Studies on Antiulcer Drugs. VI.¹⁾ 4-Furyl-2-guanidinothiazoles and Related Compounds as Potent Histamine H₂-Receptor Antagonists

Yousuke Katsura,* Yoshikazu Inoue, Tetsuo Tomishi, Harunobu Itoh, Hirohumi Ishikawa and Hisashi Takasugi New Drug Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1–6, 2-chome, Kashima, Yodogawa-ku, Osaka 532, Japan. Received March 9, 1992

A series of 4-furyl-2-guanidinothiazole derivatives and related compounds were synthesized and evaluated for histamine H_2 -receptor antagonist and gastric acid antisecretory activities. Among them, compounds I-17, I-48 and I-49 showed high activities in these tests. In addition, compound I-17 possessed potent inhibitory activities on each of the gastric ulcers induced by stress, ethanol and HCl-aspirin. On the other hand, compound I-48 demonstrated antimicrobial activity against *Helicobacter Pylori* and the potency was far stronger than that of clinically used H_2 -antagonists. Some structure-activity relationships are discussed.

Keywords furylthiazole; histamine H₂-receptor antagonist; antisecretory activity; antiulcer activity; cytoprotective activity; antimicrobial activity; *Helicobacter Pylori*; structure–activity relationship

Notable efficacy of cimetidine in the treatment of peptic ulcers has prompted medicinal chemists to investigate novel histamine H₂-receptor antagonists (H₂-antagonists). In regard to the structural aspect, cimetidine and subsequently marketed agents, ranitidine, famotidine, roxatidine acetate and nizatidine, have a common feature consisting of three fundamental components: (A) a basic heteroaromatic ring or aromatic ring substituted by basic moiety, (B) a four-membered flexible alkyl chain as a spacer group and (C) a urea or amidine equivalent group. According to such a scheme, many chemical modifications of this class of compounds have been conventionally performed.²⁾

N=CH-NH-iso-
$$C_3H_7$$
 mifentidine (1)

H

 H_2N
 H_2N
 H_2N
 H_3
 H_2N
 H_3
 H_3
 H_3
 H_4
 H_4
 H_4
 H_5
 H_5

$$H_2N$$
 FCE-23067 (3)

On the other hand, recent reports have demonstrated some successful approaches for obtaining potent H_2 -antagonists in conformationally restricted derivatives, mifentidine (1),³⁾ zaltidine (2)⁴⁾ and FCE-23067 (3).⁵⁾ As described in a previous paper,⁶⁾ we also obtained a novel class of H_2 -antagonist, an imidazo[1,2-a]pyridinylethylbenzoxazole derivative (4), having a semirigid (aralkyl) spacer group (Chart 1).

Supported by these results, a continuing search for a H₂-antagonist led us to prepare new derivatives by introducing an aralkyl spacer group. The strategy employed here was to replace the -CH₂SCH₂- group existing in the conventional H₂-antagonists with a heteroaromatic moiety. As prototype compounds we selected the guanidinothiazole derivatives represented by tiotidine (5),⁷⁾ famotidine,⁸⁾ ebrotidine⁹⁾ and BL-6341A,¹⁰⁾ which possess an attractive efficacy as H₂-antagonists (Chart 2). This paper describes the synthesis and pharmacological profile of a series of 4-furyl-2-guanidinothiazoles and related compounds.

Chemistry

The desired 2-guanidinothiazoles listed in Tables I—III were synthesized by the routes outlined in Charts 3—8. Friedel—Crafts acylation¹¹⁾ of **9** or **10** and subsequent cyclization with amidinothiourea afforded the two fundamental derivatives (I-1 and 13) (Chart 3). Acid hydrolysis of I-1 gave a key intermediate 14. Treatment of 14 with several reagents, *e.g.*, (a) reactive carboxylic acid derivatives, (b) imidates, (c) S-methylisothioureas, (d) dithioimidocarbonates or 1,1-bis(methylthio)-2-nitroethene, (e) iso-

$$A = -NH - NHCH_{3} \text{ tiotidine (6)}$$

$$NSO_{2}NH_{2} - NH - NHCH_{3} \text{ famotidine (6)}$$

$$NSO_{2}NH_{2} - NHCH_{3} - NHCH$$

© 1992 Pharmaceutical Society of Japan

=N-CSNH₂

Table I. Physical Data of Several Biaryl Derivatives $\begin{matrix} H_2N \\ H_2N \end{matrix} = N \begin{matrix} N \\ \end{matrix} \begin{matrix} heteroaryl-CH_2NHCOCH_3 \end{matrix}$

Compd. No.	Heteroaryl	Yield	mp (°C) (Recryst.	Formula	Analysis (%) Calcd (Found)		
110.		(70)	solvent)a)		С	Н	N
I-1	~\one_\one_\one_	47	230—231 (I–M–T)	C ₁₁ H ₁₃ N ₅ O ₂ S ·1/10H ₂ O	46.96 (47.31	4.73 4.71	24.89 24.65)
$\Pi_{p)}$	$-\langle \! $						
III	$\sqrt[s]{N}$	13	225—226 (W)	$C_{10}H_{12}N_6OS_2 \cdot 4/5H_2O$	38.65 (38.51	4.41 4.31	27.04 27.00)
IV	\sqrt{s}	27	218219 (A-Et)	$C_{10}H_{12}N_6OS_2$ ·2HBr	26.21 (26.33	3.08 3.01	18.34 18.24)
V	·	29	260—261 (M-W)	C ₉ H ₁₁ N ₇ O ₂ S ·1/5H ₂ O	37.94 (37.66	4.03 3.95	34.41 34.37)
VI		37	215—217 (Et-W)	C ₉ H ₁₂ N ₈ OS ·HCl·3/2H ₂ O	32.88 (32.93	4.39 4.46	34.08 34.08)

a) A, acetone; Et, EtOH; I, diisopropyl ether; M, MeOH; T, tetrahydrofuran; W, H_2O . b) Ref. 17.

cyanates or methylisothiocyanate resulted in the corresponding products, i.e., (a) amides (I-2-15), (b) N-furfurylamidines (I-22—27), (c) guanidines (I-28 and I-38), (d) S-methylisothioureas or isothioamide (15–18), (e) ureas (I-48-55) or thiourea (I-56), respectively. Compounds 15—18 were converted with the appropriate amines to the desired cyanoguanidines (I-30-34), sulfonylguanidines (I-39-44) and nitroethenes (I-45-47). The O-methylisourea derivative (I-36) was formed by the reaction of 15 with sodium methoxide. Of the guanidines, compound I-29 was prepared by the reaction of thiourea derivative (33) with methyliodide followed by substitution with cyanamide. Compound I-37 was obtained by the hydrolysis of cyanoguanidine derivative (I-30) (Chart 4). The C-furfuryl amidines (I-16—21) were prepared from the imidate (19) by treatment with the appropriate sulfonamides (Chart 5).

