [θ] (nm): +17800 (340) (positive max.), +75400 (247) (positive max.).

Physagulin D (3) A white powder, $[\alpha]_D + 21.0^\circ$ (c = 0.80, MeOH). Positive FAB-MS (m/z): 621 [M+H]⁺, 459 [M-glc+H]⁺, 441 [M-glc-H₂O+H]⁺, 423 [M-glc-2H₂O+H]⁺, 405 [M-glc-3H₂O+H]⁺, 351, 251. IR (KBr): 3432, 2940, 2932, 1698, 1464, 1436, 1400, 1346, 1322, 1298 cm⁻¹. CD (c = 0.08, MeOH) [θ] (nm): +69750 (253) (positive max.). ¹H-NMR (pyridine- d_s) δ: 0.62 (3H, s, H₃-18), 0.97 (3H, d, J = 6.6 Hz, H₃-21), 1.01 (3H, s, H₃-19), 2.13 (3H, s, H₃-21), 2.64

(1H, t, J = 13.1 Hz, H-4), 2.88 (1H, dd, J = 13.1, 3.3 Hz, H'-4), 3.83—5.02 (12H, m, methine and methylene protones bearing oxygen atoms), 5.57 (d, J = 4.8 Hz, H-6).

Acetylation of 3 A solution of 3 (53 mg) in pyridine–acetic anhydride (2:1, 1.5 ml) was left overnight at r.t. and the reaction mixture was chromatographed on silica gel (benzene:acetone=20:1) to afford physagulin D hexaacetate (3a, 23.4 mg), a white powder, $[\alpha]_D$ +19.7° (c=0.44, CHCl₃). Positive FAB-MS m/z: 895 $[M+Na]^+$, 873 $[M+H]^+$, 835 $[M+Na-AcOH+H]^+$, 813 $[M+H-AcOH]^+$, 525, 465, 405, 331, 211.

References and Notes

- 1) This work is Part 21 in the series of studies on the constituents of solanaceous plants.
- L. R. Row, K. S. Reddy, N. S. Sarma, T. Matsuura and R. Nakashima, *Phytochemistry*, 19, 1175 (1980).
- C. M. Chen, Z. T. Chen, C. H. Heish, W. S. Li and S. Y. Wen, Heterocycles, 31, 1371 (1990).
- H. E. Gottlieb, M. Cojocaru, S. C. Sinha, A. Bagchi, A. Ali and A. B. Ray, *Phytochemistry*, 26, 1801 (1987).
- K. Shingu, N. Marubayashi, I. Ueda, S. Yahara and T. Nohara, Chem. Pharm. Bull., 39, 1591 (1991).
- a) E. Glotter, A. Abraham, G. Gunzberg and I. Kirson, J. Chem. Soc., Perkin Trans. 1, 1977, 341; b) H. E. Gottlieb and I. Kirson, Org. Magn. Reson., 16, 20 (1981).
- a) A. B. Ray, M. Sahai and B. C. Das, J. Indian Chem. Soc., LV, 1175 (1978);
 b) F. Frolow, A. B. Ray, M. Sahai, E. Glotter, H. E. Gottlieb and I. Kirson, J. Chem. Soc., Perkin Trans. 1, 1981, 1029.
- K. Shingu, S. Yahara and T. Nohara, Chem. Pharm. Bull., 38, 3485 (1990).
- E. Glotter, M. Sahai, I. Kirson and H. E. Gottlieb, J. Chem. Soc., Perkin Trans. 1, 1985, 2241.