Three New Withanolides, Physagulins E, F and G from Physalis angulata L.1)

Kazushi Shingu, Shoji Yahara, Hikaru Okabe and Toshihiro Nohara*, a

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862, Japan and Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-01, Japan. Received January, 16 1992

Three new withanolides, physagulins E (1), F (2) and G (3) were isolated from the fresh berries of *Physalis angulata* L. (Solanaceae). Their structures were established as $(20S,22R)-15\alpha$ -acetoxy- 5α , 6β , 14α ,28-tetrahydroxy-1-oxowitha-2,16,24-trienolide-28-O-D-glucopyranoside (1), $(20R,22R)-15\alpha$ -acetoxy- 16β , 17β -epoxy- 5α , 6β - 14β -trihydroxy-1-oxowitha-2,24-dienolide (2) and $(20R,22R)-15\alpha$ -acetoxy- 16β , 17β -epoxy- 5α , 6β , 14β ,28-tetrahydroxy-1-oxo-witha-2,24-dienolide 28-O- β -D-glucopyranoside (3) by spectroscopic means.

Keywords Physalis angulata; Solanaceae; withanolide; glycoside; physagulin

In our previous papers,²⁾ we reported the structure elucidation of four withanolides, physagulins A (4), B (5), C (6) and D (7) obtained from the fresh leaves and stems of *Physalis angulata* L. Physagulins A (4) and B (5) were found to be the withanolides possessing a 15α -acetoxy- 14α -hydroxy-16-ene system, and physagulin C (6) was shown to be a major component in this plant and to be the first withanolide substituted with oxygen atoms at C-14, -15, -16 and -17. Physagulin D (7) was revealed to be a withanolide glucoside carrying a fundamental simple framework.

As a continuing study of searching for the withanolides, we have now isolated three new withanolides, physagulins E, F and G, from the fresh berries of *Physalis angulata* L. Two of them, physagulins E (1) and G (3) were the first examples of withanolide glycosides which had a sugar moiety at the C-28 hydroxy group in the side chain.

Physagulin E (1), a white powder, showed absorptions due to the hydroxy group (3464 cm⁻¹), the acetyl group (1733 cm⁻¹), α,β -unsaturated δ -lactone (1703 cm⁻¹) and α,β -unsaturated ketone (1678 cm⁻¹) in its infrared (IR)

spectrum. The positive fast atom bombardment mass spectrum (FAB-MS) displayed peaks at m/z 799 M+ $glycerol + H]^+$, 707 $[M + H]^+$, 706 $[M]^+$, 689 $[M - H_2O +$ H]⁺, 647 [M-AcOH+H]⁺, 629 [M-H₂O-AcOH+ H]⁺, 611 $[M-2H_2O-AcOH+H]$ ⁺ and 544 [M-162](hexosyl unit)+H]+. The proton nuclear magnetic resonance (1H-NMR) spectrum (Table I) of 1 gave a characteristic pattern for the structure of the withanolide: two singlet angular methyl signals $[\delta 1.36 \text{ (s, H}_3-18), \text{ and }]$ 1.69 (s, H₃-19)], one secondary methyl signal $[\delta]$ 1.22 (d, J=7.0 Hz, H₃-21), one vinyl methyl signal [δ 1.95 (s)] and an acetyl methyl signal $[\delta 2.16 (s)]$. All other proton signals could be easily assigned by the proton-proton correlation spectroscopy (¹H-¹H COSY) of 1. Strong cross-peaks appeared between the signals of H-2 [δ 6.15 (m)] and H-3 [δ 6.69 (ddd, J=9.9, 5.0, 2.2 Hz)]; H-3 and H₂-4 [δ 3.78 (br d, J = 20.0 Hz) and 2.40 (dd, J = 20.0, 5.0 Hz)], indicating the presence of 1-one-2-ene system on ring A. Other cross peaks in the steroidal skeleton were also observed between the signals of H-6 [δ 4.18 (br s)] and H₂-7 [δ 2.58 (m) and

© 1992 Pharmaceutical Society of Japan

Table I. ¹H-NMR Data (in Pyridin- d_5 , δ /ppm) for Physagulin E(1), Physagulin F(2), and Physagulin G(3)