Charts 6 and 7 show the synthetic routes of the compounds having a heteroaryl moiety as an amidino function. Condensation of furan-2-glyoxal (20)¹²⁾ with acetaldehyde in the presence of concentrated ammonia gave imidazolylfuran (21). Friedel-Crafts acylation of 21, followed by cyclization with amidinothiourea, afforded the desired compound (I-57). Similarly, compound I-60 was prepared

TABLE II. Physical Data of Furylthiazoles

$$\underset{H_2N}{H_2N} = N - \underbrace{N}_{O} \underbrace{CH_2(NH)_mC(NH)_nR}_{M_2N}$$

Compd.	m	n	X	R	Yield	mp (°C) (Recrystn.	Formula		nalysis (° lcd (Fou	
No.					(%)	solvent)a)	·	С	Н	N
I-2	1	0	О	C_2H_5	31	192—194 (I–M)	$C_{12}H_{15}N_5O_2S$	49.13 (49.25	5.15 5.26	23.87 23.91)
I-3	1	0	O	n - C_3H_7	29	182—183	$C_{13}H_{17}N_5O_2S$	47.99	5.86	21.52
I-4	1	0	О	iso-C ₃ H ₇	14	(M–W) 211—213	$^{\cdot}$ H ₂ O C ₁₃ H ₁₇ N ₅ O ₂ S	(48.26 47.99	5.97 5.86	21.70) 21.52
1-4	1	U	. 0	150-03117	17	(I-M)	C ₁₃ 11 ₁₇ 11 ₅ O ₂ S	(47.81	6.02	21.49)
I-5	1	0	O	n-C ₄ H ₉	29	198—199	$C_{14}H_{19}N_5O_2S$	52.30	5.96	21.79
I-6	1	0	О	CH₂OCH₃	28	(M) 201—202	$C_{12}H_{15}N_5O_3S$	(52.15 46.59	6.00 4.89	21.73) 22.64
I-7	1	0	O	CH ₂ SCH ₃	35	(I–M) 195—197	$C_{12}H_{15}N_5O_2S_2$	(46.60 43.81	5.02 4.72	22.48) 21.28
1-7	1	U	U	C11 ₂ 5C11 ₃	33	(I–M)	$\cdot 1/5 H_2 O$	(44.17	5.09	21.14)
I-8	1	0	O	CH ₂ OCOCH ₃	35	250253	$C_{13}H_{15}N_5O_4S$	41.77	4.31	18.73
I-9	1	0	O	3-Pyridyl	20	(I–M) 224—225	\cdot HCl C ₁₅ H ₁₄ N ₆ O ₂ S	(41.70 49.99	4.31 4.48	18.46) 23.32
1-9	1	U	O	5-1 yridyi	20	(M-W)	\cdot H ₂ O	(50.00	4.50	23.39)
I-10	1	0	O ,	2-Furyl	18	246	$C_{14}H_{13}N_5O_3S$	50.75	3.95	21.14
I-11	1	0	O	2-Thienyl	18	(M) 217—220	$C_{14}H_{13}N_5O_2S_2$	(50.69 47.91	3.81 3.85	21.01) 19.95
1-11	1	U	U	2-1 menyi	10	(M–W)	$\cdot 1/5 H_2 O$	(47.98	4.13	20.22)
I-12	1	0	O	C_6H_4 -2- NO_2	12	218—220	$C_{16}H_{14}N_6O_4S$	49.74	3.65	21.75
I-13	1	0	O	3-Pyridinyloxide	10	(EA–I–M) 217	$C_{15}H_{14}N_6O_3S$	(49.37 48.45	3.76 4.20	21.57) 22.59
1-13	1	U	O	3-1 yridinyloxide	10	(DX-I-M)	$\cdot 3/4 H_2 O$	(48.79	4.03	22.22)
I-14	1	0	O	CH ₂ SCH ₂ -2-furyl	53	180—181	$C_{16}H_{17}N_5O_3S_2$	49.09	4.38	17.89
I-15	1	0	O	CH ₂ S(O)CH ₂ -2-furyl	46	(DX-I-M) 208—209	$C_{16}H_{17}N_5O_4S_2$	(49.25 47.16	4.40 4.21	17.98) 17.19
1-15	1	U	U	C11 ₂ 5(O)C11 ₂ -2-1u1y1	40	(DX-I-M)	C ₁₆ 11 ₁₇ 11 ₅ O ₄ S ₂	(47.15	4.15	17.02)
I-16	0	1.	NSO ₂ CH ₃	Н	25	168169	$C_{11}H_{14}N_6O_3S_2$	36.66	4.47	23.32
I-17	0	1	NSO ₂ NH ₂	Н	53	(M) 224—225	$^{\cdot}$	(36.80 34.98	4.31 3.82	23.44) 28.55
1-1/	U	1	NSO_2NG_2	11	33	(D-EA)	$C_{10}\Pi_{13}\Pi_{7}C_{3}S_{2}$	(35.28	3.84	28.26)
I-18	0	1	NSO ₂ NHCH ₃	Н	9	219220	$C_{11}H_{15}N_7O_3S_2$	36.97	4.23	27.43
I-19	0	1	NSO ₂ N(CH ₃) ₂	Н	6	(D–W) 161	$C_{12}H_{17}N_7O_3S_2$	(36.93 38.80	4.15 4.61	27.41) 26.40
1-19	U	ı	$NSO_2N(CH_3)_2$	11	Ü	(Et–I)	$C_{12}\Pi_{17}\Pi_{7}O_{3}S_{2}$	(38.62	4.39	26.42)
I-20	0	1	$NSO_2C_6H_4$ -4- CH_3	Н	31	207—209	$C_{17}H_{18}N_6O_3S_2$	48.79	4.34	20.08
T 21	0	1	NSO ₂ C ₆ H ₄ -4-NH ₂	Н	15	(DX-I-M) 190191	$C_{16}H_{17}N_7O_3S_2$	(48.44 45.57	4.19 4.12	19.77) 23.25
I-21	0	1	$1050_{2}C_{6}\Pi_{4}$ -4- $10\Pi_{2}$	11	13	(A)	$\cdot 1/8 \text{H}_2\text{O}$	(45.92	4.21	22.95)
I-22	1	0	NSO_2CH_3	Н	22	222223	$C_{11}H_{14}N_6O_3S_2$	38.59	4.12	24.54
I- 2 3	1	0	$NSO_2C_2H_5$	Н	26	(DX-I-M) 188	$C_{12}H_{16}N_6O_3S_2$	(38.66 40.44	4.24 4.52	24.85) 23.58
1-23	1	U	1430202115	11	20	(I–M)	C ₁₂ 11 ₁₆ 11 ₆ O ₃ O ₂	(40.49	4.53	23.46)
I-24	1	0	$NSO_2C_6H_4$ -4- CH_3	Н	33	141142	$C_{17}H_{18}N_6O_3S_2$	46.46	4.66	19.12
I-25	1	0	NSO ₂ C ₆ H ₄ -4-OCH ₃	Н	32	(I–M–T) 185—186	$\cdot 7/6 \mathrm{H_2O} \mathrm{C_{17}H_{18}N_6O_4S_2}$	(46.86 44.87	4.59 4.49	18.78) 18.47
1-25	1	U	NSO ₂ C ₆ 11 ₄ -4-OC11 ₃	11	32	(I-M-T)	$\cdot 8/7 \text{H}_2\text{O}$	(45.25	4.81	18.07)
I-26	1	0	$NSO_2C_6H_4$ -4-Br	Н	28	210-211	$C_{16}H_{15}N_6BrO_3S_2$	39.76	3.13	17.39
I-27	1	0	NCN	$\mathrm{CH_3}$	18	(I–M–T) 215–217	$C_{12}H_{13}N_7OS$	(40.17 47.53	3.41 4.32	17.12) 32.32
1-27	1	U	11011	C113	10	(DX-I-M)	012111311700	(47.48	4.33	31.95)
I-28	1	1	NH	Н	49	255	$C_{10}H_{13}N_{7}OS$	33.75	4.36	27.55
I- 2 9	1	1	NCN	Н	25	(I-M-T) 224—225	$\cdot 2HCl \cdot 1/5H_2O$ $C_{11}H_{12}N_8OS$	(34.08 41.46	4.29 4.30	27.41) 35.16
	1				20	(M-W)	$\cdot 4/5 \mathrm{H_2O}$	(41.61	4.33	35.08)
I-30	1	1	NCN	CH_3	43	231—232 (L.M. T)	$C_{12}H_{14}N_8OS$	45.27	4.43	35.20
I-31	1	1	NCN	$CH_2CH = CH_2$	66	(I-M-T) 164165	$C_{14}H_{16}N_8OS$	(45.37 48.83	4.46 4.68	35.19) 32.54
	•					(A-W)		(48.86	4.41	32.58)
I-32	1	1	NCN	$(CH_2)_2OH$	70	208209	$C_{13}H_{16}N_8O_2S$	44.82	4.63	32.16
						(DX-I-M)		(45.12	4.91	32.10)

