Constituents of *Ephemerantha fimbriata*. Isolation and Structure Elucidation of Two New Phenanthrenes, Fimbriol-A and Fimbriol-B, and a New Dihydrophenanthrene, Ephemeranthol-C¹⁾

Yasuhiro Tezuka, Yasushi Yoshida, Tohru Kikuchi, *, and Guo-Jun Xub

Research Institute for Wakan-Yaku (Oriental Medicines), Toyama Medical and Pharmaceutical University, ^a 2630 Sugitani, Toyama 930-01, Japan and China Pharmaceutical University, ^b 24 Tonjiaxian, Nanjing, China. Received January 5, 1993

Constituents of *Ephemerantha fimbriata* (Bl.) P. F. Hunt *et* Summerh, which is used as a source plant of the Chinese crude drug "Shi-Hu", were examined and two new phenanthrenes, fimbriol-A (2) and fimbriol-B (8), a new dihydrophenanthrene, ephemeranthol-C (6), and dihydroconiferyl dihydro-*p*-coumarate (5) were isolated together with denbinobin (1), (+)-pinoresinol (3), (+)-syringaresinol (4), 3,4,5-trimethoxybenzoic acid (7), lusianthridin (9), and dihydro-*p*-coumaric acid (10). Structures of the new compounds were elucidated by the use of spectroscopic methods including two-dimensional NMR techniques.

Keywords Ephemerantha fimbriata; phenanthrene; dihydrophenanthrene; fimbriol-A; fimbriol-B; ephemeranthol-C

The Chinese crude drug "Shi-Hu (石斛)" is prepared from the dried stems of Dendrobium nobile and several other Dendrobium species (Orchidaceae), and is used as a tonic and an antipyretic.2) Some Ephemerantha species, such as E. fimbriata, E. lonchophylla, and E. comata, are also used as sources of "Shi-Hu." In a previous paper, we reported the isolation and the structures of five new compounds, ephemeranthol-A, ephemeranthol-B, ephemeranthoquinone, 3-O-methylgigantol, and ephemeranthoside, from the stems of E. lonchophylla.^{1,4)} Recently, we have examined the constituents of E. fimbriata (BL.) P. F. HUNT et SUMMERH and isolated four new compounds, fimbriol-A (2), dihydroconiferyl dihydro-p-coumarate (5), ephemeranthol-C (6), and fimbriol-B (8), together with six known ones (1, 3, 4, 7, 9 and 10). This paper deals with the isolation and the structure elucidation of these compounds.

Stems of *Ephemerantha fimbriata* were cut into small pieces and extracted with ethanol at room temperature. The ether-soluble fraction of the ethanol extract was separated by silica gel column chromatography followed

by preparative TLC to give ten compounds. Among them, five were identified as denbinobin (1), $^{1,5)}$ (+)-pinoresinol (3), $^{6)}$ (+)-syringaresinol (4), $^{6)}$ 3,4,5-trimethoxybenzoic acid (7), lusianthridin (9), $^{7)}$ and dihydro-p-coumaric acid (10) by analyses of spectral data and direct comparison with authentic samples.

Compound 5, a colorless amorphous solid, showed the molecular ion peak at m/z 330 in the MS and its molecular formula was determined to be $C_{19}H_{22}O_5$ by high-resolution MS (HR-MS) measurement. Its UV and IR spectra closely resembled those of dihydro-p-coumaric acid (10) except for the appearance of an absorption due to an ester group ($v1727\,\mathrm{cm}^{-1}$) instead of a carboxylic acid group (v3340, br and $1709\,\mathrm{cm}^{-1}$) in the IR spectrum.

The ¹H-NMR spectrum of **5** showed signals due to two coupled methylenes (δ 2.59, 2.88, each 2H, t, J=8 Hz, 8-H₂, 7-H₂), three coupled methylenes (δ 1.89, 2H, quintet, J=8 Hz, 8'-H₂; 2.56, 2H, t, J=8 Hz, 7'-H₂; 4.08, 2H, t, J=8 Hz, 9'-H₂), a 1,4-disubstituted benzene (δ 6.75, 7.07, each 2H, d, J=8.5 Hz, 3,5-H₂, 2,6-H₂), and a 1,3,4-trisubstituted benzene (δ 6.64, dd, J=8.5, 1.5 Hz, 6'-H;

