New Alkaloids, Picrasidines W, X and Y, from *Picrasma quassioides* and X-Ray Crystallographic Analysis of Picrasidine O Hong-Yu Li, Kazuo Koike, and Taichi Онмото* Department of Pharmacognosy, School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274, Japan. Received April 26, 1993 Three new alkaloids, picrasidines W (1), X (2) and Y (3), were isolated from the wood of *Picrasma quassioides* Bennet (Simaroubaceae). Their structures were determined by spectral and chemical evidence. Previously isolated picrasidine Q (4) was unambiguously determined by X-ray crystallographic analysis. Keywords Picrasma quassioides; Simaroubaceae; picrasidine W; picrasidine X; picrasidine Y; picrasidine Q The wood of Picrasma quassioides Bennet (Simaroubaceae; Japanese name: nigaki, and Chinese name; Kumu) is a well-known crude drug used as a bitter stomachic in Japan and China. In previous papers, we reported the structures of many indole alkaloids of β -carboline, canthin-6-one and β -carboline dimer types. ¹⁻¹¹ Studied of the canthin-6-one alkaloids of various natural origins were recently reviewed by Ohmoto and Koike. 12) Previously, we reported that canthin-6-one had an antifungal effect on mycotoxin-producing fungi. ¹³⁾ β -Carboline and canthin-6one alkaloids has strong inhibitory effects on cyclic AMP phosphodiesterase. 14,15) In addition, they increased of the blood flow rate in the intestine and stomach of rabbits¹⁶⁾ and exhibited antiviral activity on the Herpes simplex virus.¹⁷⁾ Continuing the search for new biologically active natural products of this plant, we have isolated three new alkaloids, named picrasidines W (1), X (2) and Y (3). Additionally, we previously reported the structure of 4-hydroxy-5-methoxycanthin-6-one (picrasidine Q, $\mathbf{4}$)⁶⁾ as a new natural product on the basis of spectral and chemical evidence. However, Verpoorte co-workers recently isolated the same compound from P. quassioides collected in China and reassigned our picrasidine Q (4) as 4-hydroxy-3methylcanthin-5,6-dione (5). 18) Therefore, we examined the X-ray crystallographic analysis of **4**, and the results indicate that our picrasidine Q was correctly determined to be 4-hydroxy-5-methoxycanthin-6-one, where as the compound isolated by Verpoorte's group should be reassigned as 5-hydroxy-4-methoxycanthin-6-one (**6**).^{3,19} ## **Results and Discussion** The wood of *P. quassioides* collected in Japan was extracted with methanol and then successively partitioned with chloroform, ethyl acetate, *n*-butanol and water. The *n*-butanol extract was chromatographed on Diaion HP-20, and Dragendorff's reagent positive fractions were further separated by ODS medium pressure liquid chromatography (MPLC) to give picrasidines W (1), X (2) and Y (3) as new compounds. The first compound, picrasidine W (1), was obtained as pale yellow needles. The molecular formula, C₁₅H₁₀N₂O₄, was determined by high-resolution mass measurement (HRMS). The infrared (IR) spectrum of 1 indicated bands at 3306 (OH) and 1651 (lactam) cm⁻¹. The ultraviolet (UV) absorption behavior was similar to those of canthin-6-one alkaloids, which suggested that 1 has a canthin-6-one chromophore. 