ZINC p-tert-BUTYLBENZOATE CATALYZED GLYCOSYLATION WITH GLYCOPYRANOSYL CHLORIDE

Mugio NISHIZAWA,* Dulce M. GARCIA, Toshiyuki SHIN and Hidetoshi YAMADA

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

A 0.1 eq of zinc *p-tert*-butylbenzoate significantly accelerates glycosylation of alcohol with glycopyranosyl chloride in the presence of 2-methyl-2-butene to give β-glycoside in high yield with fair to good β-selectivity.

KEYWORDS zinc *p-tert*-butylbenzoate; catalytic; glucosylation; glucopyranosyl chloride; β-glucoside

Although a large number of glycosylation procedures have been developed, leaving groups at anomeric centers are usually activated by a stoichiometric amount of reagent. Recently we have reported $Zn(acac)_2$ catalyzed rhamnosylation of cholesterol with 2,3,4-tri-O-benzyl- α -L-rhamnopyranosyl chloride that affords α -rhamnoside selectively. When this procedure was applied to glucosylation, the yield and stereoselectivity were not satisfactory. Thus we have tried to find a more efficient catalytic system for the glucosylation with D-glucopyranosyl chlorides. After examination of most of the commercially available zinc salts, we arrived at zinc p-tert-butylbenzoate as a catalyst. A variety of glucosides were prepared in generally high yield with fair to good β -selectivity within a few hours at room temperature in dichloromethane by using 0.1 eq of the catalyst. In particular the 2' hydroxyl group of nonprotected glucosyl chloride afforded a higher β -selectivity.

Reactions of cholesterol (3) with 2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl chloride (1) were carried out in the presence of a variety of zinc salt as catalyst. The results are summarized in Table I. Although 2-methyl-2-butene was employed as an acid scavenger, we found that it also accelerates the reaction significantly (entries 1 and 2) with better stereoselectivity. Except for $Zn(OTf)_2$, which gave low stereoselectivity (entries 6 and 7),³⁾ most zinc salts provided essentially similar yield and selectivity. Zinc *p-tert*-butylbenzoate (4) afforded better yield in a β -selective manner (entries 12 and 13). For example, to a dried solution of cholesterol (3) (50 mg, 0.13 mmol), zinc *p-tert*-butylbenzoate (4) (5.4 mg, 0.013 mmol, 0.1 eq), and 2-methyl-2-butene (200 mg, 2.8 mmol, 22 eq) in dichloromethane (8 mL)²⁾ was added a solution of 1 (108 mg, 0.19 mmol) in dichloromethane (7 mL), and the mixture was stirred at room temperature for 3 h. The mixture was directly subjected to a column chromatography on silica gel to give α and β glucosides in 98% yield. Stereoselectivity (α / β ratio) was analyzed by HPLC as well as ¹H NMR to be 13:87.

Condensations of alcohol 9 - 12 with glycosyl chlorides 1, 2, 7, and 8 were carried out in the analogous way, and the results are summarized in Table II. Although the reactions of glucosyl chloride 1 with alcohol 9-12 were not stereoselective (entries 2, 3, 4,

April 1993 785

and 5), glucosylation with 2' hydroxyl group nonprotected glucosyl chloride 2 afforded a higher β -selectivity by the reaction with cholesterol (3) or methyl glucoside 9 (entries 6 and 7). Reaction of amino acid derivatives 10 or 11 with 1 or 2 showed low selectivity (entries 3, 4, 8, and 9). The reaction of 1 and 12 provided four diastereomeric glucosides, and no kinetic resolution was observed (entry 5). Syntheses of galactosides were also achieved by the reaction of galactosyl chloride 7 and alcohols 3 and 9 (entries 10 and 11), and the results were similar to those with the glucosyl chloride 1. However the reaction of 7 with amino acid derivatives showed α selectivity (entries 12 and 13). Rhamnosylation of cholesterol with 8 afforded quantitative yield but lower selectivity in comparison with 2π (acac)₂-catalyzed reaction.²⁾ It is important to note that the stereochemistry of the methoxyl group of 9 is maintained throughout the zinc salt-catalyzed glycosylation (entries 2, 7, and 11).⁴⁾

