Physapruins A and B, Two New Withanolides from *Physalis pruinosa* BAILEY¹⁾

Kazushi Shingu, Mariko Miyagawa, Shoji Yahara, and Toshihiro Nohara*

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862, Japan. Received March 12, 1993

Two new withanolides, physapruins A and B, were isolated from the methanolic extract of the fresh aerial parts of *Physalis pruinosa* (Solanaceae), and their structures have been determined to be 4β , 14α , 17β , 20β -tetrahydroxy-1-oxo-20S, 22R-witha-2,5,24-trienolide (1) and 6β -acetoxy- 5α -butoxy- 14α - 17β - 20β -trihydroxy-1-oxo-20S, 22R-witha-2,24-dienolide (2) on the basis of spectral evidence.

Keywords Physalis pruinosa; Solanaceae; withanolide; physapruin A; physapruin B

In our previous papers,²⁾ we reported the structure elucidation of seven withanolides, physagulins A, B, C, D, E, F and G, isolated from *physalis angulata* L. As an extended search for withanolides from the same genus, we have now isolated two new withanolides from the fresh aerial parts of *Physalis pruinosa* and determined their structures.

Physapruin A (1), obtained as colorless needles, with a mp of 207—209 °C and $[\alpha]_D$ +159.1° (MeOH), exhibited the absorption bands at 3408 cm⁻¹ (hydroxyl), 1696 cm⁻¹ (α,β -unsaturated δ-lactone) and 1664 cm⁻¹ (α,β -unsaturated ketone) in the IR spectrum (KBr). The positive fast atom bombardment mass spectrum (FAB-MS) displayed peaks due to $[M+Na]^+$ at m/z 509 and the stepwise elimination of four hydroxy groups at m/z 469 $[M-H_2O+H]^+$, 451 $[M-2H_2O+H]^+$, 433 $[M-3H_2O+H]^+$ and 415 $[M-4H_2O+H]^+$. The mass fragments at m/z 125 and 165 were characteristic of side chain cleavage between C-20 and C-22 and between C-17 and C-20.3 These peaks suggested that 1 was a 17,20-dihydroxywithanolide.

The ¹H-NMR spectrum, as listed in Table I, showed features typical of a withanolide. Five singlet signals at δ 1.13, 1.42, 1.45, 1.88 and 1.94 could be assigned to five methyl groups, and the signals of two olefinic methyl groups at δ 1.88 and 1.94, as well as the characteristic H-22 signal (dd, J=10.8, 5.7 Hz) at δ 4.92 suggested the presence of a typical α,β -unsaturated δ -lactone side chain. The coupling pattern and constants of the H-22 signal and the chemical shifts of two singlet methyl signals, H₃-21 and H₃-18 at δ 1.45 and 1.13, were indicative of a $14\alpha,17\beta,20\beta$ -trihydroxyl substitution by comparison with the analogous substituted withanolides, withanolide E (3) and related compounds. ^{3,4)} The presence of these hydroxy groups at C-17 and 20 was supported by cleavage between C-17 and C-20, and between C-20 and C-22 in the FAB-MS.

On the other hand, in the low field, cis olefinic proton signals at δ 6.78 (1H, dd, J=10.2, 4.5 Hz) and 5.93 (1H, d, J=10.2 Hz), an olefinic proton signal at δ 5.92 (1H, d, J=5.9 Hz) and a hydroxymethine proton signal at δ 4.62 (d, J=4.5 Hz) could be assigned to H-3, H-2, H-6 and H $_{\alpha}$ -4, respectively. These signals suggested a 2,5-diene-1-one-4 β -hydroxyl system for rings A and B.

In the ¹³C-NMR spectrum of 1, as listed in Table II, signals for rings C and D and the side chain moiety were similar to those of 3. Moreover, the remaining signals due to rings A and B could be reasonably assigned, taking into

consideration the effect of an acetyl group, by comparison with those of withanolide U monoacetate (4).^{4,5)} Based on these spectral data and the positive Cotton effect curve at 256 nm⁶⁾ in the CD spectrum, the structure of 1 having a 22*R*-configuration could be expressed as shown in the formula.