1,3,6,20) The proton nuclear magnetic resonance (¹H-NMR) spectrum of **1** showed a methoxyl signal at δ 3.89 (3H, s), a pair of ortho coupled signals at δ 8.21 (1H, d, J=5.2 Hz, H-1) and 8.78 (1H, d, J=5.2 Hz, H-2), and ABX type signals at δ 7.17 (1H, dd, J = 8.8 and 2.5 Hz), 7.65 (1H, d, J=2.5 Hz) and 8.29 (1H, d, J=8.8 Hz) corresponding to the three aromatic protons of the monosubstituted indolic part. From the HRMS, 1 contains one more oxygen atom more than picrasidine Q (4), and the presence of an extra hydroxyl group was also suggested for 1. The ¹H- and carbon-13 (¹³C)-NMR spectra of 1 were very similar to those of 4, except that the indolic part of 1 was replaced by an oxygen function. Acetylation of 1 with acetic anhydride-pyridine gave the monoacetate (8) with the ABX protons resonating downfield ca. 0.2—0.5 ppm with repect to those of 1. Methylation of 1 with excess methyl iodide in acetone with K₂CO₃ afforded dimethyl ether (9) as shown in its ¹H-NMR spectrum in CDCl₃, where two methoxyl resonances at δ 4.08 and 4.46 (each 3H, s) were observed. These results suggested a hydroxyl group and a methoxyl group located at the C-4 and C-5 positions, respecively. The splitting pattern in the ¹H-NMR spectrum for the three aromatic protons of the indolic part of 1 clearly revealed that the remaining hydroxyl group is located at either the C-9 or C-10 position. Measurement of 1808 Vol. 41, No. 10 TABLE I. ¹H-NMR Spectral Data for Compounds 1, 4, 6 and 8 in DMSO-d₆ | Position | 1 ^{a)} | $8^{b)}$ | 4 ^{b)} | 6 ^{b)} | Verpoorte's 4 | |----------|--------------------|--------------------|------------------------|-----------------|---------------| | H-1 | 8.21 d (5.2) | 8.27 d (5.0) | 8.29 d (5.0) | 7.95 d (5.0) | 8.18 d (5) | | H-2 | 8.78 d (5.2) | 8.83 d (5.0) | 8.83 d (5.0) | 8.71 d (5.0) | 8.78 d (5) | | H-8 | 8.29 d (8.8) | 8.51 d (8.8) | 8.49 dd (7.7, 1.2) | 8.38 d (7.7) | 8.50 d (8.5) | | H-9 | 7.17 dd (8.8, 2.5) | 7.51 dd (8.8, 2.4) | 7.75 td (7.7, 1.2) | 7.67 t (7.7) | 7.76 t (15) | | H-10 | | | 7.51 td (7.7, 1.2) | 7.49 t (7.7) | 7.58 t (15) | | H-11 | 7.65 d (2.5) | 8.17 d (2.4) | 8.35 dd (7.7, 1.2) | 8.14 d (7.7) | 8.38 d (8.5) | | OMe-4 | ` , | , , | ` ' | 4.28 s | , , | | OMe-5 | 3.89 s | 3.88 s | 3.89 s | | 4.21 s | | OAc-10 | | 2.35 s | | | | a) Measured at 500 MHz. b) Measured at 400 MHz. c) Ref. 18. the ¹H-¹H shift correlation (COSY), proton-detected heteronuclear chemical shift correlation (HMQC) and long-range proton-detected heteronuclear chemical shift correlation (HMBC) spectra of 1, and subsequent comparison with the reported ¹H- and ¹³C-NMR assignments for canthin-6-one alkaloids¹²⁾ led us to favor the C-10 position. In order to determine the location of the hydroxyl group of the indolic part, the hydrogenation of 9 with zinc and acetic acid gave a 4,5-dihydro derivative (11) (Fig. 1). Also, we synthesized 9-methoxycanthin-6-one (10) from 7-methoxy-1-methyl- β -carboline (harmine, 15), and the hydrogenation of 10 afforded 9-methoxy-4,5-dihydrocanthin-6-one (12). The data of 11 were inconsistent with those of 12. From the above results, the remaining hydroxyl group was determined to be located at C-10, and the structure of picrasidine W (1) was determined to be 4,10-dihydroxy-5-methoxycanthin-6-one. The second and third compounds, picrasidine X (2) and picrasidine Y (3) were obtained as amorphous solids. Picrasidines X (2) and Y (3) were determined to have the molecular formulae C₁₄H₁₂N₂O₃ and C₁₄H₁₂N₂O₄, respectively, by HRMS and a combination of fast atom bombardment mass spectrometry (FABMS) and ¹³C-NMR spectra. The UV spectra of 2 and 3 were characteristic of β -carboline chromophores.