## Tannins and Related Compounds. CXXIII.<sup>1a)</sup> Chromone, Acetophenone and Phenylpropanoid Glycosides and Their Galloyl and/or Hexahydroxydiphenoyl Esters from the Leaves of *Syzygium aromaticum* MERR. *et* PERRY

Takashi Tanaka,\*,1b) Yuriko Orii, Gen-ichiro Nonaka and Itsuo Nishioka

Faculty of Pharmaceutical Sciences, Kyushu University 62, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812, Japan. Received January 11, 1993

From the dried leaves of Syzygium aromaticum Merr. et Perry (Myrtaceae), eleven new compounds, i.e., eugenol 4-O- $\beta$ -D-(6'-O-galloyl)glucopyranoside (17), 2-methyl-5,7-dihydroxychromone 8-C- $\beta$ -D-glucopyranoside (18) and its 6'-O-gallate (19), 2,4,6-trihydroxyacetophenone 3-C- $\beta$ -D-glucopyranoside (20) and its 2'-O- (21), 6'-O- (22), 2',3'-di-O- (23), 2',6'-di-O- (24), 2',3',6'-tri-O- (25), 2',3',4',6'-tetra-O-gallate (26) and 2',3'-di-O-galloyl-4',6'-O-(S)-hexahydroxydiphenoyl ester (27) were isolated, together with sixteen known tannins and related compounds. The structures of these compounds were established on the basis of spectroscopic and chemical evidence.

Keywords Syzygium aromaticum; Myrtaceae; tannin; C-glycoside; phenol C-glucoside; eugenol glucoside gallate

As a part of our chemical studies on tannins in Myrtaceous plants, <sup>2)</sup> we previously reported the occurrence of an ellagitannin <sup>2a)</sup> in cloves (dried flower-buds of *Syzygium aromaticum* MERR. *et* PERRY). In a continuation of that work, we have examined the leaves of *S. aromaticum* and isolated eleven new compounds consisting of chromone, acetophenone and phenylpropanoid glycosides and their gallic acid and/or hexahydroxydiphenic acid esters, together with sixteen known tannins and related compounds. This paper deals with the isolation and structure elucidation of these compounds.

The air-dried leaves collected in Indonesia were extracted with 70% aqueous acetone. The extract was initially subjected to Sephadex LH-20 column chromatography with water containing increasing proportions of methanol to afford six fractions. Each fraction was repeatedly chro-

matographed on Sephadex LH-20 with ethanol or watermethanol, on various reversed-phase gels such as MCI-gel CHP 20P, Bondapak  $C_{18}/P$ orasil B and Toyopearl HW 40F with water-methanol, and on Avicel cellulose with 2% acetic acid to afford twenty-seven compounds (1—27). Among them, compounds 1—16 were shown by physical and spectral comparisons to be valoneic acid bislactone (1),<sup>3)</sup> phenol glucoside gallates [gallic acid 3-O- $\beta$ -D-(6'-O-galloyl)-glucopyranoside (2)<sup>4)</sup> and 4-hydroxy-3-methoxy-phenol 1-O- $\beta$ -D-(6'-O-galloyl)-glucopyranoside (3)<sup>5)</sup>], galloylglucoses [2,3-di-O- (4),<sup>6)</sup> 1,2,3,6-tetra-O- (5)<sup>7)</sup> and 1,2,3,4,6-penta-O-galloyl- $\beta$ -D-glucose (6)<sup>7)</sup>] and ellagitannins [strictinin (7),<sup>8)</sup> gemin D (8),<sup>9)</sup> 1-desgalloyleugeniin (9),<sup>10)</sup> eugeniin (10),<sup>2a)</sup> 1( $\beta$ )-O-galloylpedunculagin (11),<sup>11)</sup> rugosin A (12),<sup>12)</sup> casuariin (13),<sup>8,13)</sup> pterocarinin A (14)<sup>14)</sup> and rugosins E (15) and D (16)<sup>15)</sup>].

© 1993 Pharmaceutical Society of Japan



Fig. 1.  $^{1}{\rm H}{^{-13}{\rm C}}$  Long-Range COSY Spectrum of 18 in DMSO- $d_{6}$   $(J_{\rm CH}{\,=\,}8\,{\rm Hz})$ 

Compound 17 gave a dark blue coloration with the ferric chloride reagent, and showed the  $[M-H]^-$  peak at m/z477 in the negative ion FAB-MS. The <sup>1</sup>H-NMR spectrum showed signals due to a tri-substituted aromatic ring  $\lceil \delta 6.69 \rceil$ (dd, J=2, 8 Hz), 6.82 (d, J=2 Hz) and 7.12 (d, J=8 Hz)],three olefinic protons [ $\delta$  5.94 (m), 5.01 (br d, J = 10 Hz) and 5.04 (brd, J = 17 Hz)], a methoxyl [ $\delta$  3.81 (3H, s)] and a methylene [ $\delta$  3.29 (2H, d, J = 7 Hz)], suggesting the presence of a eugenol framework in the molecule. The <sup>13</sup>C-NMR spectrum showed, together with the signals arising from the eugenol moiety, signals due to a  $\beta$ -glucopyranosyl residue  $(\delta\ 102.3,\ 77.4,\ 75.0,\ 74.4,\ 71.2\ and\ 64.5)$  and a galloyl group  $(\delta 166.9, 146.0, 138.8, 121.5 \text{ and } 109.9)$ . The chemical shifts of the signals due to the eugenol and glucosyl moieties were closely related to those of eugenol 4-O-β-D-glucopyranoside (citrusin C),16) except for the lowfield shift of the glucose C-6 signal in 17. These observations, combined with the appearance of the glucose C-6 proton signals at lower field  $[\delta 4.36 \text{ (dd, } J=6, 12 \text{ Hz)}]$  and  $[\delta 4.36 \text{ (dd, } J=2, 12 \text{ Hz)}]$  in the <sup>1</sup>H-NMR spectrum, indicated the galloyl group to be located at this position. Thus, 17 was characterized as eugenol 4-O- $\beta$ -D-(6'-O-galloyl)glucopyranoside.