Physapruin B (2), was isolated as an acetyl derivative, $C_{34}H_{50}O_9$, an amorphous powder, $[\alpha]_D + 47.0^\circ$ (MeOH), in order to achieve easy separation. In the IR spectrum of 2, absorption bands appeared at $3452\,\mathrm{cm}^{-1}$ (hydroxy), $1740\,\mathrm{cm}^{-1}$ (acetyl carbonyl), $1714\,\mathrm{cm}^{-1}$ (α,β -unsaturated δ -lactone) and $1690\,\mathrm{cm}^{-1}$ (α,β -unsaturated ketone). The positive FAB-MS of 2 gave $[M+Na]^+$, $[M+H]^+$ and $[M-H_2O+H]^+$ ion peaks at m/z 625, 603 and 585, respectively, and peaks at m/z 165 and 125 indicated the

Table I. ¹H-NMR Data (δ /ppm, in CDCl₃) for Physapruin A (1), B (2), Withanolide E (3), and 5α -Ethoxy- 6β , 14α , 17β , 20-tetrahydroxy-1-oxo-20S, 22R-witha-2, 24-dienolide Monoacetate (5a)

	• • •						
Н	1	3	2	5a			
2	5.93 d	6.03 dq	5.82 dd	5.82 dd			
	(10.2)	(10.0, 2.5, 1.0)	(10.0, 2.7)	(10, 3)			
3	6.78 dd	6.87 dq	6.43 ddd	6.44 dq			
	(10.2, 4.5)	(10.0, 5.5, 2.5)	(10.0, 5.3, 2.0)	(10, 3)			
4	4.62 d	, , ,	2.33 dd	2.34 dd			
	(4.5)		(19.7, 5.7)	(22, 6)			
			2.55 d (19.7)	2.55 br d			
			(, , , ,	(22, 4)			
6	5.92 d	3.20 m	5.15 d (2.7)	5.15 br s			
	(5.9)		(-11)	$(W_{1/2} 8.2)$			
18	1.13's	1.10 s	1.14 s	1.15 s			
19	1.42 s	1.25 s	1.26 s	1.27 s			
21	1.45 s	1.42 s	1.41 s	1.41 s			
22	4.92 dd	4.88 m	4.93 m	4.94 br t			
	(10.8, 5.7)			$(W_{1/2} \ 20)$			
27	1.88 s	1.88 s	1.88 s	1.88 s			
28	1.94 s	1.93 s	1.94 s	1.94 s			
-OAc			2.11 s	2.11 s			
5α-Butoxyl,			3.05 dd	3.14 dq			
ethoxyl			(14.2, 6.6)	(8, 7)			
•			3.28 dd	3.34 dq			
			(14.2, 6.1)	(8, 7)			
			0.81 t (7.3)	1.05 t (7)			
			0.01 (7.5)	1.05 (7)			

Chemical shifts are in δ /ppm; coupling constants in Hz are in parentheses; abbreviations: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; br = broad.

Table II. ¹³C-NMR Data (δ /ppm, in CDCl₃) for Physapruin A (1), B (2), Withanolide E (3), Withanolide U Monoacetate (4) and 5 α -Ethoxy- 6β ,14 α ,17 β ,20-tetrahydroxy-1-oxo-20S,22R-witha-2,24-dienolide (5)