	· · · · · · · · · · · · · · · · · · ·			
Proton	1	2	3	
2	6.15 m ^{a)}	6.14 dd (9.9, 2.2)	6.14 dd (9.9, 2.9)	
3	6.69 ddd	6.69 ddd	6.68 ddd	
	(9.9, 5.0, 2.2)	(9.9, 5.1, 2.2)	(9.9, 5.1, 2.2)	
4	3.78 br d (20.0)	3.74 dt (22.2, 2.2)	3.74 br d (19.8)	
	2.40 dd (20.0, 5.0)	2.38 dd (22.2, 5.1)	2.38 dd (19.8, 5.1)	
6	4.18 br s	4.15 br s	4.14 br s	
7	2.64 m	2.59 br dt	2.56 m	
		(12.5, 2.8)		
	2.58 m	2.38 br td	2.33 m	
		(12.5, 2.7)		
8	2.77 m	2.51 br td	2.50 br dd	
		(12.8, 2.8)	(15.8, 13.0)	
9	3.38 br t (12.1)	3.18 br td	3.16 br t (13.0)	
		(12.8, 2.6)		
11	2.74 m	2.67 br td	2.67 br d (9.9)	
		(13.0, 2.6)		
	1.43 br d (8.1)	1.42 m	1.41 m	
12	2.01 br t (13.2)	2.01 br t (13.0)	1.99 br t (12.8)	
	1.89 br d (13.2)	1.71 br d (12.8)	1.69 br d (12.8)	
15	5.95 d (2.6)	5.65 s	5.59 s	
16	$6.16 \mathrm{d}^{a)} (2.6)$	3.73 s	3.65 s	
18	1.36 s	1.40 s	1.42 s	
19	1.69 s	1.62 s	1.61 s	
20	2.63 m	2.61 m	2.59 m	
21	1.22 d (7.0)	1.02 d (7.0)	0.99 d (7.2)	
22	4.48 br dt	4.51 ddd	4.56 ^{a)}	
	(13.6, 4.0)	(12.8, 5.5, 3.7)		
23	2.93 br d (15.5)	2.33 br d (16.0)	2.98 br d (15.7)	
	2.49 br d (15.5)	2.13 br dd	2.38 m	
		(16.0, 3.0)		
27	1.95 s	1.91 s	1.97 s	
28	4.70 d (14.7)	1.74 s	4.76 d (13.6)	
	4.33 d (14.7)		4.52 d (13.6)	
-OAc	2.16 s	2.25 s	2.23 s	
Glc-1	4.73 d (7.7)		4.85 d (7.7)	
2	4.04 m		4.08 t (7.9)	
3	4.21 m ^{b)}		4.25 m ^{b)}	
4	4.21 m ^{b)}		4.25 m ^{b)}	
5	3.94 m		3.98 m	
6	4.58 dd (10.0, 2.6)		4.56 br d ^{a)} (10.0)	
	4.39 m		4.40 m	

a,b) Its J value could not be calculated clearly owing to overlapping with each other signals.

2.64 (m)]; H_2 -7 and H-8 [δ 2.77 (m)]; H-8 and H-9 [δ 3.38 (brt, J=12.1 Hz)]; H-9 and H₂-11 [δ 2.74 (m) and 1.43 (brd, J=8.1 Hz)]; H_2-11 and H_2-12 [δ 2.01 (br t, J = 13.2 Hz) and 1.89 (br d, J = 13.2 Hz)]; H-15 [δ 5.95 (d, $J=2.6\,\mathrm{Hz}$)] and H-16 [δ 6.16 (d, $J=2.6\,\mathrm{Hz}$)]. From the above COSY result, the presence of a 15α-acetoxy- $5\alpha,6\beta,14\alpha$ -trihydroxy-2,16-diene-1-one system could be suggested in 1 as well as withaminimin (8).30 On the other hand, as regards the structure of side chain moiety, the following correlations were observed in its ¹H-¹H COSY: between the signals of H_3 -21 and H-20 [δ 2.63 (m)]; H-20 and H-22 [δ 4.48 (br dt, J=13.6, 4.0 Hz)]; H-22 and H₂-23 [δ 2.93 (br d, J=15.5 Hz) and 2.49 (br d, J=15.5 Hz)]; geminal protons in -CH₂O- δ 4.70 (d, J=14.7 Hz) and 4.33 (d, $J = 14.7 \,\mathrm{Hz}$)]. Furthermore, among the remaining signals at δ 4—5 ppm, one sequence correlation due to the β -glucosyl moiety was observed. The carbon-13 and proton correlation spectroscopy (13C-1H COSY) also supported the occurrence of the glucosidic residue.