September 1992 2435

TABLE II. (continued)

Compd. m	m	n	n X	R	Yield (%)	mp (°C) (Recrystn.	Formula	Analysis (%) Calcd (Found)			
No.					(%)	solvent)a)		С	Н	N	
I-33	1	1	NCN	(CH ₂) ₃ OH	57	160—161 (M–W)	$C_{14}H_{18}N_8O_2S$	46.40 (46.52	5.01 4.96	30.92 30.86)	
I-34	1	1	NCN	$[NHR = N(CH_3)_2]$	51	205—206 (EA-I-M)	$C_{13}H_{16}N_8OS$	46.98 (47.14	4.85 4.92	33.71 33.66)	
I-35	1	1	NCN	SCH ₃	90	210 (I–M–T)	$\mathrm{C_{12}H_{13}N_{7}OS_{2}}$	42.97 (43.08	3.91 3.65	29.23 29.38)	
I-36	1	1	NCN	OCH ₃	64	205—206 (D–W)	$C_{12}H_{13}N_7O_2S$	45.13 (44.93	4.10 4.33	30.70 30.42)	
I-37	1	1	NCONH ₂	CH ₃	56	241—242 (M–W)	${ ext{C}_{12} ext{H}_{16} ext{N}_{8} ext{O}_{2} ext{S}} \\ \cdot ext{HCl}$	35.21 (35.06	4.43 4.29	27.38 27.25)	
I-38	1	1	NCOOCH ₃	Н	23	199—200 (I–M)	$C_{12}H_{15}N_7O_3S$	42.72 (42.92	4.48 4.62	29.06 28.82)	
I-39	1	1	NSO ₂ CH ₃	CH_3	29	233—234 (I–M)	$C_{12}H_{17}N_7O_3S_2$ · HCl	35.34 (35.11	4.45 4.59	24.04 23.88)	
I-40	1	1	NSO ₂ CH ₃	C_2H_5	53	151—152 (I–M–T)	$C_{13}H_{19}N_7O_3S_2$ $\cdot 2HCl \cdot 1/3H_2O$	33.62 (33.75	4.70 4.53	21.11 21.05)	
I-41	1	1	NSO ₂ CH ₃	$(CH_2)_2OH$	60	202—203 (I–M)	$C_{13}H_{19}N_7O_4S_2$ · 1/5 H_2O	38.55 (38.89	4.83 5.20	24.21 24.22)	
I- 42	1	1	NSO ₂ CH ₃	$(CH_2)_2OCH_3$	61	173—174 (I–M)	$C_{14}H_{21}N_7O_4S_2$	40.47 (40.56	5.09 4.94	23.60 23.64)	
I-43	1	1	NSO ₂ CH ₃	$(\mathrm{CH_2})_2\mathrm{N}(\mathrm{CH_3})_2$	68	183—184 (I–M)	$C_{15}H_{24}N_8O_3S_2$	42.04 (42.32	5.64 5.61	26.15 26.31)	
I- 44	1	1	NSO ₂ C ₆ H ₄ -4-CH ₃	CH ₃	69	208—209 (D-W)	$C_{18}H_{21}N_7O_3S_2$	48.31 (48.21	4.73 5.00	21.91 21.66)	
I- 45	1	1	CHNO ₂	CH ₃	16	238—239 (M–W)	$C_{12}H_{15}N_{7}O_{3}S$	42.72 (42.77	4.48 4.53	29.06 28.96)	
I-46	1	1	CHNO ₂	<i>n</i> -C ₄ H ₉	37	215—217 (M)	$C_{15}H_{21}N_{7}O_{3}S$	47.48 (47.44	5.58 5.71	25.84 25.97)	
I- 47	1	1	CHNO ₂	$(CH_2)_2OH$	60	182—183 (EA)	$C_{13}H_{17}N_7O_4S$ $\cdot 3/4H_2O$	40.99 (41.04	4.90 5.13	25.74 26.04)	
I-48	1	1	О	Н	19	214—215 (D–W)	$C_{10}H_{12}N_6O_2S$ •1/3 H_2O	41.95 (42.04	4.46 4.53	29.35 [°] 29.04)	
I- 49	1	1	О	CH_3	50	219—220 (DX-I-M)	$C_{11}H_{14}N_6O_2S$	44.89 (45.02	4.79 4.84	28.55 28.51)	
I-50	1	1	O	C_2H_5	41	221—223 (DX-I-M)	$C_{12}H_{16}N_6O_2S$	46.74 (46.96	5.23 5.50	27.25 27.33)	
I-51	1	1	О	<i>n</i> -C ₃ H ₇	37	223 (D–EA)	$C_{13}H_{18}N_6O_2S$	48.43 (48.03	5.63 5.53	26.07 25.90)	
I- 52	1	1	O	$iso-C_3H_7$	40	222—224 (I–M)	$C_{13}H_{18}N_6O_2S$ • 1/3 H_2O	47.55 (47.50	5.73 5.53	25.59 25.62)	
I-53	1	1	, О	$CH_2CH = CH_2$	50	219—220 (DX-I-M)	$C_{13}H_{16}N_6O_2S$	48.74 (48.51	5.03 5.30	26.23 25.99)	
I-54	1	1	О	(CH ₂) ₂ OCOCH ₃	39	200—202 (DX-I-M)	$C_{14}H_{18}N_6O_4S$	45.89 (45.67	4.95 4.87	22.94 22.72)	
I-55	1	1	О	$(CH_2)_2OH$	47	201—203 (DX-I-M)	$C_{12}H_{16}N_6O_3S$ 1/5 H_2O	43.95 (43.96	5.04 4.84	25.63 25.51)	
I- 56	1	I	S	CH ₃	18	220 (D–W)	$C_{11}H_{14}N_6OS_2$	42.56 (42.68	4.55 4.70	27.08 26.86)	

a) A, acetone; D, N,N-dimethylformamide; DX, dioxane; EA, ethyl acetate; Et, EtOH; I, diisopropyl ether; M, MeOH; T, tetrahydrofuran; W, H₂O.