CH₃O
$$\xrightarrow{R^2}$$
 $\xrightarrow{10}$ $\xrightarrow{10$

© 1993 Pharmaceutical Society of Japan

Table I. ¹H- and ¹³C-NMR Data for 2, 6, and 8 in CDCl₃

	2		6		8	
	$\delta_{ ext{ iny H}}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m c}$	$\delta_{ m H}$	$\delta_{ m C}$
1	7.16 s	108.6 d	6.75 s	112.1 d	7.26 s	110.4 d
2		148.3 s		143.4 s	7.208	
3		138.8 s		134.7 s		144.6 s
4		147.2 s		142.5 s		137.3 s
4a		113.0 s		117.6 s		141.0 s
4b		119.2 s		117.6s 119.6s		115.7 s
5		153.9 s		153.2 s		117.5 s
6	7.27 dd (8, 1.5)	117.2 d	6.96 dd (7.7, 1.3)		7.05.11 (7.5.4.0)	153.4 s
7	7.52 t (8)	127.3 d	7.16t (7.7)	117.6 d	7.25 dd (7.5, 1.3)	115.6 d
8	7.95 dd (8, 1.5)	114.1 d	6.86 dd (7.7, 1.3)	128.4 d	7.50 t (7.5)	127.3 d
8a	7.55 44 (6, 1.5)	128.7 s	0.80 dd (7.7, 1.3)	120.0 d	7.44 dd (7.5, 1.3)	120.8 d
9		153.7 s	2.72 m	140.6 s		134.5 s
10	6.75 s	101.7 d		31.1 t	7.55 d (8.7)	126.8 d
10a	0.733	131.6 s	2.63 m	30.1 t	7.47 d (8.7)	126.3 d
3-OCH ₃	4.14 s	62.3 q		133.3 s		128.1 s
4-OCH ₃	3.80 s		2.70			
9-OCH ₃	4.04 s	62.6 q	3.70 s	$62.2\mathrm{q}$	3.79 s	62.6 q
2-OH	5.92 br s	55.6 q				
5-OH			0.04			
3-011	10.1 s		8.24 s		10.2 s	

6.65, br s, 2'-H; 6.83, d, $J=8.5\,\mathrm{Hz}$, 5'-H) together with a methoxyl (δ 3.87, 3'-OCH₃) and a hydroxyl group (δ 5.48, br s). In difference nuclear Overhauser effect (NOE) experiments, irradiation of the methylene protons at δ 2.56 (7'-H₂) and at δ 2.88 (7-H₂) showed NOE increases of the protons at δ 6.64 (6'-H) and 6.65 (2'-H) and at δ 7.07 (2,6-H₂), respectively, while irradiation of the methoxy protons (δ 3.87) showed an NOE increase of the proton at δ 6.65 (2'-H).

From these spectral data and the IR absorption of an ester carbonyl group, 5 was concluded to be dihydroconiferyl dihydro-p-coumarate. This conclusion was supported by the fragment ion at m/z 164 (base peak, $C_{10}H_{12}O_2$) formed by McLafferty fragmentation in the MS.

Fimbriol-A (2), a colorless amorphous solid, had the molecular formula C₁₇H₁₆O₅ as determined by HR-MS, and showed UV absorptions at 262, 274sh, 288sh, 302, 316, 329, 348, and 366 nm (log ϵ 4.45, 4.14, 3.88, 3.78, 3.76, 3.26, 3.43, 3.56), which are characteristic of phenanthrene derivatives.8) The IR spectrum of 2 showed strong hydroxyl absorptions at 3529 and 3183 cm⁻¹ and its ¹H-NMR spectrum revealed signals due to a 1,2,3trisubstituted benzene ring (δ 7.27, dd, J=8, 1.5 Hz, 6-H; 7.52, t, J = 8 Hz, 7-H; 7.95, dd, J = 8, 1.5 Hz, 8-H) and two isolated benzene protons (δ 7.16, 1-H; 6.75, 10-H) along with three methoxyl (δ 3.80, 4.04, 4.14) and two hydroxyl protons (δ 5.92, 10.1). However, it showed no signals of ortho-coupled 9- and 10-protons of phenanthrene derivatives,8) suggesting that 2 has at least a substituent at the C-9 or C-10 position.