The ¹³C-NMR data (Table II) for 1 were identical with

Table II. ¹³C-NMR Assignments (δ /ppm) of Physagulin E(1), Physagulin F(2), Physagulin G(3), Withaminimin (8), Daturametelin A(9) and Physagulin C(6)

	(C_5D_5N)	8 (CDCl ₃)	$\begin{matrix} 9 \\ (C_5D_5N) \end{matrix}$	(CDCl ₃)		6 (C ₅ D ₅ N)	3 (C ₅ D ₅ N
C-1	205.1	204.1	203.9	203.9	205.0	202.5	204.9
C-2	128.9	128.7	127.7	128.8	128.9	131.1	128.8
C-3	142.3	141.3	145.8	141.2	142.4	145.6	142.4
C-4	36.8	36.0	33.4	36.2	36.8	69.6	36.7
C-5	77.2	77.2	136.2	76.3	77.1	63.1	77.0
C-6	74.9	74.3	124.6	74.5	74.8	60.4	74.7
C-7	28.4	26.5	30.8	28.3	29.1	25.7	29.0
C-8	37.0	35.4	33.1	35.0	36.5	35.1	36.4
C-9	36.4	35.4	43.3	35.3	35.3	39.4	35.8
C-10	53.2	52.2	50.6	51.9	52.4	47.8	52.3
C-11	24.2	23.2	23.8	21.8	22.9	19.7	22.8
C-12	39.1	38.8	39.8	32.6	32.8	30.9	33.2
C-13	52.6	52.2	42.5	46.6	47.1	46.3	46.9
C-14	82.0	82.3	56.2	81.7	82.3	80.9	82.3
C-15	83.4	83.4	24.2	76.8	76.9	76.8	76.6
C-16	122.2	120.4	26.9	59.2	59.5	58.7	59.4
C-17	162.1	161.3	51.9	In solv.	76.7	75.9	77.2
C-18	17.1	16.8	11.7	15.9	16.0	16.4 ^{a)}	16.0
C-19	15.4	15.1	18.8	14.9	15.3	15.0 ^{a)}	15.2
C-20	35.3	36.1	38.9	33.1	33.6	34.0	33.8
C-21	17.9	17.2	13.3	13.5	14.0	13.8	14.2
C-22	79.9	78.5	78.2	76.7	77.3	77.9	77.8
C-23	27.6	32.4	29.9	32.4	33.3	32.7	28.3
C-24	148.5	150.3	157.0	149.1	149.3	In solv.	148.4
C-25	In solv.	121.4	122.8	121.9	121.8	121.3	124.2
C-26	166.2	167.5	166.0	166.3	166.0	165.6	165.9
C-27	12.3	12.4	63.2	12.4	12.6	12.2	12.3
C-28	66.5	20.6	20.4	20.5	20.0	20.6	66.9
-OAc	170.7	170.6		170.1	170.3	169.3	170.7
	21.4	21.4		21.1	21.1	19.8	21.1
Glc-1	102.9		104.6				103.4
Glc-2	74.9		75.0				74.9
Glc-3	78.3		78.3				78.4
Glc-4	71.6		71.5				71.5
Glc-5	78.7		78.3				78.7
Glc-6	62.6		62.6				62.7

a) Assignments for C-8 and C-9, C-18 and C-19 in Ref. 2a) should be revised as shown in this Table according to the several correlations of $^1H^{-1}H$ COSY, $^{13}C^{-1}H$ COSY and long range $^{13}C^{-1}H$ COSY.

those of withaminimin (8) except for the β -D-glucosyloxymethyl moiety in 1. In comparing the ¹³C-NMR data of the side chain moiety and β -glucopyranosyl part in 1 with those of daturametelin A $(9)^{4}$ having a 27-O-glucopyranosyl moiety, a vinylic methyl signal in 1 appeared at a higher field (at δ 12.3) than that (at δ 20.4) in **9**. The vinylic methyl signal appeared at $\delta_{\rm H}$ 1.95 ppm and $\delta_{\rm C}$ 12.3, and the –CH₂O– methylene signal at $\delta_{\rm H}$ 4.33 and 4.70 (AB quartet) and $\delta_{\rm C}$ 66.5, indicating that the hydroxymethyl group was located at C-28.⁵⁾ In addition, by the long range ¹³C–¹H COSY of 1 between the C-26 lactone carbonyl carbon and C-27 vinyl methyl protons, the presence of an oxygen group at C-28 was supported. Furthermore, a correlation between the 28-hydroxymethyl carbon and an anomeric proton disclosed that the β -glucopyranosyl moiety linked to the C_{28} hydroxy group in the side chain. All assignments of proton and carbon signals in 1 could be attained by the several correlations of ¹H-¹H COSY, ¹³C-¹H COSY and long range ¹³C-¹H COSY.