Carbon	1	3	4	2	5
C- 1	203.4	203.2	202.9	203.1	204.9
C- 2	129.2	129.8	134.2	129.6	129.4
C- 3	143.2	143.9	140.0	138.0	139.6
C- 4	69.3	32.9	70.0	32.1	31.0
C- 5	138.2	62.2	133.9	77.0	81.5
C- 6	131.5	64.2	130.1	71.6	69.9
C- 7	25.9	26.2	25.6	26.5	28.5
C- 8	35.8	34.1	34.4	33.4	33.9
C- 9	36.9	36.9	36.4	34.8	34.1
C-10	49.5	48.9	49.4	52.8	53.2
C-11	22.5	22.9	21.8	22.6	22.9
C-12	34.2	34.3	32.4	37.7	37.7
C-13	54.5	54.5	47.5	54.9	55.1
C-14	81.9	82.3	84.9	82.3	83.0
C-15	30.2	30.1	32.0	30.8	30.1
C-16	37.7	37.7	20.6	34.2	34.5
C-17	88.0	87.8	49.4	87.9	88.2
C-18	20.5	20.6	17.4	21.0	21.2
C-19	22.6	14.6	21.8	13.8	15.6
C-20	78.9	80.0	75.3	79.0	79.2
C-21	19.7	19.5	21.2	20.1	20.1
C-22	80.1	80.3	81.3	79.9	80.5
C-23	32.5	32.5	31.8	32.7	32.8
C-24	150.7	151.1	149.1	150.5	151.3
C-25	121.4	121.4	122.0	121.5	121.5
C-26	166.2	166.6	166.2	165.8	166.6
C-27	12.3	12.3	12.5	12.4	12.5
C-28	20.6	20.6	20.6	20.6	20.9
5α-Butoxy,				61.7	57.5
ethoxy				28.0	16.0
				19.3	
				15.0	
-OAc			170.3	170.2	
			21.4	21.4	

presence of the hydroxy groups at C-17 and 20.

A comparative study of the ¹H-NMR spectrum of 2 (Table I) with that of 1 suggested that 2 has the same C and D rings and side chain moiety as 1. Signals at δ 2.33 (1H, dd, J = 19.7, 5.7 Hz), δ 2.55 (1H, d, J = 19.7 Hz) and δ 5.15 (1H, d, J=2.7 Hz) were similar to those of the acetate (5a) of an analog with anolide, 5α -ethoxy- 6β , 14α , 17β , 20-tetrahydroxy-1-oxo-20S, 22R-with a-2, 24-dienolide (5)7) obtained from Withania somnifera, and were attributable to methylene protons at C-4 and an acetoxymethine proton at C-6. Moreover, a deshield signal due to H_3 -19 at δ 1.26 suggested the presence of a hydroxy group at C-5. Furthermore, the existence of a 1-butoxy group was suggested by the ¹H-¹H correlated spectroscopy (COSY) of 2. It was determined that the 1-butoxy group was connected to C-5 by comparing the ¹³C-NMR spectrum with that of 5.

In comparing the 13 C-NMR spectrum of **2** with that of **5**, the chemical shifts, except for those at C-3—7, 9, 10 and 19 on the A, B rings and the 1-butoxy group were in good correlation. These chemical shifts of C-3—7, 9, 10 and 19 were presumed to occur because of the introduction of an acetoxy group at C-6. The positive Cotton effect at 255 nm in the CD spectrum of **2** indicated a 22*R* configuration, and the negative Cotton effect at 334 nm showed a *trans* fusion of rings A and B.⁶⁾ Thus, the structure of **2** was concluded to be as shown in the formula. The 1-butoxy group at C-5 was suspected to be artificially introduced into the 5β , 6β -epoxy ring during separation.

Experimental

The melting point was measured using a Yanagimoto micromelting point apparatus and was uncorrected. Optical rotations were measured on a JASCO DIP-360 automatic digital polarimeter and CD spectrum on a JASCO J-50A spectropolarimeter. The IR spectra were recorded with a Hitachi IR spectrometer, model 270-30. The $^1\text{H-}$ and $^{13}\text{C-}\text{NMR}$ spectra were measured with a JEOL JNM-GX 400 NMR spectrometer and chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. The FAB-MS were measured with a JEOL DXI. Thin layer chromatography was performed on pre-coated Kieselgel 60 F₂₅₄ (Merck) and detection was achieved by spraying it with 10% H₂SO₄, followed by heating. Column chromatography was carried out on Kieselgel (270—300 mesh and 230—400 mesh, Merck) and Sephadex LH-20 (Pharmacia Fine Chemicals).