Compound 18 was obtained as colorless needles, mp 183—184 °C. The  $^{13}$ C-NMR spectrum showed the presence of a phloroglucinol-type aromatic ring [ $\delta$  98.4 (d), 103.5 (s), 104.4 (s), 156.2 (s), 160.4 (s) and 162.6 (s)], a tri-substituted double bond [ $\delta$  107.5 (d) and 167.3 (s)], a carbonyl ( $\delta$  182.0) and a methyl group [ $\delta$  19.7 (q)], suggesting 18 to have a 2-methyl-5,7-dihydroxychromone skeleton. Furthermore, the appearance of six aliphatic carbon signals at  $\delta$  81.2 (d), 78.5 (d), 73.1 (d), 70.8 (d), 70.4 (d) and 61.3 (t), whose chemical shifts were closely related to those of the *C*-glucosyl residue of 6-*C*-glucosylquercetin [ $\delta$  73.0 (C-1), 70.5 (C-2), 78.9 (C-3), 70.3 (C-4), 81.3 (C-5) and 61.4 (C-6)], <sup>17)</sup> indicated that 18 is a *C*-glucoside of 2-methyl-5,7-dihydroxychromone. In the  $^{1}$ H-NMR spectrum, the observation of a chelated hydroxyl proton signal

1234 Vol. 41, No. 7

at  $\delta$  13.02 (s), as well as a long-range coupling between the olefinic proton signal at  $\delta$  6.18 (d, J = 0.7 Hz) and the methyl proton signal at  $\delta$  2.34 (3H, d, J=7.0 Hz), also supported the structure. The location of the C-glucosyl moiety was determined by examination of <sup>1</sup>H-<sup>13</sup>C long-range shiftcorrelation spectroscopy (<sup>1</sup>H-<sup>13</sup>C long-range COSY) spectrum (J=8 Hz) of 18 (Fig. 1). In this spectrum, a long-range coupling was observed between the lowfield hydroxyl proton ( $\delta$  13.02) and a hydroxy-bearing aromatic carbon ( $\delta$  160.4), the latter being thus assignable to C-5. Next, a similar correlation was observed between this C-5 signal and the aromatic proton signal at  $\delta$  6.24. These observations clearly indicated that the aromatic proton signal at  $\delta$  6.24 was assignable to the C-6 proton of the chromone skeleton. Thus, the location of the C-glycosyl moiety was concluded to be at the C-8 position, and compound 18 was shown to be 2-methyl-5,7-dihydroxychromone 8-C- $\beta$ -D-glucopyranoside.

The <sup>1</sup>H-NMR spectrum of **19** was closely correlated with that of **18**, except for the appearance of a two-proton galloyl singlet at  $\delta$  7.13 and the lowfield shift of the glucose C-6 proton signal [ $\delta$  4.56 (2H, brs)]. The structure of **19** was confirmed by tannase hydrolysis, which yielded **18** and gallic acid, thus establishing **19** to be 2-methyl-5,7-dihydroxy-chromone 8-C- $\beta$ -D-(6'-O-galloyl)glucopyranoside.

Compound 20 showed, in the  $^{13}$ C-NMR spectrum (Table I), signals due to a phloroglucinol-type aromatic ring and an acetyl group, along with signals attributable to a C-glycosidically linked hexose residue. The  $^1$ H-NMR spectrum exhibited a one-proton aromatic singlet at  $\delta$  6.00 characteristic of a phloroglucinol ring proton. These observations suggested that 20 is a 2,4,6-trihydroxy-acetophenone C-glycoside, and this was consistent with the negative ion FAB-MS data, which showed the  $[M-H]^-$ 

TABLE I. <sup>13</sup>C-NMR Spectral Data for Compounds 20—27 (δ Values)<sup>a)</sup>

