2,5-Dihydrofuryl- γ -lactam Derivatives from *Hemerocallis fulva* L. var. *kwanso* REGEL. II¹⁾

Tomohiro Inoue, Tenji Konishi, Shiu Kiyosawa,* and Yasuhiro Fujiwara

Kyoto Pharmaceutical University, Nakauchi-cho, Misasagi Yamashina-ku, Kyoto 607, Japan. Received July 1, 1993

Two new 2,5-dihydrofuryl- γ -lactam derivatives, fulvanine D and E have been extracted from *Hemerocallis fulva* L. var. *kwanso* Regel along with fulvanine A, B and C. The structures of fulvanine D and E have been established as 1-(3-hydroxymethyl-2,5-dihydro-2-furyl)azacyclopenta-3-hydroxy-5-methoxy-2-one (1) and 1,2,4,5,5a,6,7,8,-8a,8b-decahydro-1,5-dioxa-8a-aza-asym-indacen-7-hydroxy-8-one (2).

Keywords Hemerocallis fulva var. kwanso; 2,5-dihydrofuryl-γ-lactam; fulvanine E; Ehrlich reaction; ¹H-NMR

The Ehrlich reaction is useful as a reliable means of detecting some natural products. It has been applied to finding the reaction-positive constituents in Dioscoreaceae and Liliaceae for the purposes of chemotaxonomy.²⁾ The methanol extract from a fresh aerial part of *Hemerocallis fulva* var. *kwanso*, Liliaceae, was chromatographed to give fulvanine D and E along with fulvanine A, B and C.¹⁾

Notes

Fulvanine D (1), a white powder, gave a positive Ehrlich reaction and exhibited an absorption maximum at $1700\,\mathrm{cm^{-1}}$ due to a γ -lactam ring in the infrared (IR) spectrum. The proton nuclear magnetic resonance (¹H-NMR) spectrum of 1 was analogous to that of fulvanine A (3), a 2,5-dihydrofuryl- γ -lactam derivative. The proton signals of two methine groups in the low field at δ 6.24 and 6.46 ppm are characteristic of fulvanines having the partial structure of the 2,5-dihydrofuryl ring. The geminal coupled proton signals at δ 1.87 and 2.57 are

Hold
$$R_{1}$$
 R_{2} R_{2} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{4} R_{2} R_{4} R_{5} R_{2} R_{4} R_{5} R_{5}

Chart 1

Fig. 1. NOE of 2

ascribed to the C-4 methylene of the γ -lactam moiety with the CH–CH₂–CH system. One methoxyl proton signal appeared at δ 3.24, and the methine proton signal at C-5 was observed in the upfield about 0.27 ppm from that of 3, suggesting methylation of 5-OH. The methylation effect was also suggested by the carbon thirteen nuclear magnetic resonance (13 C-NMR) spectrum in which the C-4 and C-5 carbons shifted about -4.4 and 7.7 ppm, respectively, compared with the spectrum of 3 (Table II). 3

Accordingly, fulvanine D was characterized as 1-(3-hydroxymethyl-2,5-dihydro-2-furyl)azacyclopenta-3-hydroxy-5-methoxy-2-one (1).

Fulvanine E (2), colorless needles, mp 210—212 °C (dec.) exhibited a bluish purple color with the Ehrlich test and an absorption maximum at 1712 cm⁻¹ suggesting a γ-lactam ring like other fulvanines. The ¹H-NMR spectrum (CD₃OD) of 2 also showed the proton signal pattern characteristic of 2,5-dihydrofuryl-γ-lactam de-

TABLE I. ¹H-NMR Spectral Data for 1,2 and 3 (in CD₃OD, 300 MHz)