Table I. Zn Salt (0.1 eq) Catalyzed Glucosylation of Cholesterol (3) with Glucosyl Chloride 1 in the Presence of 2-Methyl-2-butene (22 eq) in Dichloromethane at Room Temperature

Entry	Zn salt	Reaction period (h)	Yield (%)	α/β ratio
1	Zn(acac) ₂	1	57	16:84
2	$Zn(acac)_2$	12^a	58	23:77
3	ZnCl ₂	1	59	17:83
4	$ZnBr_2$	1	76	17:83
5	ZnI,	1	76	17:83
6	Zn(OTf),	1	69	43:57
7	$Zn(OTf)_{2}^{2}$	0.5^{b}	94	45:55
8	$Zn(\overrightarrow{OCOC_6H_5})_2$	1	60	17:83
9	$Zn(OCOC_cH_4OH-o)_2$	1	64	18:82
10	$Zn(OCOCH_2CH_2-c-C_6H_{11})_2$	1	72	17:83
11	$Zn(OCOCH_{2}^{2}CH_{2}^{2}-c-C_{6}H_{11})_{2}^{11/2}$	2.5	91	15:85
12	$Zn(OCOC_6H_4-t-C_4H_9-p)_2$ (4)	1	77	17:83
13	$Zn(OCOC_6H_4-t-C_4H_9-p)_2$ (4)	3	98	13:87

a) Without using 2-methyl-2-butene. b) Reflux temperature in dichloromethane.

Table II. $Zn(OCOC_6H_4-t-C_4H_9-p)_2$ (4) (0.1 eq) Catalyzed Glycosylation of Alcohol in the Presence of 2-Methyl-2-butene (22 eq) in Dichloromethane at Room Temperature.

Entry	Glycosyl chloride	Alcohol	Reaction period (h)	Yield (%)	α/β ratio
1	1	3	3	98	13:87
2	1	9	2.5	84	30:70
3	1	10	3	90	47:53
4	1	11	3	81	37:63
5	1	12	1	90	26:74
6	2	3	1	97	9:91
. 7	2	9	2.5	79	2:98
8	2	10	3 .	52	33:67
9	2	11	1.5	40	50:50
10	7	3	1	98	16:84
11	7	9	1	68	22:78
12	7	10	1	85	65:35
13	7	11	1.25	95	71:29
14	8	3	1	100	64:36

REFERENCES AND NOTES

- 1) Glycosylations by a catalytic amount of activating agent have been described in the following papers: S. Hashimoto, M. Hayashi, and R. Noyori, *Tetrahedron Lett.*, **25**, 1379 (1984); N. K. Kochetkov, E. M. Klimov, and N. N. Malysheva, *Tetrahedron Lett.*, **30**, 5459 (1989); U. Frank, B. S. Moore, and R. Breitenbach, *Tetrahedron Lett.*, **31**, 4421 (1990); T. Mukaiyama, T. Takashima, M. Katsurada, and H. Aizawa, *Chem. Lett.*, 533 (1991), T. Mukaiyama, M. Katsurada, and T. Takashima, *ibid*, 985 (1991); T. Mukaiyama, M. Katsurada, and Y. Iida, *ibid.*, 2105 (1992).
- 2) M. Nishizawa, D. M. Garcia, and H. Yamada, SYNLETT, 797 (1992).
- 3) Glycosylations using a stoichiometric amounts of zinc triflate as activator have been reported recently. K. Higashi and H. Susaki, *Chem. Pharm. Bull.*, **40**, 2019 (1992); K. Nakayama, K. Higashi, T. Soga, K. Uoto, and T. Kusama, *ibid*, **40**, 2909 (1992).
- 4) N. Ikemoto, O. K. Kim, L. C. Lo, V. Satyanarayana, M. Chang, and K. Nakanishi, Tetrahedron Lett., 33, 4295 (1992).

(Received February 4, 1993)