Locations of the methoxyl and hydroxyl groups in **2** were determined by difference NOE experiments (Chart 2). Irradiation of the methoxyl protons at δ 4.04 (9-OC \underline{H}_3) gave an NOE enhancement of the proton at δ 6.75 (10-H) and irradiation of the latter proton increased the intensities of the former protons and the proton at δ 7.16 (1-H). In turn, irradiation of the proton at δ 7.16 (1-H) showed an NOE enhancement of the isolated proton at δ 6.75 (10-H). Thus, the methoxyl group at δ 4.04 was considered to be

Chart 2. NOE's (Left) and Long-Range Correlations (Right) Observed in the Difference NOE and HMBC Spectra of 2

located at the C-9 position and the two isolated benzene protons at the C-1 and C-10 positions. On the other hand, irradiation of the protons at δ 3.80 (4-OCH₃), 4.14 (3-OCH₃), and 5.92 (2-OH) increased the intensities of the protons at δ 4.14 (3-OCH₃) and 10.1 (5-OH), at δ 3.80 (4-OCH₃), and at δ 4.14 (3-OCH₃), respectively. Therefore it was reasonable to assume that the two remaining methoxyl groups were located at the C-3 and C-4 positions and two hydroxyl groups at the C-2 and C-5 positions.

From these data, fimbriol-A was determined to be 2,5-dihydroxy-3,4,9-trimethoxyphenanthrene (2). This was supported by the long-range correlations observed in the ¹H-detected heteronuclear multiple-quantum multiple-bond correlation (HMBC) spectrum⁹⁾ (Chart 2). Fimbriol-A (2) is the second example of a ring-B oxygenated phenanthrene derivative obtained from a natural source. ¹⁰⁾

Ephemeranthol-C (6), a colorless amorphous solid, $C_{15}H_{14}O_4$, showed UV absorptions at 266, 271, 294sh, 307 nm (log ε 3.39, 3.38, 3.28, 3.34) and IR absorptions at 3450 (OH), 1604, 1523, and 1425 cm⁻¹ (benzene ring). The ¹H-NMR spectrum of 6 showed signals assignable to 9-H₂ and 10-H₂ of dihydrophenanthrenes (δ 2.63, 2.72, each 2H, m), ^{1,8)} a 1,2,3-trisubstituted benzene ring, an isolated benzene proton, and a methoxyl group (Table I). These spectral data suggested that 6 should be a dihydrophenanthrene having a methoxyl and three hydroxyl groups.

It should be noted that the ¹H-NMR spectrum showed

Chart 3. Long-Range Correlations Observed in the HMBC Spectrum of 6

Chart 4. Long-Range Correlations Observed in the HMBC Spectrum of 8

no signal at around δ 8 ppm, characteristic of the protons at the C-4 and C-5 positions of dihydrophenanthrenes, ^{1,8)} indicating that both C-4 and C-5 are substituted. In difference NOE experiments, irradiation of the methylene protons at δ 2.63 (2H, m, 10-H₂) and at δ 2.72 (2H, m, 9-H₂) gave NOE enhancements of the isolated benzene proton at δ 6.75 (1H, s, 1-H) and the *ortho-*, *meta-*coupled benzene proton at δ 6.86 (1H, dd, J=7.7, 1.3 Hz, 8-H), respectively. Thus, **6** was supposed to be a 2,3,4,5-tetra-substituted dihydrophenanthrene.

The location of the methoxy group (δ 3.70) was determined to be at the C-4 position by careful analyses of the ¹H-detected heteronuclear multiple-quantum correlation (HMQC)^{9b,11)} and HMBC spectra (Chart 3).

From the data mentioned above, ephemeranthol-C was determined to be 2,3,5-trihydroxy-4-methoxy-9,10-dihydrophenanthrene (6).

Fimbriol-B (8) was obtained as an amorphous solid and its molecular formula was determined to be $C_{15}H_{12}O_4$ (m/z 256) by MS and HR-MS measurements. It showed characteristic UV absorptions of phenanthrene derivatives⁸⁾ and IR absorptions due to hydroxyl groups and aromatic rings (see Experimental). The ¹H-NMR spectrum of 8 showed signals due to a 1,2,3-trisubstituted benzene ring, an isolated benzene proton, and a methoxyl group along with signals due to a pair of *ortho*-coupled (J= 8.7 Hz) protons ascribable to 9-H and 10-H of a phenanthrene ring⁸⁾ (Table I). From these data, 8 was considered to be a phenanthrene derivative having a methoxyl and three hydroxyl groups.

