STRUCTURE OF CLAUDIMERIN-A, A NOVEL DIMERIC COUMARIN FROM CITRUS HASSAKU Yuko TAKEMURA, ^a Toshimi NAKATA, ^a Hiromi UCHIDA, ^a Motoharu JU-ICHI, *, ^a Keiichiro HATANO, ^b Chihiro ITO, ^c and Hiroshi FURUKAWA*, ^c Faculty of Pharmaceutical Sciences, Mukogawa Women's University, ^a Nishinomiya, Hyogo 663, Japan Faculty of Pharmaceutical Sciences, Nasawa City, University, ^b 16: 1 Hyogo 663, Japan, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya 467, Japan and Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan. The chemical structure of claudimerin-A (1), a novel dimeric coumarin from roots of *Citrus hassaku* (Rutaceae), have been elucidated by spectrometric studies and a single crystal X-ray analysis. The structure of 1 consisted of two clausarin (2) units linked symmetrically with the forming of the pyranopyran ring. **KEYWORDS** coumarin; *Citrus hassaku*; claudimerin-A; crystal structure; dimer; Rutaceae In our continuing studies on the constituents of *Citrus* plants, ¹⁾ many kinds of novel coumarins have been isolated and their structures characterized. We here describe the structure of a novel dimeric coumarin named claudimerin-A (1) obtained from *C. hassaku* Hort. ex Y. Tanaka (Rutaceae).²⁾ Claudimerin-A (1) was isolated as colorless cubes (21.3 mg), mp 318 - 320°C, $[\alpha]_D \pm 0^\circ$ (CHCl₃), from the acetone extract of dried roots (3.2 kg) of the plant.³⁾ The molecular formula C₄₈H₅₄O₈ [M⁺ 758.3821. Calcd. 758.3819] was confirmed by a high-resolution MS. The presence of a 5,7-dioxygenated coumarin nucleus in the molecule was suggested by the UV [λ_{max} (EtOH): 212, 244 (sh.), 266, 292, and 328 nm] and IR $[v_{max}$ (CHCl₃): 1715, 1620, and 1600 cm⁻¹] spectra.⁴) The number of the ¹H signals as well as the ¹³C signals⁵⁾ in ¹H- and ¹³C-NMR spectra, respectively, was half of that expected from the molecular formula, suggesting that 1 had a completely symmetrical structure. Analyses of the ¹H- and ¹³C-NMR spectra using a ¹H-¹³C correlated spectroscopy (COSY) technique indicated the presence of a lone H-4 [δ_H 7.67 (s)] on the α , β -unsaturated lactone ring (δ_C 159.67, 128.70, 132.27), two geminal methyls [δ_H 1.50, 1.70 (each 3H, s)] attached to an oxygenated carbon (C-9, δ_C 77.76), and two 1,1-dimethylallyl groups [δ_H 1.54 (3H, s), 1.59 (3H, s), 6.14 (1H, dd, J = 10.7, 17.8 Hz), 4.74 (1H, dd, J = 1.2, 17.8 Hz), 4.78 (1H, dd, J = 1.2, 10.7 Hz); δ_{H} 1.39 (3H, s), 1.40 (3H, s), 6.09 (1H, dd, J = 1.2) 10.3, 17.8 Hz), 5.02 (1H, dd, J = 1.2, 10.3 Hz), 5.03 (1H, dd, J = 1.2, 17.8 Hz)] in half of the molecule. In the ¹H detected heteronuclear multiple bond connectivity (HMBC) spectrum (J = 8 Hz) of 1, one of the methyl protons [δ_H 1.40 or 1.39] showed a three-bond correlation to the carbon at δ_C 128.70 (C-3) as well as the sp^2 -carbon at δ_C 145.70 (C-2"), suggesting the location of one of the dimethylallyl moieties at α -position (C-3) on the α , β - unsaturated lactone ring. Remaining