The stereochemistries at C-14 and -15 have been established to be 14R and 15S by the reason that the ¹H-NMR and ¹³C-NMR data of 1 were almost analogous with those of physagulin A (4) and withaminimin (8). The positive Cotton effect at 260 nm showed a 22R configuration. ⁵ Moreover, the negative Cotton effect at 335 nm

2450 Vol. 40, No. 9

indicated trans fusion of rings A to B.69 Besides, the ¹³C-NMR chemical shift of the C-19 methyl group in the 5,6-dihydroxy or 4,5,6-trihydroxy derivatives indicated the relationships between the C-19 methyl and hydroxy group. at C-5 to be gauche (cis fusion rings A to B) or not (trans fusion rings A to B). In the former, the chemical shift appears at around δ 10 ppm, δ , but in the latter, it appears at around δ 15 ppm. 8) This differences of chemical shift easily enabled us to discriminate the stereo compression effect between C-19 and the hydroxy group at C-5. In the case of 1, the chemical shift due to C-19 was at δ 15.4 ppm, which corresponded to the latter case, trans fusion pattern. Furthermore, this trans conformation was verified by the observation of the nuclear Overhauser effect (NOE) experiment between H₃-19 and H-4. Thus, physagulin E could be formulated as 1.

Physagulin F (2), a white powder, showed peaks due to $[M-H_2O+H]^+$ (m/z 527), $[M-AcOH+H]^+$ (m/z 485), $[M-2H_2O+H]^+$ $(m/z 509), [M-H_2O-AcOH+H]^+$ (m/z + m/z + m/z)467), $[M-2H_2O-AcOH+H]^+$ (m/z 449), $[M-3H_2O-$ AcOH + H] + (m/z 431) and $[M - 4H_2O - AcOH + H]$ + (m/z 431)413) in the positive FAB-MS. Furthermore, the base peak at m/z 125 ($C_7H_9O_2$) characterized the presence of the lactone mojety of with anolide. The IR spectrum of 2 indicated the presence of the acetyl group (1740 cm⁻¹), α,β -unsaturated δ -lactone group (1714 cm⁻¹) and α,β unsaturated carbonyl group (1684 cm⁻¹). Since the ¹H-NMR spectrum (Table I) of physagulin F (2) showed a similar signal pattern with that of physagulin C (6), that is, the following respective signals were assigned: six methyl groups [δ 1.40 (s, H₃-18), 1.62 (s, H₃-19), 1.02 (d, J = 7.0 Hz, H_3 -21), 1.74 (s, H_3 -28), 1.91 (s, H_3 -27) and 2.25 (s, 15-acetylmethyl)], two olefinic protons [δ 6.14 (1H, dd, J=9.9, 2.2 Hz, H-2) and 6.69 (1H, ddd, J=9.9, 5.1, 2.2 Hz, H-3)], one acetoxymethine proton [δ 5.65 (s, H-15)], one epoxy methine proton [δ 3.73 (s, H-16)] and a characteristic H-22 proton [δ 4.51 (ddd, J=12.8, 5.5, 3.7 Hz)]. These signals suggested the occurrence of the 1-one-2-ene system, 14β -hydroxy- 15α -acetoxy- 16β , 17β -epoxy system and the normal with anolide side chain. The remaining signal at δ 4.15 (1H, brs) was assigned to H-6 by the similar proton-proton correlation set (H-6 to H₂-12) in 2 by comparing with those of 1. In comparing the 13C-NMR spectral data (Table II) for 2 with those of 1 (for rings A and B) and 6 (for rings C, D and the side chain moiety), 2 was found to possess the same rings A and B with that of 1, and the same rings C, D and side chain moiety with those of 6. Thus, the structure of physagulin F was established as shown in the formula 2.