|                 | 20     | 21         | 22                 | 23          | 24                 | 25         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                 |
|-----------------|--------|------------|--------------------|-------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Aglycone        |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| C-1,3           | 103.8  | 102.5      | 103.4              | 102.1       | 102.2              | 101.9      | 101.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.1              |
| ,               | 105.4  | 105.2      | 105.3              | 105.1       | 105.2              | 105.1      | 105.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105.0              |
| C-5             | 95.9   | 95.8       | 95.8               | 95.8        | 95.8               | 95.6       | 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.2               |
| C-2,4,6         | 163.7  | 163.9 (2C) | 163.7              | 163.9 (3C)  | 163.9 (3C)         | 163.9      | 163.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163.3 (2C          |
| 2, .,0          | 164.1  | 164.2      | 164.0              | 10015 (00)  | 10015 (00)         | 164.0      | 164.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 164.4              |
|                 | 164.3  | 101.2      | 164.3              |             |                    | 164.7      | 165.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| CH <sub>3</sub> | 32.9   | 32.8       | 32.9               | 32.8        | 32.8               | 32.8       | 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.8               |
| CO CO           | 204.2  | 203.9      | 204.6              | 204.0       | 204.1              | 204.2      | 204.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 204.0              |
| Glucose         | 204.2  | 203.7      | 204.0              | 204.0       | 204.1              | 204.2      | 204.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201.0              |
|                 | 75.6   | 73.7       | 75.6               | 73.5        | $73.7^{b)}$        | 73.4       | 73.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.6               |
| C-1             |        |            |                    |             |                    | 69.5       | 69.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $70.8^{b}$         |
| C-2             | 70.5   | 70.9       | 70.8               | 69.1        | 71.1               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| C-3             | 79.1   | 77.2       | 78.7 <sup>b)</sup> | 78.1        | 76.9               | 77.9       | 75.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.2               |
| C-4             | 73.2   | 73.7       | 73.0               | 71.4        | 73.8 <sup>b)</sup> | 71.3       | 71.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71.1 <sup>b)</sup> |
| C-5             | 81.7   | 82.1       | $79.0^{b)}$        | 82.1        | 79.4               | 79.4       | 77.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.1               |
| C-6             | 61.5   | 61.6       | 64.4               | 61.5        | 64.1               | 64.1       | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.9               |
| Galloyl         |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| C-1             | _      | 121.6      | 120.9              | 120.9       | 121.2              | 120.7      | 120.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.7              |
|                 |        |            |                    | 121.3       | 121.5              | 121.1 (2C) | 120.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.0              |
|                 |        |            |                    |             |                    |            | 120.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|                 |        |            |                    |             |                    |            | 121.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| C-2,6           |        | 110.0 (2C) | 109.9 (2C)         | 110.0 (4C)  | 109.9 (2C)         | 110.0 (6C) | 110.0 (8C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.9 (2C          |
| C 2,0           |        | ()         | ()                 |             | 110.4 (2C)         |            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.1 (2C          |
| C-3,5           |        | 145.7 (2C) | 145.9 (2C)         | 145.6 (2C)  | 145.7 (2C)         | 145.5 (2C) | 145.8 (2C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 145.2 (20          |
| C 3,3           |        | 113.7 (20) | 113.5 (20)         | 145.8 (2C)  | 146.1 (2C)         | 145.8 (2C) | 146.0 (6C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 145.7 (20          |
|                 |        |            |                    | 1 13.0 (20) | 110.1 (20)         | 146.0 (2C) | 110.0 (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11017 (20          |
| C-4             |        | 138.5      | 139.1              | 138.8 (2C)  | 138.7              | 138.9 (2C) | 138.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138.8              |
| C-4             |        | 130.3      | 137.1              | 136.6 (20)  | 139.1              | 139.1      | 139.1 (2C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139.0              |
|                 |        |            |                    |             | 139.1              | 139.1      | 139.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 139.0              |
| CO.O.           |        | 166.0      | 167.5              | 165.7       | 166.2              | 165.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1656               |
| -COO-           |        | 166.0      | 167.5              | 165.7       | 166.2              | 165.9      | 165.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165.6              |
|                 |        |            |                    | 166.8       | 167.1              | 166.9      | 166.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 166.8              |
|                 |        |            |                    |             |                    | 167.2      | 166.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| ** 1 1 1 1      | 1      |            |                    |             |                    |            | 166.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| Hexahydroxydiph | ienoyi |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115.9 (20          |
| C-1,1'          |        | _          |                    |             | _                  | _          | National Control of Co | 115.8 (20          |
| C-2,2'          | _      | _          | Management         | _           |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126.0              |
| ~               |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126.5              |
| C-3,3'          | _      |            | _                  | _           |                    |            | Newsonian (not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.9              |
|                 |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.1              |
| C-4,4',6,6'     |        |            | _                  |             | _                  | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144.3              |
|                 |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145.2              |
|                 |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145.7 (20          |
| C-5,5'          | _      |            | _                  | _           |                    |            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 136.4              |
|                 |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 136.5              |
| -COO-           | _      |            |                    | _           |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 167.9              |
| 200             |        |            |                    |             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 168.4              |

a) Measured in acetone- $d_6 + D_2O$ . b) Assignments may be interchanged in each column.

peak at m/z 329. Further structural confirmation was obtained by methylation of **20** with ethereal diazomethane, which afforded the trimethyl ether (**20a**) [FAB-MS m/z: 373 (M+H)<sup>+</sup>].

The C-glycosidically linked hexose residue was considered to be glucose from the fact that the chemical shifts of the sugar carbon signals were in good agreement with those of 2,4,6,3',4'-pentahydroxybenzophenone 3-C-glucoside [ $\delta$  76.0 (C-1), 70.4 (C-2), 78.9 (C-3), 73.5 (C-4), 81.6 (C-5) and 61.5 (C-6)]. Furthermore, to confirm the structure, an attempt was made to prepare 20 by coupling of D-glucose and 2,4,6-trihydroxyacetophenone. Among various conditions tested, heating in phosphate buffer (pH 7.3) afforded the desired product, the [ $\alpha$ ]<sub>D</sub> and the H-NMR spectrum of which were identical with those of 20. On the basis of these chemical and spectroscopic findings, the structure of 20 was unequivocally established to be 2,4,6-trihydroxyacetophenone 3-C- $\beta$ -D-glucopyranoside.

Compounds 21—26 showed dark blue colorations with the ferric chloride reagent, suggesting the presence of galloyl group(s) in each molecule. The <sup>13</sup>C-NMR spectra (Table I) of these compounds indicated the occurrence of a C-glucosyl 2,4,6-trihydroxyacetophenone (20) moiety as a common structural framework. Hydrolysis of each compound with tannase yielded gallic acid and 20. The number(s) of the galloyl group(s) in each molecule was confirmed by their negative ion FAB-MS and also by the observation of characteristic two-proton singlet(s) around  $\delta$  7.0 in the <sup>1</sup>H-NMR spectrum (Table II). The location(s) of the galloyl group(s) was determined by comparison of the <sup>1</sup>H-NMR chemical shifts of the glucose proton signals with those of 20. For example, the <sup>1</sup>H-NMR spectra of 25 exhibited lowfield shifts of the glucose C-2, C-3 and C-6 proton signals, which indicated that galloyl groups were located at these positions. On the basis of spectral examination analogous to that described for **25**, compounds **21—26** were characterized as 2'-O- (**21**), 6'-O- (**22**), 2',3'-di-O- (**23**), 2',6'-di-O- (**24**), 2',3',6'-tri-O- (**25**) and 2',3',4',6'-tetra-O- (**26**) galloyl esters of **20**.

Compound 27 gave, with the sodium nitrite-acetic acid reagent, <sup>20)</sup> a reddish brown coloration which is characteristic of ellagitannins. The <sup>13</sup>C-NMR spectrum of 27 is closely related to that of 26. In particular, the chemical shifts of the signals arising from the 2,4,6-trihydroxyacetophenone framework were almost identical with those of 26. The lowfield shifts of all the sugar signals in the <sup>1</sup>H-NMR spectrum (Table II) suggested that the hydroxyl groups in the glucosyl moiety are completely acylated. The presence of two galloyl and one hexahydroxydiphenoyl ester group was readily deduced from the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra (Table I).