13
$$\frac{\text{HCI-MeOH}}{\text{H}_2\text{N}}$$
 $\frac{\text{H}_2\text{N}}{\text{H}_2\text{N}}$ $\frac{\text{N}_2\text{N}}{\text{N}_2\text{COCH}_3}$ $\frac{\text{H}_2\text{NSO}_2\text{R"}}{\text{H}_2\text{N}}$ $\frac{\text{H}_2\text{N}}{\text{H}_2\text{N}}$ $\frac{\text{N}_2\text{N}}{\text{N}_2\text{CNH}_2}$ $\frac{\text{NSO}_2\text{R"}}{\text{H}_2\text{N}}$ $\frac{\text{N}_2\text{N}}{\text{N}_2\text{N}}$ $\frac{\text$

Chart 5

from 30 by acylation and successive cyclization. Hydrolysis of the imidate prepared from 13, or cyclization¹³⁾ of 23 with amidinothiourea yielded the ester derivatives (24 and 25). Conversion of these compounds to hydrazide, followed by treatment with S-methylisothiourea, and finally, cyclization in the presence of concentrated ammonia,

furnished the target compounds (I-58 and I-59). Condensation of the thiourea derivative (33), derived from 14 by treatment with benzoylisothiocyanate and subsequent hydrolysis, with chloroacetone provided I-61. Compound I-63 was obtained by the coupling reaction of 14 with 34. Cyclization of 15 with hydrazine gave the triazole deriva-

TABLE III. Physical Data of Heteroarylsubstituted Furylthiazoles

$$H_2N$$
 N O $(CH_2)_p(NH)_q$ heteroaryl

Compd. No. p	р	q	Heteroaryl	Yield (%)	mp (°C) (Recrystn. solvent) ^{a)}	Formula	Analysis (%) Calcd (Found)		
NO.				(70)		_	С	Н	N
1-57	0	. 0	$ N$ CH_3	47	>300 (M)	C ₁₂ H ₁₂ N ₆ OS ·2HCl·5/4H ₂ O	37.56 (37.83	4.33 4.32	21.80 21.73)
I-58	0	0	N-N NH ₂ H	60	> 300 (D-W)	$C_{10}H_{10}N_8OS \\ \cdot 1/3H_2O$	40.53 (40.48	3.63 3.55	37.82 37.61)
I- 59	1	0	- N N N N N N	51	259—261 (D-W)	$\begin{array}{c} \mathrm{C_{11}H_{12}N_8OS} \\ \cdot 1/2\mathrm{H_2O} \end{array}$	42.17 (42.12	4.18 4.12	35.76 35.96)
I-60	1	0	O N N CH ₃	45	212—213 (DX-I-M)	$C_{19}H_{24}N_6O_2S$	56.98 (56.72	6.04 5.95	20.98 20.76)
I-61	1	1	\sim CH ₃	75	193—194 (I–M)	C ₁₃ H ₁₄ N ₆ OS ₂ ·HCl	42.10 (41.82	4.08 4.23	22.66 22.53)
I-62	1	1	N N N N N	68	241—242 (D–W)	$C_{11}H_{13}N_9OS$ · H_2O	39.16 (38.94	4.48 4.30	37.37 37.30)
1-63	1	1	O_2 N	41	220—221 (D-M)	$C_{16}H_{14}N_7ClO_3S_2$ ·3/2 H_2O	40.13 (40.10	3.58 3.56	20.47 20.61)

a) See footnote a) in Tables I and II.

tive (I-62).

The derivatives (III—VI) to which were introduced several heteroaryl groups instead of furan rings, were synthesized as depicted in Chart 8. Condensation of the thioamido derivative (35) with haloketones (36 or 37) gave the corresponding acetylthiazoles (38 or 39), which were treated with bromine and subsequently cyclized with amidinothiourea to afford the desired compounds (III or IV), respectively. Thiazolohydrazide derivative (40)¹⁴⁾ was coupled with acetylglycine to provide diacylhydrazine (41), which on cyclization with phosphorous oxychloride afforded the requisite oxadiazole (V). Reaction of 40 with the imidate 42 gave iminohydrazide (43), which on heating cyclized to produce the triazole ring system (44). Treatment of 44 with hydrazine, followed by acetylation,

afforded the target triazole derivative (VI).

Pharmacological Results and Discussion

The biological results of the guanidinothiazole derivatives (I—VI) are listed in Tables IV—VI. All compounds were evaluated *in vitro* for H₂-antagonist activity using the histamine-stimulated chronotropic response of the guinea pig atrium¹⁵⁾ and *in vivo* for antisecretory activity on histamine-stimulated gastric acid secretion in lumenperfused anaesthetized rats. ¹⁶⁾ Compounds with sufficient potency were also assessed for antisecretory activity on tetragastrin-stimulated gastric acid secretion in conscious Heidenhain pouch dogs.

First, in order to determine a favorable aromatic moiety, the activities of several *N*-thiazolylarylmethylacetamides

TABLE IV. H2-Receptor Antagonist and Gastric Antisecretory Activities TABLE IV. (continued) of 2-Guanidinothiazoles

H2-Receptor antagonist Antisecretory activity activity a) [inhibition (%)] Compd. [inhibition (%)] 1×10^{-6} g/ml $\overline{\text{Dog}^{c}}$ Ratb) No. 1 mg/kg i.v. $0.32\,\mathrm{mg/kg}\ p.o.$ $83^{(d)}$ 85 68 I-1 I-2 78 75 42 60 40 I-3 32 I-4 73 46 51 I-5 20 32 I-6 23 46 63 54 I-8 31 31 I-9 43 26 I-10 37 42 I-11 40 -27I-12 -10 - 30 I-13 62 52 I-14 94 I-15 22 45 54 I-16 99 92 I-17 84 93 52 I-18 73 36 I-19 85 27 I-20 84 36 I-21 57 75 68 I-22 73 99 55 I-23 91 41 I-24 65 57 77 I-25 23 59 I-26 12 30 I-27 56 48 1-28 53 78 I-29 $83^{(d)}$ 91 91 I-30 19 I-31 74 7 85 79 I-32 I-33 76 84 38 12 I-34 I-35 92 84 70 -23 I-36 79 68 I-37 I-38 28 39 I-39 84 100 62 100 41 83 I-40 30 I-41 51 80 72 62 I-42 45 64 I-43 -2278 I-44 $55^{d)}$ I-45 88 100 -29 96 I-46 72 76 I-47 91 70 78 1-48 87 70 89 I-49 75 84 I-50 - 28 79 I-51 47 21 I-52 51 I-53 72 58 I-54 57 66 I-55 98 96 I-56 43 1-57 91 45 94 I-58 I-59 47 14 - 19 -36I-60 -15I-61 13 25 43 I-62 **- 58** 25 1-63 -35II 13 $58^{(d)}$ Ш 57 44 -20IV