^{1,3,4)} The IR spectra of **2** and **3** showed absorption bands at 3355 (br, OH) and 1630 $(C=O) cm^{-1}$ for **2** and 3421 (br, OH) and 1634 (C=O) cm⁻¹ for 3. The presence of a carbonyl carbon in the structure was indicated by the signal at δ 175.07 for 3 and at δ 173.79 for 4 in the ¹³C-NMR spectra. The ¹H- and ¹³C-NMR spectra of 2 and 3 were similar to those of β -carboline-1-propionic acid (13).³⁾ The major differences between 2 and 3 were in the spectral features arising from Table II. ¹³C-NMR Spectral Data for Compounds 1, 4, and 6 in DMSO- d_e^{a}) | Position | 1 b) | 4 °) | 6°) | Verpoorte's 4^{d} | |----------|--------|-------------|--------|---------------------| | C-1 | 116.29 | 116.61 | 113.70 | 114.79 | | C-2 | 144.18 | 144.69 | 144.11 | 145.22 | | C-4 | 151.71 | 152.65 | 142.68 | 143.59 | | C-5 | 135.61 | 135.62 | 139.60 | 140.52 | | C-6 | 157.01 | 157.65 | 156.27 | 157.32 | | C-8 | 116.39 | 115.61 | 115.22 | 116.14 | | C-9 | 118.39 | 130.75 | 129.62 | 130.71 | | C-10 | 154.97 | 125.03 | 124.65 | 125.65 | | C-11 | 108.76 | 123.50 | 122.39 | 123.59 | | C-12 | 125.48 | 124.34 | 124.20 | 125.16 | | C-13 | 131.91 | 138.68 | 137.38 | 138.42 | | C-14 | 129.05 | 129.11 | 127.96 | 128.97 | | C-15 | 128.28 | 128.25 | 124.82 | 125.77 | | C-16 | 131.88 | 132.17 | 133.46 | 134.39 | | OMe-4 | | | 60.51 | | | OMe-5 | 59.68 | 59.92 | | 60.95 | a) Signal assignments were carried out by HMQC and HMBC spectra. b) Measured at 125 MHz. c) Measured at 100 MHz. d) Ref. 18. the C-1 functional group. In picrasidine X (2), a methylene signal [$\delta_{\rm H}$ 3.46 (1H, dd, J=14.7 and 7.1 Hz) and 3.50 (1H, dd, J=14.7 and 5.9 Hz) and $\delta_{\rm C}$ 37.44], a methine signal [$\delta_{\rm H}$ 4.65 (1H, dd, J=7.1 and 5.9 Hz) and $\delta_{\rm C}$ 69.42] and a carbonyl carbon signal ($\delta_{\rm C}$ 175.07) were observed. The methine proton at δ 4.65 was determined to be the proton in the hydroxy-bearing carbon because the signal shifted to δ 5.70 upon acetylation. In the HMBC spectrum of 2, the methylene signals showed $^3J_{\rm CH}$ cross-peaks with a quaternary carbon at C-10 (δ 134.84) and a carbonyl carbon at C-3′ (δ 175.07). These results suggested that picrasidine October 1993 1809 Table III. $^{1}\text{H-NMR}$ Spectral Data for Compounds 2, 3, and 13 in DMSO- $d_{6}^{\ a)}$ | Position | 2 | 3 | 13 | |----------|--------------------------|--------------------|--------------------------| | H-3 | 8.28 d (5.5) | 8.27 d (5.1) | 8.25 d (5.1) | | H-4 | 7.99 d (5.5) | 8.03 d (5.1) | 7.92 d (5.1) | | H-5 | 8.21 dd (7.7, 1.1) | 8.21 d (7.9) | 8.15 dd (7.8, 1.2) | | H-6 | 7.24 ddd (7.7, 7.0, 1.0) | 7.24 dd (7.9, 7.1) | 7.23 ddd (7.8, 7.0, 1.1) | | H-7 | 7.55 ddd (8.1, 7.0, 1.1) | 7.55 dd (8.1, 7.1) | 7.54 ddd (8.2, 7.0, 1.2) | | H-8 | 7.62 dd (8.1, 1.0) | 7.67 d (8.1) | 7.61 dd (8.2, 1.1) | | NH | 11.57 br s | 11.10 br s | 11.49 br s | | H-1' | 3.46 dd (14.7, 7.1) | 5.40 d (3.0) | 3.38 t (7.3) | | | 3.50 dd (14.7, 5.9) | | | | H-2' | 4.65 dd (7.1, 5.9) | 4.48 d (3.0) | 2.89 t (7.3) | a) Measured at 400 MHz. Table IV. $^{13}\mathrm{C\textsc{-}NMR}$ Spectral Data for Compounds 2, 3, and 13 in DMSO- $d_6^{\ a)}$ | Position | 2 | 3 | 13 | |----------|--------|--------|--------| | C-1 | 142.26 | 145.11 | 143.87 | | C-3 | 136.61 | 136.31 | 137.12 | | C-4 | 111.94 | 112.24 | 112.47 | | C-5 | 121.65 | 121.54 | 121.30 | | C-6 | 119.27 | 119.24 | 118.96 | | C-7 | 128.07 | 128.21 | 127.56 | | C-8 | 113.20 | 113.78 | 111.70 | | C-10 | 134.84 | 133.83 | 133.87 | | C-11 | 127.74 | 128.69 | 127.03 | | C-12 | 120.85 | 120.31 | 120.88 | | C-13 | 140.67 | 140.75 | 140.29 | | C-1' | 37.44 | 74.24 | 27.94 | | C-2' | 69.42 | 75.27 | 31.31 | | C-3' | 175.07 | 173.79 | 173.70 | a) Signal assignments were carried out by HMQC and HMBC spectra and measured at 100 MHz. Fig. 2. ORTEP Drawing of Picrasidine Q (4) X (2) has a –CH₂CH(OH)COOH group. In picrasidine Y (3), the molecular weight of 3 was 16 mass units higher than that of 2, suggesting the presence of one more hydroxyl group than in 2. The ¹H- and ¹³C-NMR spectra of 3 showed two methine signals $[\delta_H 4.48 (1H, d, J=3.0 Hz)]$ and 5.40 (1H, d, J=3.0 Hz) and $\delta_C 74.24$ and 75.27] and a carbonyl carbon signal at $\delta 173.79$, was determined to be a Table V. Final Positional Parameters ($\times 10^4$) and Equivalent Isotropic Thermal Parameters with Estimated Standard Deviations in Parentheses for Picrasidine Q (4) | Atom | х | у | z | $B_{ m eq}$ | |--------|------------|----------|-----------|-------------| | O(1) | 5001.4 (7) | 3531 (1) | -3994 (3) | 3.83 (6) | | O(2) | 4550.8 (8) | 1904 (1) | -1748(3) | 4.27 (7) | | O(3) | 3380.7 (8) | 1922 (1) | 1742 (3) | 4.44 (7) | | N(3) | 4238.7 (8) | 5247 (1) | -2768(3) | 3.21 (7) | | N(7) | 3286.5 (8) | 3514 (1) | 1382 (3) | 3.08 (7) | | C(1) | 3238 (1) | 5945 (2) | 322 (5) | 3.5 (1) | | C(2) | 3825 (1) | 5981 (2) | -2061(5) | 3.6 (1) | | C(4) | 4445 (1) | 3544 (1) | -2245(4) | 2.96 (8) | | C(5) | 4224 (1) | 2733 (1) | -1061(4) | 3.21 (9) | | C(6) | 3608 (1) | 2656 (1) | 783 (4) | 3.4 (1) | | C(8) | 2259 (1) | 3137 (2) | 4570 (5) | 3.8 (1) | | C(9) | 1670 (1) | 3544 (2) | 5867 (5) | 4.4 (1) | | C(10) | 1507 (1) | 4491 (2) | 5541 (5) | 4.6 (1) | | C(11) | 1925 (1) | 5080 (2) | 3933 (5) | 4.0 (1) | | C(12) | 2517 (1) | 4692 (1) | 2640 (4) | 3.18 (8) | | C(13) | 2670 (1) | 3728 (1) | 2964 (4) | 3.18 (9) | | C(14) | 3062 (1) | 5086 (1) | 836 (4) | 3.07 (9) | | C(15) | 3504 (1) | 4335 (1) | 142 (4) | 2.90(8) | | C(16) | 4073 (1) | 4405 (1) | -1653(4) | 2.85 (8) | | C(17) | 4967 (2) | 1451 (2) | 718 (6) | 5.7 (1) | | H(0) | 5120 (1) | 4150 (2) | -4870(5) | 7.7 (7) | | H(1) | 2970 (1) | 6490(1) | 130 (4) | 3.9 (4) | | H(2) | 3970 (1) | 6610 (1) | -3070(4) | 4.0 (5) | | H(8) | 2370 (1) | 2490 (1) | 4740 (4) | 4.1 (5) | | H(9) | 1340 (1) | 3110 (1) | 7000 (4) | 4.9 (5) | | H(10) | 1100 (1) | 4780 (1) | 6620 (4) | 5.6 (6) | | H(11) | 1810 (1) | 5760 (1) | 3660 (4) | 4.9 (5) | | H(17) | 5410 (2) | 1830 (3) | 1070 (9) | 18 (2) | | H(17A) | 5150 (1) | 880 (2) | -10(9) | 8.8 (8) | | H(17B) | 4700 (2) | 1430 (2) | 2610 (7) | 12 (1) | -CH(OH)CH(OH)COOH group. On the basis of the above data, the structure of picrasidine X and Y were proposed to be the structures 2 and 3, except for the configuration at the C-1' and/or C-2' positions, respectively. Picrasidine Q (4) is a crystalline compound isolated by us from P. quassioides. 6) In order to establish a definitive structure, X-ray crystallographic analysis of a single crystal was carried out. An ORTEP drawing of the X-ray model of picrasidine Q (4) is presented in Fig. 2. Our X-ray analysis showed that picrasidine Q has the structure (4). On the other hand, compound 4 has been isolated from P. quassioides collected in China, and elucidated as a new compound by Verpoote's group. 