Methylation of 27 with dimethyl sulfate and anhydrous potassium carbonate in dry acetone gave the pentadecamethyl ether (27a), which showed the  $[M+H]^+$  peak at m/z 1147 in the FAB-MS. Subsequent alkaline methanolysis of 27a with methanolic sodium methoxide yielded methyl 3,4,5-trimethoxybenzoate (27b), dimethyl 4,4',5,5',6,6'-hexamethoxydiphenate (27c) and 20a. The production of 20a confirmed the presence of the trihydroxyacetophenone C-glucoside core in 27, while the specific optical rotation  $[-28.0^{\circ} \text{ (CHCl}_3)]$  of 27c indicated the chirality of the biphenyl bond to be in the S-series. 21)

In the <sup>1</sup>H-NMR spectrum of 27, a large coupling constant (J=10 Hz) of the glucose ring proton signals indicated that the glucopyranose ring adopts the <sup>4</sup>C<sub>1</sub> conformation. This fact, coupled with the observation of a fairly lowfield shift  $[\delta 5.39 \text{ (dd, } J=6, 13 \text{ Hz})]$  of one of the glucose C-6 methylene signals, which is consistent with those observed in tannins having a hexahydroxydiphenoyl group at the glucose C-4 and C-6 positions<sup>11</sup> [e.g., eugeniin (10)], im-

TABLE II. <sup>1</sup>H-NMR Spectral Data for Compounds 20—27 (δ Values)<sup>a)</sup>

|             | 20        | 21           | 22           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24           | 25                                     | 26           | 27            |
|-------------|-----------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|--------------|---------------|
| Aglycone    |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |              |               |
| H-5         | 6.00 (s)  | 5.90 (s)     | 5.92 (s)     | 5.89 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.84 (s)     | 5.93 (s)                               | 5.96 (s)     | 6.01 (s)      |
| $CH_3$      | 2.60 (s)  | 2.51 (s)     | 2.58 (s)     | 2.54 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.49 (s)     | 2.51 (s)                               | 2.53 (s)     | 2.55 (s)      |
| Glucose     | • /       | . ,          | · ,          | (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                        | 2.55 (6)     | 2.33 (3)      |
| H-1         | 4.89      | 5.15         | 5.01         | 5.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.25         | 5.37                                   | 5.49         | 5.32          |
|             | (d, J=10) | (d, J=10)    | (d, J=9)     | (d, J=10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d, J=10)    | (d, J=10)                              | (d, J=10)    | (d, J=10)     |
| H-2         | 3.47—3.89 | 5.43         | 3.64-3.80    | 5.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.46         | 5.58                                   | 5.88         | 5.66          |
|             | (m)       | (t, J=10)    | (m)          | (t, J=10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (t, J = 10)  | (t, J=10)                              | (t, J = 10)  | (t, J=10)     |
| H-3         | 3.473.89  | 3.50—3.90    | 3.643.80     | 5.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.91 (m)     | 5.87                                   | 6.09         | 6.27          |
|             | (m)       | (m)          | (m)          | (t, J=10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( )          | (t, J=10)                              | (t, J = 10)  | (t, J=10)     |
| H-4         | 3.473.89  | 3.50-3.90    | 3.643.80     | 4.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.91 (m)     | 4.12 (m)                               | 5.71         | 5.32          |
|             | (m)       | (m)          | (m)          | (t, J=10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()           |                                        | (t, J=10)    | (t, J=10)     |
| H-5         | 3.47-3.89 | 3.50—3.90    | 3.643.80     | 3.72—3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.91 (m)     | 4.12 (m)                               | 4.30—4.64    | 4.30          |
|             | (m)       | (m)          | (m)          | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ()           | ()                                     | (m)          | (dd, J=6, 10) |
| H-6         | 3.473.89  | 3.50—3.90    | 4.55 (2H, m) | 3.72—3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.62         | 4.64                                   | 4.30—4.64    | 3.87          |
|             | (m)       | (m)          | ( , ,        | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2H, brs)    | (2H, br s)                             | (m)          | (d, J=13)     |
|             |           | <u></u>      | house-spiner | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | (,)                                    |              | 5.39          |
|             |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |              | (dd, J=6, 13) |
| Galloyl     | -         | 7.01 (2H, s) | 7.15 (2H, s) | 6.90 (2H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.02 (2H, s) | 6.92 (2H, s)                           | 6.93 (2H, s) | 6.92 (2H, s)  |
|             | _         |              | _            | 7.03 (2H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.18 (2H, s) | 7.05 (2H, s)                           | 6.95 (2H, s) | 6.97 (2H, s)  |
|             |           |              | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            | 7.19 (2H, s)                           | 7.18 (2H, s) |               |
|             |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        | 7.19 (2H, s) | ~~~           |
| Hexahydroxy | diphenoyl |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        | (211, 5)     |               |
|             |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            | _                                      |              | 6.51 (1H, s)  |
|             |           | _            |              | MINISTER, MINIST |              | ************************************** | ******       | 6.66 (1H, s)  |

a) Measured in acetone- $d_6 + D_2O$ . J =values are expressed in Hz.

plied the location of the hexahydroxydiphenoyl group at the C-4 and C-6 positions. Consequently, **27** was concluded to be 2,4,6-trihydroxyacetophenone  $3-C-\beta-D-[2',3'-di-O-galloyl-4',6'-O-(S)-hexahydroxydiphenoyl)-glucopyranoside.$ 

## Experimental

The instruments and chromatographic conditions used throughout this work were essentially the same as described in the preceding paper. 1)