Compd.	H ₂ -Receptor antagonist activity ^{a)}		tory activity tion (%)]	
No.	[inhibition (%)] $1 \times 10^{-6} \text{ g/ml}$	Rat b)	$\frac{Dog^{c)}}{0.32mg/kg\;p.o.}$	
V	-9	51		
VI	3	37		
Cimetidine	43	53	22^{d}	
Ranitidine	44	72	41	
Roxatidine acetate	76	84	58	
Famotidine	87	96	96	

a) H₂-Receptor antagonism in isolated guinea pig right atrium. b) Inhibition of histamine-stimulated gastric acid secretion in lumen-perfused stomach of the anaesthetized rats (n=2). c) Inhibitory effect on gastric acid secretion induced by gastrin in the conscious Heidenhain pouch dogs (n=2). d) 1 mg/kg p.o.

TABLE V. Antiulcer Activities of Compounds I-17, I-48 and I-49 in Rats

Compd. No.	Stress ulcer ^{a)} $ED_{50}^{d)}$ (mg/kg, $p.o.$)	Ethanol ulcer ^{b)} $ED_{50}^{d)}$ $(mg/kg, p.o.)$	HCl-Aspirin ulcer ^c ED ₅₀ ^d (mg/kg, p.o.)
I-17	0.66	7.5	5.2
I-48	6.9	22.0	NT
I- 49	2.6	21.2	NT
Cimetidine	18.8	> 320	> 32
Ranitidine	1.5	29.6	>32
Roxatidine acetate	1.6	20.4	> 32
Famotidine	0.67	> 32	5.2

a) Gastric ulcer induced by water-immersion stress. b) Gastric lesion induced by absolute ethanol. c) Gastric ulcer induced by HCl-aspirin on pylorus ligated condition. d) ED₅₀ values were estimated from three or four doses. Ten animals were used per dose. NT = not tested.

TABLE VI. Anti-Helicobacter Pylori Activity of Some Derivatives

Compd.	MIC	Range of MICs		
No.	$(\mu g/ml;$	ml; 10 strains)		
I-1	27	25—50		
I-2	>100			
I-17	>100			
I-30	62	50-100		
I-37	> 100			
I-39	>100			
I- 45	>100			
I- 48	71	25—100		
I- 49	>100			
III	15	12.5—25		
Cimetidine	1130	8001600		
Ranitidine	>1600			
Roxatidine acetate	>1600			
Famotidine	1600	1600		

were assessed. Among them, the furyl derivative (I-1) revealed fairly good activity. The 2,4-substituted thiazole derivative (III) also showed activity, but the potency was not so strong. The thiophen (II), 17) 2,5-substituted thiazole (IV), oxadiazole (V) and triazole (VI) derivatives resulted in a loss of the H₂-antagonist activity.

Next, the effect of the substitution at the furan ring on I-1 was examined. As a result, many kinds of substituents, viz., sulfamoylamidine (I-17), sulfamoylformamidine (I-23 and I-24), cyanoguanidine (I-30, I-32 and I-33), mesylguanidine (I-39 and I-40), isothiourea (I-35), nitroethene (I-45), urea (I-48—50) and thiourea (I-56) groups, fitted to express the H₂-antagonist and antisecretory (in rats) activities. Of these derivatives, compounds I-17, I-30, I-39, I-48 and I-49 showed potent antisecretory activity in dogs. Although compounds I-57 and I-58 consisting of triaryl system also exhibited excellent H₂-antagonist activity, the effect during the *in vivo* test was not satisfactory (Table IV).

Next, the compounds with powerful antisecretory activity in dogs (I-17, I-48 and I-49) were evaluated for anti-ulcer activities on three different conditions. Table V showed a good profile of I-17, which possessed higher cytoprotective activity against ethanol-induced gastric lesions than the reference compounds.

Finally, we tested the compounds for antimicrobial activity against *Helicobacter Pylori*, which is accepted as an organism closely associated with gastritis and peptic ulcers. ¹⁸⁾ Among the compounds exhibiting potent antisecretory activity in rats, some derivatives having representative amidino function were selected in the screening samples. The results are listed in Table VI. Of the compounds tested, I-1. I-30, I-48 and III revealed noticeable activity. In contrast with these derivatives, the activity of the reference compounds was extremely low.

In conclusion, we have demonstrated a successful replacement of the four-membered flexible alkyl chain in the conventional H₂-antagonists with a furfuryl moiety. Among the compounds with potent gastric antisecretory activity, several possessed additional properties: compound I-17 showed significant activity on cytoprotection and compound I-48 possessed superior anti-Helicobacter Pylori activity in comparison with those of therapeutically used H₂-antagonists. These compounds were selected as candidates for further investigation.

Experimental

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Infrared (IR) spectra were taken with a Hitachi 260-10 spectrometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded with a Bruker AC-200P spectrometer using tetramethylsilane as an internal standard.

4-(5-Acetamidomethylfuran-2-yl)-2-guanidinothiazole (I-1) A solution of 2-acetamidomethyl-5-chloroacetylfuran (11)¹¹⁾ (39.9 g, 185 mmol) and amidinothiourea (21.9 g, 185 mmol) in EtOH (400 ml) was refluxed for 2 h with stirring. After removal of the solvent, the residue was dissolved in $\rm H_2O$ (300 ml) and the solution was basified with 20% aqueous $\rm K_2CO_3$. The resulting precipitate was collected by filtration, washed with $\rm H_2O$ and recrystallized from MeOH–diisopropyl ether (IPE)–tetrahydrofuran (THF) to afford I-1 (24.1 g, 47%). IR (Nujol); 3430, 3200, 3110, 3060, 1650 cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 1.88 (3H, s), 4.26 (2H, d, J = 6 Hz), 6.25 (1H, d, J = 3 Hz), 6.56 (1H, d, J = 3 Hz), 6.73 (1H, s), 6.83 (4H, s), 8.24 (1H, t, J = 6 Hz).