18) However, their ¹H-¹H COSY, ¹H-¹³C HETCOR and 1D difference decoupling experiments were misassigned as 4-hydroxy-5-methoxycanthin-6-one (4). The reported ¹H- and ¹³C-NMR data are in good agreement with those of 5-hydroxy-4-methoxycanthin-6-one (6).20) These results strongly suggest that Verpoorte's 4 is in fact 6, which was already isolated as a main compound, nigakinone^{3,19)} as was 4,5-dimethoxycanthin-6-one $(7)^{21}$ from P. quassioides. ## Experimental General Experimental Procedures Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a JASCO 7300 FTIR spectrometer. UV spectra were recorded on a Hitachi 340 spectrometer in MeOH. Optical rotations were determined on a JASCO DIP-4 digital polarimeter. EIMS and FABMS were measured on JEOL D-300 and JEOL DX-303 mass spectrometers, respectively. ¹H-, ¹³C- and 2D- NMR spectra were recorded with JEOL A-500 (500 MHz for ¹H-NMR and 125 MHz for ¹³C-NMR) 1810 Vol. 41, No. 10 or JEOL EX-400 (400 MHz for $^1\text{H-NMR}$ and 100 MHz for $^{13}\text{C-NMR}$) spectrometers. Chemical shifts are expressed in δ (ppm) downfield from tetramethylsilane as an internal standard, and coupling constants in hertz (Hz). Silica gel (BW-820 MH, Fuji Davison) and Diaion HP-20 (Mitsubishi Kasei) were used for column chromatography. MPLC was carried out on an ODS [Chromatorex C_{18} , Fuji Davison, 24 mm i.d. \times 300 mm, detector UV 254 nm, solvent system MeOH-H₂O (1:1)]. Plant Material The wood sample of *Picrasma quassioides* was collected at Funabashi, Chiba, Japan, in September 1985. It was identified by Dr. N. Sahashi (Department of Biology, Toho University, Japan). A voucher specimen is deposited at Department of Pharmacognosy, School of Pharmaceutical Sciences, Toho University. Extraction and Isolation of Alkaloids Dried wood (50 kg) of the plant was powdered and extracted with MeOH (100 l) at 60 °C for 24 h. The MeOH extract was concentrated under reduced pressure to give a residue, to which an equal volume of $\rm H_2O$ was added. The aqueous solution was successively extracted with CHCl₃ (15 l), EtOAc (15 l) and then n-BuOH (15 l). The n-BuOH extract (175 g) was applied to a column of Diaion HP-20 (3 kg), using $\rm H_2O$ -MeOH as the eluent, with an increasing MeOH content: $\rm H_2O$ -MeOH (9:1, 7:3, 1:1, 3:7) and then MeOH. Dragendorff's reagent positive fractions (32 g) were combined and chromatographed on a silica gel (1 kg) column. Elution was performed with 1, 2, 5, 10, 20, 40, 50% MeOH in CHCl₃, and then MeOH. The 20—50% MeOH in CHCl₃ fractions was subjected to MPLC using reversed phase $\rm C_{18}$ to give picrasidines W (1, 35 mg), X (2, 15 mg) and Y (3, 5 mg). **Picrasidine W** (1) Yellow needles (MeOH), mp 225—227 °C. IR $\nu_{\rm max}$ cm $^{-1}$: 3306, 1651, 1636, 1323, 1291, 1247, 1217, 1136, 1100, 1070, 1013, 955. UV $\lambda_{\rm max}^{\rm meOH}$ nm (log ε): 230 (4.53), 242 (4.50), 254 (sh, 4.44), 282 (4.40), 304 (sh, 4.13), 355 (4.21), 370 (4.21). UV $\lambda_{\rm max}^{\rm MeOH+HCl}$ nm (log ε): 230 (4.54), 242 (4.48), 254 (sh, 4.39), 282 (4.39), 304 (sh, 4.09), 3.30 (sh, 3.93), 355 (4.17), 370 (4.21), 395 (sh, 3.75). UV $\lambda_{\rm meOH+NaOH}^{\rm MeOH+NaOH}$ nm (log ε): 238 (4.57), 260 (4.57), 282 (sh, 4.38), 294 (4.38), 306 (4.27), 346 (sh, 4.18), 362 (4.27), 400 (sh, 3.45). EIMS m/z (rel. int.): 282 (M $^+$, 97), 267 (64), 253 (42), 236 (3), 211 (23), 183 (100), 156 (13), 127 (10). HMBC correlations (500 MHz, DMSO- d_6): H-1→C-2, C-12, C-15; H-2→C-1, C-12, C-14, C-16; H-8→C-10, C-12, C-13; H-9→C-10, C-11, C-13; H-11→C-9, C-10, C-13, C-14; OMe-5→C-5. HRMS: Calcd for C₁₅H₁₀N₂O₄, m/z 282.0641, Found m/z 282.0643. **Acetylation of 1** Picrasidine W (1, 5 mg) was acetylated with Ac_2O (0.2 ml) and pyridine (0.2 ml) for 15 h at room temperature. After MeOH (5 ml) was added, the reaction mixture was evaporated under reduced pressure to give monoacetate (8, 5 mg). Compound 8: Pale yellow needles, mp 258—260 °C. IR ν_{max} cm⁻¹: 