Extraction and Isolation The dried leaves (4.0 kg) of S. aromaticum collected in Indonesia were extracted with 70% aqueous acetone at room temperature. The acetone was removed by evaporation under reduced pressure (ca. 40 °C), and the resulting precipitates, consisting mainly of chlorophylls, were removed by filtration. The filtrate was further concentrated and applied to a column of Sephadex LH-20. Elution with H<sub>2</sub>O containing increasing amounts of MeOH and finally with a mixture of H<sub>2</sub>O and acetone gave six fractions; I (ca. 150 g), II (45 g), III (150 g), IV (252 g), V (71 g) and VI (83 g). Fraction I, consisting mainly of sugars, was almost negative to the ferric chloride reagent and was not examined further. Fraction II was chromatographed over MCI-gel CHP 20P with H<sub>2</sub>O-MeOH and then over Sephadex LH-20 with H<sub>2</sub>O-MeOH to afford compounds 18 (263 mg) and 20 (236 mg). Fraction III was repeatedly chromatographed over MCI-gel CHP 20P, Cosmosil 75C18-OPN and Toyopearl HW-40F with H<sub>2</sub>O-MeOH and Avicel cellulose with 2% acetic acid to give compound 21 (379 mg), gallic acid 3-O-β-D-(6'-O-galloyl)glucoside (2) (10 mg), 4-hydroxy-3-methoxyphenol 1-O-β-D-(6'-O-galloyl)glucoside (3) (160 mg), 2,3-di-O-galloylglucose (4) (858 mg), strictinin (7) (400 mg), gemin D (8) (4.7 g), casuariin (13) (39 mg) and pterocarinin A (14) (86 mg). Fraction IV was separated into two fractions (IV-1 and IV-2) by MCI-gel CHP 20P chromatography with H<sub>2</sub>O-MeOH. Chromatography of fraction IV-1 over Sephadex LH-20 with H<sub>2</sub>O-MeOH and then Cosmosil 75C<sub>18</sub>-OPN with H<sub>2</sub>O-MeOH furnished 1-desgalloyleugeniin (9) (48.7 g). Repeated chromatography of fraction IV-2 on Cosmosil 75C<sub>18</sub>-OPN, MCI-gel CHP 20P, Bondapak C<sub>18</sub>/Porasil B and Toyopearl HW-40F with H<sub>2</sub>O-MeOH and Sephadex LH-20 with EtOH yielded valoneic acid bislactone (1) (720 mg) and compounds 17 (860 mg), 19 (59 mg), 22 (205 mg), 23 (1.13 g), 24 (741 mg) and 25 (1.22 g). Fraction V was rechromatographed on MCI-gel CHP 20P, Toyopearl HW-40F and Cosmosil 75C<sub>18</sub>-OPN with H<sub>2</sub>O-MeOH and Sephadex LH-20 with EtOH to furnish 1,2,3,6-tetra-O-galloyl- $\beta$ -D-glucose (5) (199 mg), 1,2,3,4,6-penta-O-galloyl- $\beta$ -D-glucose (6) (135 mg), eugeniin (10) (35.8 g) and compounds 26 (2.97 g) and 27 (633 mg). On similar chromatographies, fraction VI gave  $1(\beta)$ -O-galloylpedunculagin (11) (458 mg) and rugosins A (12) (65 mg), E (15) (3.9 g) and D (16) (7.7 g). The known compounds 1—16 were identified by direct comparisons of the <sup>1</sup>H-NMR data and [α]<sub>D</sub> with those of authentic samples.

General Procedures for Enzymatic Hydrolysis A solution of a sample  $(10-200\,\mathrm{mg})$  in  $\mathrm{H_2O}$  (2–8 ml) was treated with tannase at room temperature for 10 h. The reaction mixture was directly applied to a column of MCI-gel CHP 20P. Elution with  $\mathrm{H_2O}$  containing increasing proportions of MeOH furnished gallic acid, which was identified by co-TLC with an authentic sample [solvent, benzene–ethyl formate–formic acid (5:4:1)], and a hydrolysate.

Eugenol 4-*O*-β-D-(6'-*O*-Galloyl)glucoside (17) Colorless needles (H<sub>2</sub>O), mp 207—208 °C,  $[\alpha]_D^{25}$  -30.3° (c=0.9, acetone). *Anal.* Calcd for C<sub>23</sub>H<sub>26</sub>O<sub>11</sub>: C, 57.74; H, 5.48. Found: C, 57.45; H, 5.39. Negative ion FAB-MS m/z: 477  $[M-H]^{-}$ . <sup>1</sup>H-NMR (acetone- $d_6$  +D<sub>2</sub>O, 100 MHz) δ: 3.29 (2H, d, J=7 Hz, H-7), 3.48—3.64 (3H, m, H-2',3',4'), 3.81 (3H, s, OCH<sub>3</sub>), 3.89 (1H, m, H-5'), 4.36 (1H, dd, J=6, 12 Hz, H-6'), 4.64 (1H,

dd, J=2, 12 Hz, H-6'), 4.93 (1H, br d, J=8 Hz, H-1'), 5.01 (1H, br d, J=10 Hz, H-9), 5.04 (1H, br d, J=17 Hz, H-9), 5.94 (1H, m, H-8), 6.69 (1H, dd, J=2, 8 Hz, H-6), 6.82 (1H, d, J=2 Hz, H-2), 7.12 (1H, d, J=8 Hz, H-5), 7.17 (2H, s, galloyl-H). <sup>13</sup>C-NMR (acetone- $d_6$  + D<sub>2</sub>O, 25.05 MHz)  $\delta$ : 40.2 (C-7), 56.3 (OCH<sub>3</sub>), 64.5 (C-6'), 71.2, (C-4'), 74.4, 75.0, 77.4 (C-2', 3', 5'), 102.3 (C-1'), 109.9 (galloyl-2,6), 113.7 (C-2), 115.8 (C-9), 117.4 (C-5), 121.5 (galloyl-1), 121.8 ((C-6), 135.5 (C-1), 138.6 (C-8), 138.8 (galloyl-4), 145.8 (C-4), 146.0 (galloyl-3, 5), 149.9 (C-3), 166.9 (COO).