4-(5-Aminomethylfuran-2-yl)-2-guanidinothiazole (14) A solution of I-1 (4.76 g, 17 mmol) in 1 N HCl (51.1 ml, 51 mmol) was refluxed for 8 h with stirring. After the pH of the solution was adjusted to 10, the resulting precipitate was collected by filtration and washed with H₂O to afford 14 (4.03 g, 100%). An analytical sample was obtained by recrystallization from EtOH, mp 200—201 °C. IR (Nujol): 3300 (broad), 1710, 1630 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 4.17 (2H, br s), 4.35 (2H, s), 6.30 (1H, d, J = 3 Hz), 6.62 (1H, d, J = 3 Hz), 6.78 (1H, s), 7.00 (4H, br s). *Anal.* Calcd for C₉H₁₁N₅OS: C, 45.56; H, 4.67; N, 29.51. Found: C, 45.89; H, 4.70; N, 29.38.

2-Guanidino-4-(5-ureidomethylfuran-2-yl)thiazole (I-48) A solution of KOCN (1.0 g, 12 mmol) in $\rm H_2O$ (9 ml) was added dropwise to a solution of **14** (1.5 g, 5.4 mmol) in $\rm H_2O$ (9 ml)–AcOH (4.5 ml) at 35 °C. After being

stirred for 2 h at that temperature, the reaction mixture was added to AcOEt–THF–H₂O and the solution was adjusted to pH 9 with 20% aqueous K_2CO_3 . The separated organic layer was washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was chromatographed on silica gel eluting with AcOEt–MeOH (85:15) to give a product which was recrystallized from N_iN_i -dimethylformamide (DMF)–H₂O to afford I-48 (0.31 g, 19%). IR (Nujol): 3400, 3320, 3130, 1650 cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 4.19 (2H, d, J = 5 Hz), 5.53 (2H, s), 6.24 (1H, d, J = 3 Hz), 6.36 (1H, t, J = 5 Hz), 6.59 (1H, d, J = 3 Hz), 6.76 (1H, s), 6.87 (4H, s).

(5-Chloroacetylfuran-2-yl)acetonitrile (12) AlCl₃ (34.1 g, 0.26 mol) was added portionwise to a solution of (furan-2-yl)acetonitrile (10) (11.4 g, 0.11 mol) and chloroacetyl chloride (12.7 ml, 0.16 mol) in CH₂Cl₂ (170 ml) at 0—5 °C and the mixture was stirred for 1.25 h. The reaction mixture was poured into CH₂Cl₂-ice-H₂O and the organic layer was separated. After washing with H₂O, the solution was added to H₂O and adjusted to pH 8 with 20% aqueous K₂CO₃. The obtained organic layer was washed with H₂O, dried (MgSO₄) and concentrated *in vacuo* to afford 12 (16.4 g, 81%) as an oil. IR (film): 3120, 2210, 1680 cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 4.33 (2H, s), 4.83 (2H, s), 6.64 (1H, d, J=4 Hz), 7.55 (1H, d, J=4 Hz).

4-(5-Cyanomethylfuran-2-yl)-2-guanidinothiazole (13) This compound was prepared from **12** in a manner similar to that described for I-1. Yield 77%, mp 228—230 °C (MeOH). IR (Nujol): 3450, 3420, 3370, 3110, 2250, $1650 \, \mathrm{cm}^{-1}$. ¹H-NMR (DMSO- d_6) δ : 4.20 (2H, s), 6.42 (1H, d, $J=3 \, \mathrm{Hz}$), 6.65 (1H, d, $J=3 \, \mathrm{Hz}$), 6.83 (1H, s), 6.87 (4H, s). *Anal.* Calcd for $\mathrm{C_{10}H_9N_5OS}$: C, 48.57; H, 3.67; N, 28.32. Found: C, 48.58; H, 3.63; N, 28.33.

2-Guanidino-4-[5-(2-imino-2-methoxyethyl)furan-2-yl]thiazole (19) Anhydrous HCl was bubbled into a solution of 13 (19.5 g, 67 mmol) in MeOH (100 ml)–CHCl₃ (100 ml) for 4 h at 0—5 °C. After being stirred for 4 h at that temperature, the resulting precipitate was collected by filtration, washed with IPE, and then added to a solution of K_2CO_3 (46 g, 320 mmol) in H_2O (230 ml). The mixture was extracted with AcOEtTHF. The extract was dried (MgSO₄) and concentrated *in vacuo* to afford 19 (17.5 g, 94%), mp 156—162 °C. This compound was not recrystallized because of its instability. IR (Nujol): 3420, 3110, 1665 cm⁻¹.

1H-NMR (DMSO- d_6) δ : 3.60 (3H, s), 3.65 (2H, s), 6.26 (1H, d, J=3 Hz), 6.58 (1H, d, J=3 Hz), 6.73 (1H, s), 6.84 (4H, s), 7.81 (1H, s).

4-[5-{2-Amino-2-(aminosulfonyliminoethyl)} furan-2-yl]-2-guanidinothiazole (I-17) A solution of **19** (14.9 g, 53 mmol) and sulfamide (20.4 g, 212 mmol) in 2-methoxyethanol (75 ml) was stirred at 70 °C for 2 h. After cooling to room temperature, the reaction mixture was diluted with AcOEt (150 ml) and the solution was subjected to silica gel column chromatography eluting with AcOEt–MeOH (9:1). The obtained product was washed successively with H_2O (200 ml), AcOEt (100 ml) and MeOH (100 ml) and recrystallized from DMF–AcOEt to afford I-**17** (9.7 g, 53%). IR (Nujol): 3470, 3450, 3400, 3350, 3320, 3230, 1620, 1530 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 3.58 (2H, s), 6.28 (1H, d, J=3 Hz), 6.52 (2H, s), 6.56 (1H, d, J=3 Hz), 6.73 (1H, s), 6.81 (4H, s), 7.35 (1H, s), 8.18 (1H, s).

2-Acetamidomethyl-4-acetylthiazole (38) A suspension of 1-bromo-2,3-butanedione (**36**) (47 g, 280 mmol) and *N*-[(thiocarbamoyl)methyl]-acetamide (**35**) (30 g, 230 mmol) in acetone (600 ml) was refluxed for 3 h. The resulting precipitate was collected by filtration to afford **38** (42 g, 93%). An analytical sample was obtained by recrystallization from IPE–MeOH, mp 190—191 °C. IR (Nujol): 3410, 3350, 1690, 1620 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 1.93 (3H, s), 2.55 (3H, s), 4.54 (2H, d, J=6 Hz), 8.44 (1H, s), 8.91 (1H, t, J=6 Hz). *Anal.* Calcd for C₈H₁₀N₂O₂S: C, 48.47; H, 5.08; N, 14.13. Found: C, 48.26, H, 5.12; N, 13.99.

4-(2-Acetamidomethylthiazol-4-yl)-2-guanidinothiazole (III) Br₂ (2.2 g, 14 mmol) was added dropwise to a solution of **38** (2.2 g, 11 mmol) in AcOH (20 ml)–H₂O (20 ml) and the mixture was stirred for 4 h at 70 °C. After removal of the solvent, the residue was dissolved in EtOH (50 ml). Amidinothiourea (1.3 g, 11 mmol) was added to the solution and the mixture was refluxed for 4 h. After concentration to dryness, H₂O was added and the solution was basified with 20% aqueous K₂CO₃; then the resulting precipitate was collected by filtration. The filtrate was extracted with AcOEt. The extract was dried (MgSO₄) and concentrated *in vacuo*. The residue and the material obtained above were combined and the whole product was chromatographed on alumina eluting with CHCl₃–MeOH (10:1). Recrystallization from H₂O afforded III (0.43 g, 13%). IR (Nujol): 3250, 1640 cm⁻¹. ¹H-NMR (DMSO-d₆) δ: 1.91 (3H, s), 4.45 (2H, d, J=6 Hz), 6.88 (4H, s), 7.02 (1H, s), 7.79 (1H, s), 8.77 (1H, t, J=6 Hz).