Physagulin G (3), a white powder, showed peaks due to $[M+glycerol+H]^+$ (m/z 815), $[M+H]^+$ (m/z 723), $[M-H_2O+H]^+$ (m/z 705), $[M-AcOH-H_2O+H]^+$ (m/z 645) and [M-162 (hexosyl unit)- $H_2O+H]^+$ (m/z 543) in the positive FAB-MS. These fragment ion peaks indicated the occurrence of the hexosyl group in the molecule as well as 1. The IR spectrum of 3 indicated the presence of a hydroxy group (3464 cm⁻¹), an acetyl group (1740 cm⁻¹), α,β -unsaturated δ -lactone group (1710 cm⁻¹) and an α,β -unsaturated ketone group (1684 cm⁻¹). The ¹H-NMR spectrum (Table I) of 3 had a similar signal pattern with that of 2 except for signals in the proton region (δ 4—5 ppm) attached to the oxygen bearing carbon. Assignments were

supported by comparison of the ¹H-NMR data of 3 with those of 2, and by the ${}^{1}H-{}^{1}H$ COSY of 3. Signals at δ 1.42, 1.61 (each 3H, s), 0.99 (3H, d, $J = 7.2 \,\text{Hz}$) and 2.23 (3H, s) could be assigned to four methyl groups of H₃-18, H₃-19, H₃-21 and the 15-acetoxymethyl group. Two olefinic proton signals and an oxymethine proton signal at δ 6.14 (dd, J=9.9, 2.9 Hz), 6.68 (ddd, J=9.9, 5.1, 2.9 Hz) and 4.14 (br s) were assigned to H-2, H-3 and H-6, respectively, on the 1-one-2-ene- 5α , 6β -dihydroxy system. The signals at δ 5.59 (s) and 3.65 (s) were attributable to H-15 and H-16 on the 14β -hydroxy- 15α -acetoxy- 16β , 17β -epoxy system. Moreover, the AB quartet signals at δ 4.76 (d, $J = 13.6 \,\mathrm{Hz}$) and 4.52 (d, J = 13.6 Hz) and a vinyl methyl signal at δ 1.97 (s), which were assigned to H₂-28 and H₃-27, suggested the hydroxy group at C-28. Furthermore, the β -glucopyranosyl moiety was found to combine with the C-28 hydroxy group the same as with 1. And then, by comparison of the ¹³C-NMR spectral data (Table II) for 3 with those of 2 (for rings A to D) and 1 (for the side chain and sugar moiety), physagulin G (3) were found to have the identical rings A—D with 2 and the same side chain and sugar moiety as 1. Thus, physagulin G was established as represented as formula 3.

Physagulins E (1) and G (3) are the first examples of with anolide which have a C-28 hydroxy group and have the sugar moiety at the C-28 hydroxy group.

Experimental

Optical rotations were measured on a JASCO DIP-360 automatic digital polarimeter and circular dichroism (CD) spectrum on a JASCO J-50A spectropolarimeter. The IR spectra were recorded with a Hitachi IR spectrometer, model 270-30. The ¹H- and ¹³C-NMR spectra were measured with a JEOL JNM-GX 400 NMR spectrometer and chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. The FAB-MS were measured with JEOL DX-303 HF spectrometer and taken in a glycerol matrix containing NaI. Thin layer chromatography performed on precoated Kieselgel 60 F_{2.54} (Merck) and detection was achieved by spraying 10% H₂SO₄ followed by heating. Column chromatography was carried out on Kieselgel (70—230 and 230—400 mesh, Merck) and Sephadex LH-20 (Pharmacia Fine Chem. Co., Ltd.) using MeOH.

Extraction and Separation The fresh berries (2.1 kg) of *Physalis angulata* L. (Solanaceae), harvested at the botanical garden in Fukuoka University, in September 1988, were extracted with MeOH and the extract was partitioned between 1-BuOH and H_2O . The 1-BuOH layer (8.9 g) was subjected repeatedly to column chromatography over silica gel using $CHCl_3$ -MeOH- H_2O =1:0:0 \rightarrow 8:2:0.1 \rightarrow MeOH and Sephadex LH-20 using MeOH to give physagulins E (1, 5.8 mg), F (2, 11.4 mg) and G (3, 8.6 mg).