**2-Methyl-5,7-dihydroxychromone 8-***C*-**β**-**D**-**Glucoside** (**18**) Colorless needles (H<sub>2</sub>O), mp 183—184 °C,  $[\alpha]_D^{B1}$  +74.2° (c=0.7, pyridine). *Anal.* Calcd for C<sub>16</sub>C<sub>18</sub>O<sub>9</sub>·1/2H<sub>2</sub>O: C, 52.89; H, 5.27. Found: C, 52.80; H, 5.24. Negative ion FAB-MS m/z: 353  $[M-H]^-$ . UV  $\lambda_{\max}^{MeOH}$  nm ( $\log \varepsilon$ ): 294 (3.89), 256 (4.43), 249 (4.41). UV  $\lambda_{\max}^{MeOH+AlCl_3}$  nm ( $\log \varepsilon$ ): 308 (3.98), 265 (4.44). <sup>1</sup>H-NMR (DMSO- $d_6$ , 100 MHz)  $\delta$ : 2.34 (3H, d, J=0.7 Hz, CH<sub>3</sub>), 3.18—3.88 (m, sugar-H), 4.47 (1H, br s, OH), 4.63 (1H, d, J=10 Hz, H-1'), 4.90 (2H, br s, OH), 6.18 (1H, d, J=0.7 Hz, H-3), 6.24 (1H, s, H-6), 13.02 (1H, s, OH). <sup>13</sup>C-NMR (DMSO- $d_6$ , 25.05 MHz)  $\delta$ : 19.7 (CH<sub>3</sub>), 61.3 (C-6'), 70.4, 70.8 (C-2', 4'), 73.1 (C-1'), 78.5 (C-3'), 81.2 (C-5'), 98.4 (C-6), 103.5 (C-4a), 104.4 (C-8), 107.5 (C-3), 156.2 (C-8a), 160.4 (C-5), 162.6 (C-7), 167.3 (C-2), 182.0 (C-4).

**2-Methyl-5,7-dihydroxychromone** 8-*C*-β-D-(6'-*O*-Galloyl)glucoside (19) A white amorphous powder,  $[\alpha]_{2}^{28}$  – 54.9° (c = 1.0, MeOH). *Anal.* Calcd for C<sub>23</sub>H<sub>22</sub>O<sub>13</sub>·1/2H<sub>2</sub>O: C, 53.70; H, 4.50. Found: C, 53.99; H, 4.74. Negative ion FAB-MS m/z: 505 [M – H]  $^{-}$ . <sup>1</sup>H-NMR (acetone- $d_6$  + D<sub>2</sub>O, 100 MHz) δ: 2.37 (3H, d, J=0.7 Hz, CH<sub>3</sub>), 3.44—4.03 (m, H-2', 3', 4', 5'), 4.56 (2H, br s, H-6'), 5.09 (1H, d, J=10 Hz, H-1'), 6.08 (1H, d, J=0.7 Hz, H-3), 6.22 (1H, s, H-6), 7.13 (2H, s, galloyl-H). <sup>13</sup>C-NMR (DMSO- $d_6$ , 25.05 MHz) δ: 19.7 (CH<sub>3</sub>), 63.8 (C-6'), 70.0, 70.7 (C-2', 4'), 73.3 (C-1'), 78.1, 78.3 (C-3', 5'), 98.3 (C-6), 103.5 (C-4a), 104.0 (C-8), 107.5 (C-3), 108.5 (galloyl-2, 6), 119.4 (galloyl-1), 138.3 (galloyl-4), 145.5 (galloyl-3, 5), 156.3 (C-8a), 160.5 (C-5), 162.6 (C-7), 165.8 (COO), 167.2 (C-2), 181.9 (C-4). Tannase hydrolysis of 19 (12 mg) gave gallic acid and 18 (3 mg).

**2,4,6-Trihydroxyacetophenone 3-***C-*β-D-Glucoside (20) A white amorphous powder,  $[\alpha]_D^{21} + 49.3^\circ$  (c = 0.8, MeOH). Anal. Calcd for  $C_{14}H_{18}O_9 \cdot 1/2H_2O$ : C, 49.56; H, 5.64. Found: C, 49.49; H, 5.58. Negative ion FAB-MS m/z: 329  $[M-H]^-$ . UV  $\lambda_{\max}^{\text{MeOH}}$  nm ( $\log \varepsilon$ ): 286 (4.28), 228 (4.30). UV  $\lambda_{\max}^{\text{MeOH}+\text{AlCl}_3}$  nm ( $\log \varepsilon$ ): 307 (4.47), 237 (4.11), 222 (4.37).

Methylation of 20 A solution of 20 (138 mg) in MeOH (5 ml) was treated with ethereal diazomethane. The mixture was concentrated and subjected to silica gel chromatography. Elution with benzene–EtOH (3:1) furnished 2,4,6-trimethoxyacetophenone 3-C- $\beta$ -D-glucoside (20a) (43.5 mg) as a white amorphous powder,  $[\alpha]_b^{16} + 8.0^\circ$  (c = 0.7, MeOH). Anal. Calcd for  $C_{17}H_{24}O_9 \cdot 1/2H_2O$ : C, 53.54; H, 6.45. Found: C, 53.59; H, 6.82. FAB-MS m/z: 395  $[M+Na]^+$ , 373  $[M+H]^+$ . <sup>1</sup>H-NMR (acetone- $d_6$ , 100 MHz)  $\delta$ : 2.38 (3H, s, CH<sub>3</sub>), 3.74, 3.86, 3.87 (each 3H, s, OCH<sub>3</sub>), 4.78 (1H, d, J = 10 Hz, H-1'), 6.54 (1H, s, H-5).

**Preparation of 20** A mixture of 2,4,6-trihydroxyacetophenone (1.0 g) and D-glucose (1.0 g) in 0.2 M potassium phosphate buffer (pH 7.3) (150 ml) was heated at 80 °C for 4 h. The solution was acidified with 1 N HCl and directly subjected to MCI-gel CHP 20P chromatography with  $\rm H_2O$  containing increasing proportions of MeOH to yield **20** (270 mg), which was identified by comparison of the  $\it Rf$  value on TLC, [ $\it \alpha$ ]<sub>D</sub> and the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra with those of an authentic sample.