signals at δ_H 3.55 (dd, J=1.5 and 0.7 Hz) and 4.34 (dd, J = 1.5 and 0.7 Hz) attached to the carbons at δ_C 25.96 (C-11) and 73.25 (C-10), respectively, were assigned to cis-oriented protons⁶⁾ on linked carbons between two coumarin moieties. These spectral data suggested that 1 contained 10, 11-dihydrogenated clausarin (2)^{3,7)} units in the molecule. The complete structure and the relative stereochemistry of 1 were obtained from a single-crystal X-ray analysis.⁸⁾ A perspective view of one enantiomer of 1 is provided in Fig. 1. Claudimerin (1) has a novel structural feature composed with two clausarin (2) units linked symmetrically with the forming of the pyranopyran ring system. $$2^{\parallel 3^{\parallel }}$$ $$2^{\parallel 1^{\parallel }}$$ $$0 \neq 0$$ $$1 \neq 0$$ $$1 \neq 0$$ $$1 \neq 0$$ $$1 \neq 0$$ $$R = 1,1-dimethylallyl$$ $$0 \neq 0$$ \Rightarrow ## REFERENCES AND NOTES - 1) Y. Takemura, M. Ju-ichi, T. Kurozumi, M. Azuma, C. Ito, K. Nakagawa, M. Omura, H. Furukawa, *Chem. Pharm. Bull.*, **41**, 73 (1993) and references cited therein. - 2) The plant material was collected at Innoshima (Hiroshima prefecture, Japan). - 3) M. Ju-ichi, Y. Takemura, M. Azuma, K. Tanaka, M. Okano, N. Fukamiya, C. Ito, H. Furukawa, Chem. Pharm. Bull., 39, 2252 (1991). - 4) R. D. H. Murray, J. Mendez, A. S. Brown, "The Natural Coumarins. Occurrance, Chemistry and Biochemistry," John Wiley & Sons, Inc., New York, 1982, p. 27. - 5) $^{13}\text{C-NMR}$: δ_{C} $^{159.67}$ (C-2), $^{128.70}$ (C-3), $^{132.27}$ (C-4), $^{102.78}$ (C-4a), $^{148.08}$ (C-5), $^{95.83}$ (C-6), $^{154.17}$ (C-7), $^{113.14}$ (C-8), $^{152.82}$ (C-8a), $^{77.76}$ (C-9), $^{73.25}$ (C-10), $^{25.96}$ (C-11), $^{41.02}$ (C-1'), $^{150.08}$ (C-2'), $^{107.69}$ (C-3' or 3"), $^{40.06}$ (C-1"), $^{145.70}$ (C-2"), $^{111.75}$ (C-3" or 3'), $^{29.1}$, $^{24.6}$, $^{29.6}$, $^{25.8}$, $^{25.9}$, $^{26.0}$ (CH₃). - 6) Results of nuclear Overhauser effect (NOE) experiments: irradiation of the signal at $\delta_{\rm H}$ 3.55 (H-11) 15 and 7 % enhancements of signals at $\delta_{\rm H}$ 4.34 (H-10) and 1.50 (9-CH₃), respectively; irradiation of the signal at $\delta_{\rm H}$ 4.34 (H-10) 11, 2, and 3 % increments of signals at $\delta_{\rm H}$ 3.55 (H-11), 1.50 (9-CH₃), and 1.70 (9-CH₃), respectively. - 7) F. Anwer, A. Shoeb, R. S. Kapil, S. P. Popli, Experientia, 33, 412 (1977). - 8) Crystal data for 1. $C_{48}H_{54}O_8$, M=817.0, monoclinic, a=15.959 (2), b=17.863 (2), c=17.960 (2) Å, $\beta=116.08$ (1), V=4599 (16) Å³, Z=4, space group $P2_1/C$, Dc=1.180 g/cm³. Data were collected on an Enraf-Nonius CAD4 diffractometer with graphite monochromated Mo K α radiation. Intensity data were reduced with the site of the program of SDA. The structure was solved by direct methods (MULTAN 82). The Hydrogen position was idealized and included in subsequent cycles of full-matrix least-squares refinement as fixed and converged at R=0.087. (Received September 6, 1993)