2-Acetamidomethyl-5-acetylthiazole (39) This compound was prepared

2440 Vol. 40, No. 9

from 2-bromo-1-hydroxy-3-oxo-1-butene (37) in a manner similar to that described for 30. Yield 30%, mp 100—102 °C (IPE–MeCN). IR (Nujol): 3310, 1655 cm $^{-1}$. $^1\text{H-NMR}$ (DMSO- d_6) δ : 1.92 (3H, s), 3.55 (3H, s), 4.53 (2H, d, $J\!=\!6\,\text{Hz}$), 8.50 (1H, s), 8.83 (1H, t, $J\!=\!6\,\text{Hz}$). Anal. Calcd for $C_8H_{10}N_2O_2S$: C, 48.47; H, 5.08; N, 14.13. Found: C, 48.25; H, 5.10; N, 13.94.

4-(2-Acetamidomethylthiazol-5-yl)-2-guanidinothiazole Dihydrobromide (IV) This compound was prepared from **39** in a manner similar to that described for III. Yield 8%, mp 218—219 °C. IR (Nujol): 3280, 3200, 3150, 1675, 1655 cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 1.92 (3H, s), 4.52 (2H, d, J=6 Hz), 7.67 (1H, s), 8.25 (1H, s), 8.27 (4H, s), 8.85 (1H, t, J=6 Hz), 12.11 (1H, br s).

N-Acetamidoaceto-*N'*-(2-guanidino-4-thiazolo)hydrazide (41) A mixture of 2-guanidino-4-thiazolohydrazide (40)¹⁴) (10 g, 50 mmol), acetylglycin (5.9 g, 50 mmol) and dicyclohexylcarbodiimide (DCC) (10 g, 50 mmol) in DMF (10 ml) was stirred for 7 h at 70 °C. After removal of the solvent, the residue was added to $\rm H_2O$ (150 ml) and acidified with 6 h HCl. The insoluble material was filtered off and the filtrate was adjusted to pH 8 with 20% aqueous $\rm K_2CO_3$. The resulting precipitate was colected, washed with $\rm H_2O$ and recrystallized from MeOH to afford 41 (9.5 g, 64%). mp 245—246 °C. IR (Nujol): 3475, 3350, 3300, 3220, 1700, 1650 cm⁻¹. ¹H-NMR (DMSO- $\rm d_6$) δ: 1.87 (3H, s), 3.80 (2H, d, $\rm \it J=6\,Hz$), 6.79 (4H, s), 7.40 (1H, s), 8.20 (1H, t, $\rm \it J=6\,Hz$), 10.13 (1H, s), 10.44 (1H, s). *Anal.* Calcd for $\rm C_9H_{13}N_7O_3S \cdot 1/2H_2O$: C, 35.06; H, 4.58; N, 31.80. Found: C, 34.98; H, 4.44; N, 31.61.

2-Acetamidomethyl-5-(2-guanidinothiazol-4-yl)-1,3,4-oxadiazole (V) POCl₃ (3.8 g, 25 mmol) was added dropwise to a solution of **41** (2.5 g, 8.4 mmol) in DMF (25 ml) at 0—5 °C and the mixture was stirred for 6 h at that temperature. The reaction mixture was poured into ice-water, adjusted to pH 10 with 20% aqueous K_2CO_3 and extracted with AcOEt—THF. The extract was dried (MgSO₄) and concentrated *in vacuo* to give a residue which was recrystallized from MeOH–H₂O to afford V (0.67 g, 29%). IR (Nujol): 3490, 3430, 3340, 3220, 1650 cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 1.90 (3H, s), 4.53 (2H, d, J=6 Hz), 7.03 (4H, br s), 7.57 (1H, s), 8.65 (1H, t, J=6 Hz).

N-(2-Phthalimidoethanimidoyl)-*N'*-(2-guanidino-4-thiazolo)hydrazide (43) A solution of 40 (2.2 g, 11 mmol) and ethyl 2-phthalimidoethanimidate (42) (2.5 g, 11 mmol) in absolute EtOH (50 ml) was refluxed for 5 h. The resulting precipitate was collected by filtration and washed with EtOH to afford 43 (4.0 g, 94%). An analytical sample was obtained by recrystallization from MeOH, mp 195—197 °C. IR (Nujol): 3400, 3300, 3190, 1765, 1690, 1630 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 4.30 (2H, s), 6.37 (2H, br s), 6.74 (4H, br s), 7.23 (1H, s), 7.83—7.94 (4H, m), 9.77 (1H, s). *Anal.* Calcd for C₁₅H₁₄N₈O₃S: C, 46.63; H, 3.65; N, 29.00. Found. C, 46.52; H, 3.91; N, 29.27.

2-(2-Guanidinothiazol-4-yl)-5-(2-phthalimido)methyl-1,3,4-triazole (44) Compound **43** (4.1 g, 11 mmol) was heated at 200 °C for 1 h. After cooling, the product was chromatographed on alumina eluting with CHCl₃–MeOH (9:1) to afford **44** (1.7 g, 44%). An analytical sample was obtained by recrystallization from MeOH, mp 287–289 °C. IR (Nujol): 3430, 3290, 3160, 1765, 1710, 1640 cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 4.85 (2H, s), 6.89 (4h, br s), 7.23 (1H, s), 7.83–7.97 (4H, m), 14.08 (1H, br s). *Anal.* Calcd for C₁₅H₁₂N₈O₂S·H₂O: C, 46.63; H, 3.83; N, 29.00. Found: C, 46.65; H, 3.77; N, 29.02.

2-Acetamidomethyl-5-(2-guanidinothiazol-4-yl)-1,3,4-triazole Hydrochloride (VI) A solution of **44** (1.7 g, 4.6 mmol) and $\rm H_2NNH_2\cdot H_2O$ (0.25 g, 5 mmol) in MeOH (15 ml) was stirred for 2 h at room temperature. 2 N HCl (2.5 ml, 5 mmol) was added to the solution and the mixture was stirred for a further 45 h. After evaporation of the solvent, the residue was suspended in $\rm H_2O$ (10 ml) and the insoluble material was filtered off. The filtrate was concentrated to dryness. The residue (1.4 g, 4.5 mmol) was dissolved in pyridine (14 ml) and the mixture was stirred for 20 h at room temperature. After removal of pyridine, the residue was recrystallized from EtOH– $\rm H_2O$ to afford VI (0.54 g, 37%). IR (Nujol): 3325, 3200, 3100, 1690, 1620 cm⁻¹. $^1\rm H$ -NMR (DMSO- d_6) δ : 1.88 (3H, s), 4.34 (2H, d, J=6 Hz), 7.83 (1H, s), 8.46 (6H, br s).