**2,4,6-Trihydroxyacetophenone 3-***C-β*-D-(2'-O-Galloyl)glucoside (21) A white amorphous powder,  $[\alpha]_D^{27} - 98.6^{\circ}$  (c = 0.9, MeOH). *Anal.* Calcd for  $C_{21}H_{22}O_{13} \cdot H_2O$ : C, 50.41; H, 4.83. Found: C, 50.33; H, 4.70. Negative ion FAB-MS m/z: 481  $[M-H]^-$ . Tannase hydrolysis of **21** (10 mg) afforded gallic acid and **20** (4 mg).

**2,4,6-Trihydroxyacetophenone** 3-*C-β*-D-(6'-O-Galloyl)glucoside (22) A white amorphous powder,  $[\alpha]_D^{28}$  –49.0° (c=1.4, MeOH). *Anal.* Calcd for C<sub>21</sub>H<sub>22</sub>O<sub>13</sub>: C, 52.29; H, 4.60. Found: C, 52.04; H, 4.79. Negative ion FAB-MS m/z: 481 [M-H]<sup>-</sup>. Tannase hydrolysis of **22** (15 mg) yielded gallic acid and **20** (7 mg).

**2,4,6-Trihydroxyacetophenone** 3-*C*- $\beta$ -D-(2',3'-Di-*O*-galloyl)glucoside (23) A white amorphous powder,  $[\alpha]_D^{28} + 30.2^{\circ}$  (c = 1.7, MeOH). *Anal.* Calcd for  $C_{28}H_{26}O_{17}$ : C, 53.00; H, 4.13. Found: C, 52.74; H, 4.15. Negative ion FAB-MS m/z: 633  $[M-H]^-$ . Tannase hydrolysis of **23** (50 mg) afforded gallic acid, **21** (5 mg) and **20** (7 mg).

**2,4,6-Trihydroxyacetophenone** 3-C- $\beta$ -D-(2',6'-Di-O-galloyl)glucoside (24) A white amorphous powder,  $[\alpha]_D^{28} - 140.4^{\circ}$  (c = 1.3, MeOH). Anal. Calcd for  $C_{28}H_{26}O_{17} \cdot 1/2H_2O$ : C, 52.26; H, 4.23. Found: C, 52.42; H, 4.31. Negative ion FAB-MS m/z: 633  $[M-H]^-$ . Tannase hydrolysis of 24 (50 mg) afforded galic acid and 20 (9 mg).

**2,4,6-Trihydroxyacetophenone** 3-*C-β*-D-(2',3',6'-Tri-*O*-galloyl)glucoside (25) A white amorphous powder,  $\lceil \alpha \rceil_{D}^{28} - 13.0^{\circ}$  (c = 1.4, MeOH). *Anal.* 

Calcd for  $C_{35}H_{30}O_{21}$ : C, 53.44; H, 3.84. Found: C, 53.17; H, 3.91. Negative ion FAB-MS m/z: 785 [M – H] $^-$ . Tannase hydrolysis of **25** (100 mg) yielded gallic acid, **21** (11 mg) and **20** (5 mg).

**2,4,6-Trihydroxyacetophenone** 3-*C*-β-D-(2',3',4',6'-Tetra-*O*-galloyl)-glucoside (26) A white amorphous powder,  $[\alpha]_D^{21}$  –16.3° (c=1.0, MeOH). *Anal.* Calcd for C<sub>42</sub>H<sub>34</sub>O<sub>25</sub>·2H<sub>2</sub>O: C, 51.75; H, 3.93. Found: C, 51.93; H, 3.84. Negative ion FAB-MS m/z: 937 [M-H]<sup>-</sup>. Tannase hydrolysis of **26** (200 mg) yielded gallic acid (48 mg), **21** (21 mg) and **20** (25 mg).

**2,4,6-Trihydroxyacetophenone** 3-*C-β*-D-(2',3'-Di-*O*-galloyl-4',6',-*O*-(*S*)-hexahydroxydiphenoyl)glucoside (27) A tan amorphous powder,  $[\alpha]_D^{21}$  59.3° (c = 1.0, MeOH). Anal. Calcd for C<sub>42</sub>H<sub>32</sub>O<sub>25</sub> 2H<sub>2</sub>O: C, 51.86; H, 3.73. Found: C, 51.86; H, 3.78. Negative ion FAB-MS m/z: 935 [M – H]<sup>-</sup>.

Methylation of 27 A mixture of 27 (200 mg), dimethyl sulfate (2 ml) and anhydrous potassium carbonate (2.0 g) in dry acetone (30 ml) was heated under reflux for 2 h with stirring. After removal of the inorganic salts by filtration, the filtrate was concentrated to a syrup, which was chromatographed over silica gel. Elution with benzene–acetone (9:1) gave the pentadecamethyl ether (27a) (192 mg) as a white amorphous powder,  $[\alpha]_D^{21} + 4.7^{\circ}$  (c = 1.0, acetone). Anal. Calcd for  $C_{57}H_{62}O_{25}$ : C, 59.68; H, 5.45. Found: C, 60.07; H, 5.45. FAB-MS m/z: 1147 [M+H]<sup>+</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ : 2.32 (3H, s, CH<sub>3</sub>), 3.68, 3.72, 3.74, 3.80, 3.81, 3.89, 3.91, 3.94, 4.03 (47H in total, OCH<sub>3</sub>, H-5', 6'), 5.06 (1H, d, J = 10 Hz, H-1'), 5.28—5.49 (2H, m, H-4', 6'), 5.72 (1H, t, J = 10 Hz, H-2'), 6.28 (1H, s, H-5), 6.30 (1H, t, J = 10 Hz, H-2'), 6.73, 6.80 (each 1H, s, aromatic H), 7.01, 7.19 (each 2H, s, aromatic H).