1752, 1670, 1650, 1619, 1598, 1226, 1174, 1141, 1073, 1020. EIMS m/z (rel. int.): 324 (M⁺, 100), 309 (50), 295 (38), 282 (34), 267 (69), 253 (58), 255 (16), 211 (20), 183 (68). Methylation of 1 Picrasidine W (1, 5 mg) was suspended in acetone and methylated with excess methyl iodide and K_2CO_3 (20 mg). The reaction mixture was refluxed with stirring for 2 h, after the usual work-up, to give dimethyl ether (9, 5 mg). Compound 9: Pale yellow needles, mp 258—260 °C. EIMS m/z (rel. int.): 340 (M⁺, 1), 310 (100), 295 (89), 267 (50), 251 (21), 238 (13), 224 (14), 196 (56). ¹H-NMR (CDCl₃, 400 MHz) δ : 3.98 (3H, s, OMe-5), 4.08 (3H, s, OMe-10), 4.46 (3H, s, OMe-4), 7.26 (1H, dd, J=9.2, 2.2 Hz, H-9), 7.55 (1H, d, J=2.2 Hz, H-11), 7.91 (1H, d, J=5.2 Hz, H-1), 8.54 (1H, d, J=9.2 Hz, H-8), 8.83 (1H, d, J=5.2 Hz, H-2). **Hydrogenation of 9** Compound **9** (3 mg) in acetic acid (1 ml) was boiled with granulated zinc for 15 min, then solution was diluted with water, neutralized by the addition of 5% Na₂CO₃ solution, and extracted with CHCl₃. Evaporation of the CHCl₃ solution gave 4,5-dihydro-10-methoxycanthin-6-one (**11**, 2 mg). Compound **11**: Amorphous powder. EIMS m/z (rel. int): 252 (M⁺, 100), 238 (58), 223 (74), 209 (62), 195 (18). ¹H-NMR (CDCl₃, 400 MHz) δ: 3.21 (2H, t, J=7.7 Hz, H-5), 3.49 (1H, t, J=7.7 Hz, H-4), 3.95 (3H, s, OMe-10), 7.26 (1H, dd, J=9.2, 2.5 Hz, H-9), 7.49 (1H, d, J=2.5 Hz, H-11), 7.69 (1H, d, J=5.1 Hz, H-1), 8.43 (1H, d, J=9.2 Hz, H-8), 8.50 (1H, d, J=5.1 Hz, H-2). Benzylidene Harmine (16) Harmine (15, 500 mg, purchased from Sigma) was refluxed with distilled benzaldehyde (3 ml) for 4 h. After cooling, the reaction mixture yield a yellow precipitate. It was separated, washed with ether and CHCl₃, and recrystallized from MeOH to give bulky yellow needles (16, 380 mg). Compound 16: mp 144—145 °C. IR ν_{max} cm⁻¹: 3480, 1640, 1585, 1370, 1230, 1155. EIMS m/z (rel. int.): 300 (M⁺, 45), 299 (100), 284 (16), 256 (11), 150 (4), 128 (11). ¹H-NMR (DMSO- d_6 , 400 MHz) δ: 3.91 (3H, s, OMe-7), 6.88 (1H, dd, J=8.4, 2.2 Hz, H-6), 7.06 (1H, d, J=2.2 Hz, H-8), 7.85 (1H, d, J=5.1 Hz, H-4), 8.07 (1H, d, J=8.4 Hz, H-5), 8.31 (1H, d, J=5.1 Hz, H-3), 7.84, 7.89 (each 1H, d, J=15.8 Hz, H-1′, H-2'), 7.34 (1H, t, J = 7.3 Hz, H-3"), 7.46 (1H, m, H-4"), 7.60 (1H, t, J = 7.3 Hz, H-5"), 7.74 (1H, d, J = 7.3 Hz, H-2"), 7.94 (1H, d, J = 7.3 Hz, H-6"). Anal. Calcd for $C_{20}H_{16}N_2O\cdot H_2O:$ C, 75.33; H, 5.15; N, 6.50. Found: C, 75.26; H, 5.21; N, 6.61. **1-Formyl-7-methoxy-β-carboline** (17) Benzylidene harmine (16, 300 mg) was dissolved in AcOH–H₂O (4:1), osmium tetraoxide (40 mg) and sodium paraperiodate (0.8 g). The reaction mixture was stirred for 72 h. The aqueous acetic acid was removed under reduced pressure, the residue was suspended in a 10% NaHCO₃ solution (30 ml), extracted with CHCl₃ and dried over MgSO₄, and the solvent was removed under reduced pressure to give a yellow solid. This was then recrystallized from acetone to give yellow prisms (17, 180 mg). Compound 17: mp 203—204 °C. IR $\nu_{\rm max}$ cm⁻¹: 3410, 1675, 1625, 1580, 1305, 1250, 1220, 1150, 1125. EIMS m/z (rel. int.): 226 (M⁺, 100), 198 (51), 183 (40), 155 (31). ¹H-NMR (CDCl₃, 400 MHz) δ: 3.94 (3H, s, OMe-7), 6.96 (1H, dd, J=8.3, 2.4 Hz, H-6), 7.03 (1H, d, J=2.4 Hz, H-8), 8.02 (1H, d, J=8.3 Hz, H-5), 8.05 (1H, d, J=4.9 Hz, H-4), 8.60 (1H, d, J=4.9 Hz, H-3), 9.99 (1H, br s, NH), 10.32 (1H, s, CHO-1). *Anal.