Biological Tests Gastric Acid Secretion in Heidenhain Pouch Dogs Beagle dogs, weighing 8—13 kg, were used for the study on gastric acid secretion. The animals were surgically provided with a vagally denervated Heidenhain pouch. One month later, the dogs were fasted overnight. Gastric acid secretion was stimulated by an intravenous infusion of tetragastrin ($10 \mu g/kg/h$). Gastric samples were collected at 15 min intervals. After its volume was almost constant, the test compound suspended in 0.1% methylcellulose (MC) was administered orally. Acid concentration was determined by titrating an aliquot to pH 7 with 0.1 N NaOH using

an automatic titrater (Hiranuma RAT-11 Type). Total acid output was calculated by multiplying the total volume of gastric samples by acid concentration, and the percentage change of total acid output was calculated by comparison with the predosing value of the test compound.

Gastric Ulcer Induced by HCl-Aspirin in Pylorus-Ligated Rats¹⁹⁾ Male SD rats, weighing 180 to 210 g, were fasted for 24 h before the experiment. The pylorus was ligated under ether anaesthesia, and a suspension of the test drug in 0.1% MC was administered orally to the group of ten rats. After 10 min, a suspension of aspirin (200 mg/kg) in 0.15 n HCl MC solution (10 ml/kg) was given orally, and the animals were sacrificed 5 h later. The stomachs were isolated and cut open along the greater curvature. The ulcer index was calculated as the sum of the area (mm²) of each ulcer in the stomach. The inhibitory ratio (%) was obtained by comparing the ulcer index with that of the control group.

Antimicrobial Activity In vitro antimicrobial activity was determined by the agar dilution method. Test strain was precultured in Brucella agar containing 3% horse serum and 2% starch at 37 °C for 3 d, and suspended in buffered saline to give the turbidity equivalent to McFarland No. 1. 10^2 -Fold dilution of the bacterial suspensions were inoculated with a multipoint replicator onto a Brucella ager plus 7% lysed horse blood plate containing serial 2-fold dilutions of each drug at 37 °C for 3 d. Incubation was carried out in an atmosphere of 10% CO₂. Minimum inhibitory concentration (MIC) was read after incubation as the lowest drug concentration that inhibited macroscopic colonial growth.

 $H_2\text{-}Antagonism, Gastric Acid Secretion in Lumen-Perfused Rats, Stress Ulcer and Ethanol Ulcer <math display="inline">\,$ These activities were evaluated by the methods described in literature, $^{15.16,20,21)}$ and in our previous paper. $^{6)}$ The ED $_{50}$ values, the dose required for 50% inhibition of the ulcer index, were estimated according to the method of Litchfield and Wilcoxon. $^{22)}$

Acknowledgments We are grateful to Drs. K. Yoshida and T. Kamimura for their valuable suggestions, and Mr. H. Yamakuni, Mrs. T. Nakarai and Mrs. Y. Matsumoto for carrying out the biological assays. Thanks are also due to the staff members for our analytical division for elemental analysis and measurement of spectral data.

References and Notes

- Part V: Y. Katsura, Y. Inoue, M. Tomoi and H. Takasugi, Chem. Pharm. Bull., 40, 2062 (1992).
- For a recent review see: a) T. H. Brown and R. C. Young, Drugs of the Future, 10, 51 (1985); b) R. Leurs, H. van der Goot and H. Timmerman, "Advances in Drug Research," Vol. 20, ed. by B. Testa, Academic Press Ltd., London, 1991, pp. 218—304.
- A. Donetti, E. Cereda, E. Bellora, A. Gallazzi, C. Bazzano, P. Vanoni, P. Del Soldato, R. Micheletti, F. Pagani and A. Giachetti, J. Med. Chem., 27, 380 (1984).
- C. A. Lipinski, J. L. LaMattina and P. J. Oates, J. Med. Chem., 29, 2154 (1986).
- U. Scarponi, A. M. Lazzarini, R. Caprioli, R. DeCastiglione, D. Toti, F. Vaghi, R. Castello and R. Ceserani, Farmaco. Ed. Sci., 43, 575 (1987).
- Part III: Y. Katsura, Y. Inoue, S. Nishino, M. Tomoi, H. Itoh and H. Takasugi, Chem. Pharm. Bull., 40, 1424 (1992).
- 7) T. O. Yellin, S. H. Buck, D. J. Gilman, D. F. Jones and J. M. Wardleworth, Life Sci., 25, 2001 (1979).
- I. Yanagisawa, Y. Hirata and Y. Ishii, J. Med. Chem., 30, 1787 (1987).
- 9) L. Anglada, M. Marquez, A. Sacristan and J. A. Ortiz, Eur. J. Med. Chem., 23, 97 (1988).
- 10) W. C. Lumma, Jr., P. S. Anderson, J. J. Baldwin, W. A. Bolhofer, C. N. Habecker, J. M. Hirshfield, A. M. Pietruszkiewicz, W. C. Randall, M. L. Torchiana, S. F. Britcher, B. V. Clineschmidt, G. H. Denny, R. Hirschmann, J. M. Hoffmann, B. T. Phillips and K. B. Streeter, J. Med. Chem., 25, 207 (1982).
- T. Kawakita, M. Sano, K. Osuge and K. Haga, Japan. Patent 87 273977 [Chem. Abstr., 109, 92987x (1988)].
- 12) F. Kipins and J. Ornfelt, J. Am. Chem. Soc., 70, 3948 (1948).
- Yamanouchi Pharmaceutical Co., Ltd., Japan. Patent 84 225186 [Chem. Abstr., 103, 22581n (1985)].
- J. L. LaMattina and C. A. Lipinski, Eur. Patent Appl. EP 50458 [Chem. Abstr., 97, 127632r (1982)].
- J. W. Black, W. A. M. Duncan, C. J. Durant, C. R. Ganellin and E. M. Parsons, *Nature* (London), 236, 385 (1972).
- 16) M. N. Ghosh and M. O. Schild, Br. J. Pharmacol., 13, 54 (1958).

- 17) T. Kawakita, M. Sano, M. Yasumoto, K. Ohsuga and K. Haga, Eur. Patent Appl. EP 183191 [Chem. Abstr., 105, 115056b (1986)].
- 18) For a recent review see: C. P. Dooley, *Aliment. Pharmacol. Therap.*, 5, (Suppl. 1), 129 (1991).
- 19) P. H. Guth, D. Aures and G. Paulsen, Gastroenterology, 76, 88 (1979).
- 20) K. Takagi and S. Okabe, Jpn. J. Pharmacol., 18, 9 (1968).
- 21) A. Robert, J. E. Nezamis, C. Lancaster and A. J. Hanchar, Gastroenterology, 77, 433 (1979).
- J. T. Litchfield and F. J. Wilcoxon, J. Pharmacol. Exp. Ther., 96, 99 (1949).