Finally, fimbriol-B was determined to be 2,3,5-trihy-droxy-4-methoxyphenanthrene (8) based on the analyses of the HMQC and HMBC spectra (Chart 4).

Experimental

UV spectra were obtained with a Shimadzu 202 UV spectrometer in EtOH solutions and IR spectra were taken with a Nicolet 5DX FT-IR spectrometer in CHCl₃ solutions. NMR spectra were measured with a JEOL GX-400 spectrometer with tetramethylsilane as an internal standard, and chemical shifts are recorded in δ values. MS and HR-MS were taken with a JEOL JMS D-300 spectrometer (ionization voltage, 70 eV; accelerating voltage, 3 kV) using a direct inlet system. Column chromatography was done with Mallinkrodt silica gel and preparative TLC with Merck Kieselgel GF₂₅₄ plates.

The crude drug Shi-Hu employed in this study was kindly provided by Tochimoto-tenkaido Co., Ltd. (collected in Vietnam and imported into Japan) and identified as *Ephemerantha fimbriata* (Bl.) P. F. Hunt *et* Summerh by one of the authors (G.-J. Xu).

Extraction and Isolation Air-dried stems of *E. fimbriata* (159 g) were cut into small pieces and extracted with EtOH (1 l, 3 h, \times 5) at room temperature. After concentration of the combined EtOH solution *in vacuo*, the residue was suspended in water and extracted successively with ether and EtOAc (each 300 ml \times 6) to give an ether extract (4.60 g) and an EtOAc extract (1.30 g) along with an insoluble material (640 mg). The ether extract was chromatographed on a silica gel column with CHCl₃–MeOH (100:0, 99:1, 98:2, 96:4, 92:8), and eluates were separated into ten fractions according to TLC behavior.

Fraction 2 (86 mg) was subjected to preparative TLC with MeOH-CHCl₃ (1:99) to give denbinobin (1, 1.0 mg)^{1.6)} from the less polar zone and fimbriol-A (2, 1.1 mg) from the more polar zone.

Fraction 4 (61 mg) was separated by preparative TLC with CHCl₃–MeOH (98:2) to give (+)-pinoresinol (3, 1.0 mg),⁷⁾ (+)-syringaresinol (4, 1.0 mg),⁷⁾ dihydroconiferyl dihydro-p-coumarate (5, 2.3 mg), ephemeranthol-C (6, 2.5 mg), and 3,4,5-trimethoxybenzoic acid (7, 5.3 mg) in order of increasing polarity.

Fractions 5 (52 mg), 6 (40 mg), and 9 (55 mg) were also subjected to preparative TLC with MeOH–CHCl₃ (10:90, 1:99, 4:96, respectively). Fimbriol-B (8, 12.5 mg), lusianthridin (9, 4.2 mg), ¹⁰⁾ and dihydro-p-coumaric acid (10, 5.9 mg) were obtained from frs. 5, 6, and 9, respectively.

Fimbriol-A (2) Colorless amorphous solid. UV λ_{max} nm (log ε): 262 (4.45), 274sh (4.14), 288sh (3.88), 302 (3.78), 316 (3.76), 329 (3.26), 348 (3.43), 366 (3.56). IR ν_{max} cm⁻¹: 3529, 3183 (br, OH), 1625, 1604, 1532, 1500, 1467, 1428 (benzene ring). ¹H- and ¹³C-NMR: Table I. MS m/z (%): 300 (M⁺, 100), 285 (65), 270 (5), 257 (13), 253 (11), 242 (40), 227 (10), 199 (6). HR-MS: Found 300.0997, Calcd for $C_{17}H_{16}O_5$ (M⁺) 300.0997.

Dihydroconiferyl Dihydro-*p***-coumarate (5)** Colorless amorphous solid. UV λ_{max} nm (log ϵ): 228 (3.82), 279 (3.65). IR ν_{max} cm $^{-1}$: 3596, 3549, 3315 (br, OH), 1727 (CO), 1605, 1515, 1465 (benzene ring). MS m/z (%): 330 (M $^+$, 75), 181 (5), 164 (100), 149 (16), 137 (26), 107 (13). HR-MS: Found 330.1463, Calcd for $C_{19}H_{22}O_5$ (M $^+$) 330.1467; Found 164.0837, Calcd for $C_{10}H_{12}O_2$ 164.0837.