Physagulin E (1): A white powder, $[\alpha]_D + 56.7^\circ$ (c = 0.66, MeOH). Positive FAB-MS (m/z): 799 [M+g]ycerol+H]⁺, 707 [M+H]⁺, 706 [M]⁺. 689 $[M-H_2O+H]$ ⁺, 647 [M-AcOH+H]⁺, 629 $[M-AcOH-H_2O+H]$ ⁺, 507 $[M-AcOH-2H_2O+H]$ ⁺ and 544 [M-162 (hexosyl unit)+H]⁺. IR (KBr): 3464, 2940, 1733, 1703, 1678, 1465, 1386, 1320, 1260 cm⁻¹. CD (c = 0.66, MeOH) $[\theta]$ (nm): -30400 (335) (negative max), +55000 (260) (positive max).

Physagulin F (2): A white powder, $[\alpha]_D + 70.7^{\circ}$ (c = 1.1, MeOH). Positive FAB-MS (m/z): 527 $[M-H_2O+H]^+$, 485 $[M-AcOH+H]^+$, 509 $[M-2H_2+H]^+$, 467 $[M-H_2O-AcOH+H]^+$, 449 $[M-2H_2O-AcOH+H]^+$, 413 $[M-3H_2O-AcOH+H]^+$, 413 $[M-4H_2O-AcOH+H]^+$, 1R (KBr): 3528, 2980, 1740, 1714, 1684, 1470, 1390, 1320, 1240 cm⁻¹. CD (c = 1.1, MeOH) [θ] (nm): -38500 (335) (negative max), +55300 (264) (positive max).

Physagulin G (3): A white powder, $[\alpha]_D + 31.3^\circ$ (c = 0.76, MeOH). Positive FAB-MS (m/z): 815 [M+g]ycerol+H]⁺, 723 [M+H]⁺, 705 $[M-H_2O+H]$ ⁺, 645 $[M-AcOH-H_2O+H]$ ⁺, 543 [M-162 (hexosyl unit)- H_2O+H]⁺. IR (KBr): 3464, 2940, 1740, 1710, 1684, 1386, 1254, 1130 cm⁻¹. CD (c = 0.76, MeOH) $[\theta]$ (nm): -36100 (335) (negative max), +58400 (265) (positive max).

References and Notes

- 1) This work is Part XXIV in a series of studies on the constituents of solanaceous plants.
- a) K. Shingu, N. Marubayashi, I. Ueda, S. Yahara and T. Nohara, *Chem. Pharm. Bull.*, 39, 1591 (1991); b) K. Shingu, S. Yahara, T. Nohara and H. Okabe, *ibid.*, 40, 2088 (1992).
- 3) H. E. Gottlieb, M. Cojocaru, S. C. Sinha, M. Saha, A. Bagchi, A. Ali and A. B. Ray, *Phytochemistry*, **26**, 1801 (1987).
- K. Shingu, T. Kajimoto, Y. Furusawa and T. Nohara, Chem. Pharm. Bull., 35, 4359 (1987).
- 5) E. Glotter, I. Kirson, D. Lavie and A. Abraham, "Bioorganic Chemistry," Vol. II, ed. by van E. E. Tamelen, Academic Press, New

- York, 1978, pp. 57—95.
- F. Frolow, A. B. Ray, M. Sahai, E. Glotter, H. E. Gottlieb and I. Kirson, J. Chem. Soc., Perkin Trans. 1, 1981, 1029 (1981).
- 7) a) A. B. Ray, M. Sahai and B. C. Das, J. Indian Chem. Soc., LV, 1175 (1978); b) N. Sahai, P. Neogi, A. B. Ray, Y. Oshima and H. Hikino, Heterocycles, 19, 37 (1982); c) A. Bagchi, P. Neogi, M. Sahai, A. B. Ray, Y. Oshima and H. Hikino, Phytochemistry, 23, 853 (1984).
- a) H. E. Gottlieb, M. Cojocaru, S. C. Sinha, M. Saha, A. Bagchi, A. Ali and A. B. Ray, *Phytochemistry*, 26, 1801 (1987); b) I. Kirson, G. Gunzberg, H. E. Gottrieb and E. Glotter, *J. Chem. Soc.*, *Perkin Trans. 1*, 1980, 531 (1980); c) H. E. Gottlieb and I. Kirson, *Org. Magn. Reson.*, 16, 20 (1981).