Alkaline Methanolysis of 27a A solution of 27a (161 mg) in 2% methanolic sodium methoxide (5 ml) was left standing at room temperature for 20 h. The reaction mixture was neutralized with Amberlite IR-120B (H<sup>+</sup> form), and chromatographed over silica gel. Elution with benzene–acetone (48:2) furnished methyl 3,4,5-trimethoxybenzoate (27b) (59.1 mg), colorless needles, mp 81 °C, and dimethyl 4,4',5,5',6,6'-hexamethoxydiphenate (27c) (56.4 mg), a colorless syrup,  $[\alpha]_D^{20} - 28.0^{\circ}$  (c = 1.0, CHCl<sub>3</sub>). Further elution with benzene–ethanol (3:1) afforded 20a (47.0 mg), which was identified by comparison of the Rf value on TLC,  $[\alpha]_D$  and the <sup>1</sup>H-NMR data with those of an authentic sample.

**Acknowledgement** The authors are grateful to Mr. Y. Tanaka, Miss Y. Soeda and Dr. R. Isobe for <sup>1</sup>H- and <sup>13</sup>C-NMR and MS measurements, and to the staff of the Central Analysis Room of this university for elemental analyses.

## References

- a) Part CXII: T. Tanaka, H. Tachibana, G. Nonaka, I. Nishioka, F. H. Hsu, H. Kohda, and O. Tanaka, Chem. Pharm. Bull., 41, 1214 (1993);
  b) Present address: Faculty of Pharmaceutical Sciences, Nagasaki University, 1–14 Bunkyo-cho, Nagasaki 852, Japan.
- a) G. Nonaka, M. Harada, and I. Nishioka, *Chem. Pharm. Bull.*, 28, 685 (1980);
  b) G. Nonaka, K. Ishimaru, M. Watanabe, I. Nishioka, T. Yamauchi, and A. S. C. Wan, *ibid.*, 35, 217 (1987);
  c) T. Tanaka, N. Ishida, G. Nonaka, and I. Nishioka, *ibid.*, 40, 2092 (1992);
  d) G.

- Nonaka, Y. Aiko, K. Arirake, and I. Nishioka, *ibid.*, **40**, 2671 (1992).
- O. T. Schmidt and E. Komarek, *Justus Liebigs Ann. Chem.*, **591**, 156 (1954).
- 4) G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 31, 1652 (1983).
- 5) R. Saijo, G. Nonaka, and I. Nishioka, *Phytochemistry*, 28, 2443 (1989).
- M. A. M. Nawwar, A. M. A. Souleman, J. Buddrus, H. Bauer, and M. Linscheid, *Tetrahedron Lett.*, 25, 49 (1985).
- 7) M. Nishizawa, T. Yamagishi, G. Nonaka, and I. Nishioka, J. Chem. Soc., Perkin Trans. 1, 1983, 961.
- 8) T. Okuda, T. Yoshida, M. Asida, and K. Yazaki, J. Chem. Soc., Perkin Trans. 1, 1983, 1765.
- 9) T. Yoshida, Y. Maruyama, M. U. Memon, T. Shingu, and T. Okuda, *Phytochemistry*, **24**, 1041 (1985).
- 10) C. K. Wilkins and B. A. Bohm, Phytochemistry, 15, 211 (1976).
- R. K. Gupta, S. M. Al-Shafi, K. Laiden, and E. Haslam, J. Chem. Soc., Perkin Trans. 1, 1982, 2525.
- T. Hatano, N. Ogawa, T. Yasuhara, and T. Okuda, *Chem. Pharm. Bull.*, 38, 3308 (1990).
- G. Nonaka, T. Sakai, T. Tanaka, K. Mihashi, and I. Nishioka, *Chem. Pharm. Bull.*, 38, 2151 (1990).
- G. Nonaka, K. Ishimaru, R. Azuma, M. Ishimatsu, and I. Nishioka, Chem. Pharm. Bull., 37, 207 (1989).
- T. Hatano, N. Ogawa, T. Shingu, and T. Okuda, Chem. Pharm. Bull., 38, 3341 (1990).
- 16) A. Sawabe, Y. Matsubara, H. Kumamoto, Y. Iizuka, and K. Okamoto, Nippon Nogeikagaku Kaishi, 60, 593 (1986).
- 17) N. Fang, S. Yu, and T. J. Mabry, *Phytochemistry*, **25**, 2684 (1986).
- T. Tanaka, T. Sueyasu, G. Nonaka, and I. Nishioka, Chem. Pharm. Bull., 32, 2676 (1984).
- M. A. Gonzalez, J. L. J. Requejo, J. C. P. Albarran, and J. A. G. Perez, *Carbohydr. Res.*, 158, 53 (1986).
- 20) E. C. Bate-Smith, Phytochemistry, 11, 1153 (1972).
- Y. Ikeya, H. Taguchi, I. Yoshioka, and H. Kobayashi, *Chem. Pharm. Bull.*, 27, 1383 (1979).
- W. Mayer, W. Gabler, A. Riester, and H. Korger, Justus Liebigs Ann. Chem., 707, 177 (1967); G. Nonaka, H. Nishimura, and I. Nishioka, J. Chem. Soc., Perkin Trans. 1, 1985, 163; H. Feng, G. Nonaka, and I. Nishioka, Phytochemistry, 27, 1185 (1988); K. Ishimaru, M. Ishimatsu, G. Nonaka, K. Mihashi, Y. Iwase, and I. Nishioka, Chem. Pharm. Bull., 36, 3312 (1988); idem, ibid., 36, 3319 (1988); G. Nonaka, S. Nakayama, and I. Nishioka, ibid., 37, 2030 (1989).
- T. Tanaka, G. Nonaka, and I. Nishioka, Chem. Pharm. Bull., 34, 656 (1986).
- M. Ishimatsu, T. Tanaka, G. Nonaka, and I. Nishioka, *Phytochemistry*, 28, 3179 (1989).
- H. Nishimura, G. Nonaka, and I. Nishioka, Chem. Pharm. Bull., 34, 3223 (1986).
- 26) R. Saijo, G. Nonaka, and I. Nishioka, Phytochemistry, 29, 267 (1990).