Ephemeranthol-C (6) Colorless amorphous solid. UV λ_{max} nm (log ε): 266 (3.39), 271 (3.38), 294sh (3.28), 307 (3.34). IR ν_{max} cm⁻¹: 3450 (br, OH), 1604, 1523, 1425 (benzene ring). ¹H- and ¹³C-NMR: Table I. MS m/z (%): 258 (M⁺, 100), 243 (16), 225 (10), 197 (15), 169 (6). HR-MS: Found 258.0890, Calcd for C₁₅H₁₄O₄ (M⁺) 258.0891.

Fimbriol-B (8) Colorless amorphous solid. UV λ_{max} nm (log ε): 262 (3.96), 303 (3.46), 315 (3.43), 330sh (3.16), 350 (3.17), 367 (3.19). IR ν_{max} cm⁻¹: 3546, 3256 (br, OH), 1645, 1618, 1592, 1544, 1508, 1470 (benzene ring). ¹H- and ¹³C-NMR: Table I. MS m/z (%): 256 (M⁺, 100), 241 (29), 223 (15), 213 (19), 196 (15), 138 (27), 128 (8). HR-MS: Found 256.0739, Calcd for C₁₅H₁₂O₄ (M⁺) 256.0735.

Acknowledgements The authors are grateful to Tochimoto-tenkaido Co., Ltd. for the gift of the crude drug "Shi-Hu". This work was supported in part by a Grant-in-Aid for Scientific Research (No. 63870090) to T. K. from the Ministry of Education, Science and Culture of Japan.

References and Notes

- This paper is part XI of the series, Studies on the Constituents of Orchidaceous Plants; Part X: Y. Tezuka, H. Hirano, T. Kikuchi, G.-J. Xu, Chem. Pharm. Bull., 39, 593 (1990).
- Chiang Su New Medicinal College, "Dictionary of Chinese Crude Drugs," Shanghai Scientific Technologic Publisher, Shanghai, 1977, p. 586
- M.-F. Li, G.-J. Xu, L.-S. Xu, R.-L. Jin, Zhong Cao Yao, 17, 465 (1986); T. Namba, "Coloured Illustrations of Wakan-Yaku," Vol. II, Hoikusha Publishing Co., Ltd., Osaka, 1980, p. 3.
- Constituents of E. comata have also been reported. See, M. Niwa, N. Kihira, Y. Hirata, M. Tori, T.-S. Wu, C.-S. Kuo, Phytochemistry, 26, 3293 (1987).
- B. Talapatra, P. Mukhopadhyay, P. Chaudhury, S. K. Talapatra, Indian J. Chem., 21B, 386 (1982).
- T. Deyama, Chem. Pharm. Bull., 31, 2993 (1983); T. Kikuchi, S. Matsuda, S. Kadota, T. Tai, ibid., 33, 1444 (1985).
- 7) P. L. Majumder, S. Lahiri, *Phytochemistry*, **29**, 621 (1990).
- A. D. Cross, H. Carpio, P. Crabbe, J. Chem. Soc., 1963, 5539; R.
 M. Letcher, L. R. M. Nhamo, J. Chem. Soc. (C), 1971, 3070;

- R. M. Letcher, L. R. M. Nhamo, I. T. Gumiro, *J. Chem. Soc.*, *Perkin Trans. 1*, **1972**, 206; R. M. Letcher, L. R. M. Nhamo, *ibid.*, **1972**, 2941.
- a) A. Bax, M. F. Summers, J. Am. Chem. Soc., 108, 2093 (1986);
 b) M. F. Summers, L. G. Marzilli, A. Bax, ibid., 108, 4285 (1986).
- Gymnopusyn (7,9-dihydroxy-2,3,4-trimethoxyphenanthrene) has been isolated from Bulbophyllum gymnopus (Orchidaceae); see P. L. Majumder, S. Banerjee, Phytochemistry, 27, 245 (1988).
- 11) A. Bax, S. Subramanian, J. Mag. Res., 67, 565 (1986).