Extraction and Separation The fresh aerial parts (2.2 kg) of *Physalis pruinosa* Bailey (Solanaceae), harvested at the botanical garden of Kyushu University in December 1988, were extracted with MeOH, and the extract was partitioned between 1-BuOH and $\rm H_2O$, then the 1-BuOH layer was partitioned between 1-BuOH—EtOAc and $\rm H_2O$. The organic layer (30 g) was subjected repeatedly to column chromatography over silica gel using CHCl₃–MeOH– $\rm H_2O$ =1:0:0→8:3:0.5 and Sephadex LH-20 using MeOH to give physapruins A (1, 34.6 mg), B (2, 13.7 mg), withanolide E (3, 113.0 mg), 4β -hydroxywithanolide E (76.9 mg) and 2,3-dihydro-3 β -methoxy-4 β -hydroxywithanolide E monoacetate (21.3 mg). During this separation procedure, the free compound of 2 and 2,3-dihydro-3 β -methoxy-4 β -hydroxywithanolide E monoacetate were difficult to separate and were converted to acetyl derivatives to facilitate separation.

Physapruin A (1) Colorless needles from CHCl₃–MeOH, mp 207—209 °C, [α]_D +159.1° (c=0.46, MeOH). Positive FAB-MS (m/z): 509 [M+Na]⁺, 469 [M-H₂O+H]⁺, 451 [M-2H₂O+H]⁺, 433 [M-3H₂O+H]⁺, 415 [M-4H₂O+H]⁺, 283, 265, 169, 125. IR (KBr): 3408, 1696, 1664 cm⁻¹. CD (c=0.60, MeOH) [θ] (nm): -28000 (340) (negative max.), +83000 (256) (positive max.).

Physapruin B (2) Amorphous powder, $[\alpha]_D + 47.0^\circ$ (c = 0.47, MeOH). Positive FAB-MS (m/z): 625 [M + Na] +, 603 [M + H] +, 585 [M - H₂O + H] +, 549 [M - 3H₂O + H] +, 417, 357, 283, 265, 169, 125. IR (KBr): 3452, 1740, 1714, 1690 cm⁻¹. CD (c = 0.047, MeOH) [θ] (nm): -15000 (334)

(negative max.), +51000 (255) (positive max.).

Acknowledgement We would like to express our thanks to Professor Y. Shoyama, Faculty of Pharmaceutical Sciences, Kyushu University, for a supply of fresh plants of Physalis pruinosa.

References and Notes

- 1) This work is Part XXVII in the series of studies on the constituents of solanaceous plants.
- 2) a) K. Shingu, N. Marubayashi, I. Ueda, S. Yahara, T. Nohara, Chem. Pharm. Bull., 39, 1591 (1991); b) K. Shingu, S. Yahara, T. Nohara, H. Okabe, ibid., 40, 2088 (1992); c) K. Shingu, S. Yahara, H. Okabe, T. Nohara, ibid., 40, 2448 (1992).
- 3) E. Glotter, A. Abraham, G. Gunzberg, I. Kirson, J. Chem. Soc.,

- Perkin Trans. 1, 1977, 341.
- H. E. Gottlieb, I. Kirson, Org. Magn. Reson., 16, 20 (1981).
- 5) I. Kirson, H. E. Gottlieb, J. Chem. Research (M), 1980, 4275.
- a) E. Glotter, I. Kirson, D. Lavie, A. Abraham, "Bioorganic Chemistry," Vol. II, ed. by van E. E. Tamelen, Academic Press, New York, 1978, pp. 57-95; b) F. Frolow, A. B. Ray, M. Sahai, E. Glotter, H. E. Gottlieb, I. Kirson, J. Chem. Soc., Perkin Trans. 1, 1981, 1029.
- V. V. Velde, D. Lavie, *Phytochemistry*, **20**, 1359 (1981).

 a) I. Kirson, A. Abraham, P. D. Sethi, S. S. Subramanian, E. Glotter, Phytochemistry, 15, 340 (1976); b) K. Sakurai, H. Ishii, S. Kobayashi, T. Iwao, Chem. Pharm. Bull., 24, 1403 (1976).
- I. Kirson, E. Glotter, J. Nat. Prod., 44, 633 (1981).