* Calcd for C₁₃H₁₀N₂O₂·H₂O: C, 66.38; H, 4.71; N, 11.91. Found: C, 66.91; H, 4.33; N, 11.62. **9-Methoxycanthin-6-one** (10) 1-Formyl-7-methoxy-β-carboline (17, 100 mg) was condensed with malonic acid (200 mg) in piperidine to give a pale yellow solid. Column chromatography of the solid on silica gel provided pale yellow needles (10, 35 mg) upon elution with CHCl₃–MeOH (19:1). 1 H-NMR (CDCl₃, 4000 MHz) δ: 3.97 (3H, s, OMe-9), 6.92 (1H, d, J=9.9 Hz, H-5), 7.03 (1H, dd, J=8.6, 2.4 Hz, H-10), 7.79 (1H, d, J=4.9 Hz, H-1), 7.88 (1H, J=8.6 Hz, H-11), 7.98 (1H, d, J=9.9 Hz, H-4), 8.13 (1H, d, J=2.4 Hz, H-8), 8.74 (1H, d, J=4.9 Hz, H-2). Compound 10: mp 177—179 °C. IR $\nu_{\rm max}$ cm⁻¹: 1665, 1630, 1610, 1330, 1270, 1220, 1150, 1030. EIMS m/z (rel. int.): 250 (M $^+$, 100), 235 (9), 221 (21), 207 (35), 192 (13), 179 (29). Anal. Calcd for C₁₅H₁₀N₂O₂: C, 71.99; H, 4.00; N, 11.91. Found: C, 72.05; H, 4.12; N, 11.31. **Hydrogenation of 10** Compound **10** (3 mg) in acetic acid (1 ml) was boiled with granulated zinc for 15 min, then the solution was diluted with water, neutralized by the addition of 5% Na₂CO₃ solution, and extracted with CHCl₃. Evaporation of the CHCl₃ solution gave 4,5-dihydro-9-methoxycanthin-6-one (**12**, 2 mg). Compound **12**: Amorphous powder. EIMS m/z (rel. int.): 252 (M⁺, 100), 236 (5), 224 (60), 208 (8), 181 (18). ¹H-NMR (CDCl₃, 400 MHz) δ: 3.21 (2H, t, J=7.7 Hz, H-5), 3.48 (1H, t, J=7.7 Hz, H-4), 3.97 (3H, s, OMe-9), 7.06 (¹H, dd, J=8.6, 2.2 Hz, H-10), 7.62 (1H, d, J=5.5 Hz, H-1), 7.91 (1H, d, J=8.6 Hz, H-11), 8.06 (1H, d, J=2.2 Hz, H-8), 8.47 (1H, d, J=5.5 Hz, H-2). **Picrasidine X (2)** Pale yellow solid (MeOH), mp 180—181 °C. [α]₂²² -37.0° (c=0.4, pyridine). IR $\nu_{\rm max}$ cm⁻¹: 3355 (br), 3191 (br), 1630, 1594, 1505, 1448, 1372, 1340, 1295, 1216, 1108, 1082. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 250 (4.58), 290 (4.23), 303 (sh, 4.27), 352 (3.79), 370 (sh, 3.71). UV $\lambda_{\rm max}^{\rm MeOH+HCl}$ nm (log ε): 250 (4.60), 303 (4.39), 368 (3.86). UV $\lambda_{\rm max}^{\rm MeOH+AOH}$ nm (log ε): 236 (4.60), 300 (sh, 4.42), 280 (sh, 4.09), 289 (4.29), 335 (3.75), 350 (3.75). EIMS m/z (rel. int.): 256 (M⁺, 2), 238 (14), 220 (100), 192 (78), 182 (18), 154 (4). HMBC correlations (400 MHz, DMSO-d₆): H-3 \rightarrow C-4, C-11; H-4 \rightarrow C-10, C-12; H-5 \rightarrow C-7, C-13; H-6 \rightarrow C-8, C-12; H-7 \rightarrow C-5, C-8; H-8 \rightarrow C-12, C-7; H-1' \rightarrow C-1, C-10, C-3'; H-2' \rightarrow C-1. HRMS: Calcd for C₁₄H₁₂N₂O₃, m/z 256.0848, Found m/z 282.0820. **Acetylation of 2** Picrasidine X (1, 1 mg) was acetylated with Ac₂O (0.1 ml) and pyridine (0.1 ml) for 15 h at room temperature. After MeOH (5 ml) was added, the reaction mixture was evaporated under reduced pressure to give a monoacetate (14, 0.5 mg). Compound 14: 1 H-NMR (DMSO- d_{6} , 400 MHz) δ: 1.93 (3H, s, OAc-2'), 3.59 (1H, dd, J=15.0, 5.1 Hz), 3.68 (1H, dd, J=15.0, 8.4 Hz) (each H-1'), 5.70 (1H, dd, J=8.4, 5.1 Hz, H-2'), 7.23 (1H, t, J=7.7 Hz, H-6), 7.54 (1H, t, J=7.7 Hz, H-7), 7.61 (1H, d, J=7.7 Hz, H-8), 7.96 (1H, d, J=5.0 Hz, H-4), 8.19 (1H, d, J=7.7 Hz, H-5), 8.25 (1H, d, J=5.0 Hz, H-3). **Picrasidine Y (3)** Pale yellow solid (MeOH), mp 184—185 °C. $[α]_D^{-2}$ - 33.2° (c = 0.5, pyridine). IR $ν_{\rm max}$ cm $^{-1}$: 3421 (br), 2925, 1634, 1538, 1506, 1455, 1332, 1230, 1127, 1055. UV $λ_{\rm max}^{\rm MeOH}$ nm (log ε): 250 (4.51), 290 (4.21), 302 (4.27), 352 (3.60), 370 (sh, 3.51). EIMS m/z (rel. int.): 236 ([M - 2 × H₂O] +, 100), 208 (16), 194 (8), 180 (29), 168 (50), 153 (12). FABMS m/z: 295 [M + Na] +, 273 [M + H] +. **X-Ray Analysis of Picrasidine Q (4)** Crystallized from MeOH, $C_{15}H_{10}N_2O_3$, $M_r = 266.26$, yellow needles having approximate dimensions of $0.100 \times 0.100 \times 0.400$ mm were mounted on a glass fiber. All measurements were made on a Rigaku AFC5R diffractometer with graphite monochromated CuK_a radiation ($\lambda = 1.54178 \text{ Å}$), $\mu(CuK_a) = 9.06 \text{ cm}^{-1}$ and a 12 kW rotating anode generator using ω -2 θ scan technique to a maximum 2θ value of 120.2° . Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting an- gles of 18 carefully centered reflections in the range $47.00 < 2\theta < 56.53^{\circ}$ corresponded to a monoclinic cell with dimensions: a=18.090 (2) Å, b=14.243 (2) Å, c=4.512 (2) Å; $\beta=96.31$ (2)°; V=1155.5 (4) ų. Calculated density = 1.530 g/cm³ for Z=4. Base on the systematic absence of h01: $h\neq 2n$, 0k0: $k\neq 2n$ and the successful solution and refinement of the structure, the space group was determined to be $P2_1/a$ (\$14). Of the 2051 reflections which were collected, 1795 were unique ($R_{\rm int}=0.016$). The molecular structure of 4 was solved by a direct method (SHELXS-86²¹)) and refined by using the full-matrix least-squares technique. The final refinement cycle gave R=0.032 ($R_{\rm w}=0.030$). The final Fourier difference synthesis showed a maximum and minimum of $+0.14e^{-}/{\rm Å}^3$ and $-0.21e^{-}/{\rm Å}^3$, respectively. Atomic coordinates, bond angles, thermal parameters and structure factors are deposited at the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K. **Acknowledgement** The authors gratefully thank Dr. S. Sato (Rigaku Corporation) for X-ray analysis and his helpful suggestions. H.-Y.Li wishes to acknowledge his scholarship (1990—1991) from this university. ## References and Notes - 1) T. Ohmoto, K. Koike, Chem. Pharm. Bull., 30, 1204 (1982). - 2) T. Ohmoto, K. Koike, Chem. Pharm. Bull., 31, 3198 (1983). - 3) T. Ohmoto, K. Koike, Chem. Pharm. Bull., 32, 3579 (1984). - T. Ohmoto, K. Koike, T. Higuchi, K. Ikeda, Chem. Pharm. Bull., 33, 3356 (1985). - 5) T. Ohmoto, K. Koike, Chem. Pharm. Bull., 33, 3847 (1985). - 6) T. Ohmoto, K. Koike, Chem. Pharm. Bull., 33, 4901 (1985). - 7) K. Koike, T. Ohmoto, Chem. Pharm. Bull., 34, 2090 (1986). - 8) K. Koike, T. Ohmoto, K. Ogata, Chem. Pharm. Bull., 34, 3228 (1986). - 9) K. Koike, T. Ohmoto, Chem. Pharm. Bull., 35, 3305 (1987). - 10) T. Ohmoto, K. Koike, T. Higuchi, Phytochemistry, 26, 3375 (1987). - 11) K. Koike, T. Ohmoto, Phytochemistry, 27, 3029 (1988). - 12) T. Ohmoto, K. Koike, "The Alkaloids; Chemistry and Pharmacology," Vol. 36, ed. by A. Brossi, Academic Press, New York, 1989, pp. 135—170. - 13) T. Ohmoto, K. Koike, Shouyakugaku Zasshi, 36, 307 (1982). - 14) Y.-I. Sung, K. Koike, T. Nikaido, T. Ohmoto, U. Sankawa, Chem. Pharm. Bull., 32, 1872 (1984). - T. Ohmoto, T. Nikaido, K. Koike, K. Kohda, U. Sankawa, Chem. Pharm. Bull., 36, 4588 (1987). - T. Ohmoto, Y.-I. Sung, K. Koike, T. Nikaido, Shouyakugaku Zasshi, 39, 29 (1985). - 17) T. Ohmoto, K. Koike, Shouyakugaku Zasshi, 42, 160 (1988). - 18) J. Liu, R. S. Davidson, R. Heijden, R. Verpoorte, O. W. Howarth, Justus Liebigs Ann. Chem., 987 (1992). - 19) K. Kimura, M. Takido, S. Koizumi, Yakugaku Zasshi, 87, 137 (1967). - 20) K. Koike, T. Ohmoto, Chem. Pharm. Bull., 33, 5239 (1985). - N. Inamoto, S. Masuda, O. Simamura, T. Tsuyuki, *Bull. Chem. Soc. Jpn.*, 34, 888 (1961). - 22) "Crystallographic Computing 3," ed. by G. M. Sheldrick, C. Kruger,R. Goddard, Oxford Univ. Press, 1985, pp. 175—189.