Proton	1	2	3
3	4.51 dd 9, 7.5	4.30 dd 9, 7	4.60 dd 9, 7
4	1.87 ddd 13, 9, 6	1.71 ddd 14, 7, 4	1.98 ddd 13, 9, 6
	2.57 dd 13, 7.5	2.80 ddd 14, 9, 7	2.30 dd 13, 7
5	4.88 d 6	5.07 dd 7, 4	5.15 d 6
2'	6.46 m	6.14 m	6.45 m
4'	6.24 dd 3, 2	6.20 m	6.22 ddd 4, 4, 2
5'	4.52 ddt 13, 3, 2	4.57 dddd 13, 5, 3, 2	4.53 dddd 13, 4, 4, 2
	4.65 ddt 13, 6.5, 2	4.71 m	4.76 dddd 13, 4, 3, 2
6′	4.09 s	4.69 m	4.08 m
CH ₃ O	3.24 s		

 δ in ppm from tetramethylsilane (TMS), and J values in Hz.

TABLE II. ¹³C-NMR Spectral Data for 1, 2 and 3 (in CD₃OD, 75 MHz)

Carbon	1	2	3
2	178.26	177.06	177.92
3	69.49	68.92	69.50
4	35.84	36.43	40.14
5	86.83	81.70	79.09
2'	88.57	87.80	88.92
3′	137.67	132.53	137.63
4′	129.23	129.09	128.87
5′	75.36	76.71	75.37
6′	58.09	64.28	58.04
CH ₃ O	54.64		

 δ in ppm from TMS.

© 1994 Pharmaceutical Society of Japan

rivative, indicating the unsaturated methine proton signals at δ 6.13 and 6.20 ppm, and two sets of signals of the geminal coupled methylene protons at δ 4.71, 4.57, 2.80 and 1.71 ppm, while some differences were observed in comparison with 3. The nonequivalent methylene protons at C-4 resonated, respectively, at δ 1.71 and 2.80 indicating a chemical shift difference of about 1 ppm with double doublet (ddd) split signal; in 3, the difference in ppm was about 0.3 between the two protons which was characteristic of a coupling system of dd and ddd splits signals. Furthermore, the 6'-CH₂ proton signals showed a shift to low field of about 0.6 ppm compared with 3. The ¹H-NMR spectrum in dimethylsulfoxide (DMSO)- d_6 only exhibited a secondary hydroxyl proton signal at δ 5.75, assigned to the C-3 position by the decoupling experiment. These results suggested an ether linkage formed by dehydration between two hydroxyl functions at C-5 and C-6'. By comparing its ¹³C-NMR spectrum with that of 3, C-4 and C-5 showed respective shift differences of about -3.7 and +2.6 ppm, and three carbons at C-3', C-4' and C-6' shifted about -5.1, +0.2and 4.2 ppm, respectively, due to a cyclization effect caused by formation of an ether linkage between the C-5 and C-6' positions.

The stereochemistry of **2** was determined by nuclear Overhauser effect (NOE) data to be as depicted by structure **2**. Therefore, fulvanine E was characterized as 1,2,4,5,5a,6,7,8,8a,8b-decahydro-1,5-dioxa-8a-aza-asymindasen-7-hydroxy-8-one, **2**.

The electron-impact mass spectrum (EI-MS) of 1 showed $M^+ - H_2O$ peak at m/z 211 and $M^+ - 2 \times H_2O$ at m/z 193. The cleavage of the N–C-2' bond occurred to give a base peak, 3-hydroxymethyl-2,5-dihydrofuranyl ion at m/z 99. The first step in the EI-MS of 2 was cleavage of the carbon–hetero, C-2'–N bond and facile cleavage of the ether bond at C-6' gave 3'-exomethylene-2'-hydrofuryl ion as a base peak at m/z 82. The peaks in the fragmentations of 1 and 2 arose as shown in Chart 2.

The stereochemistry of 3 was determined as 3β , 5α -dihydroxylate from NOE data, 1) but this was not neces-

sarily the same as that existing in nature because of possible epimerization of the asymmetric carbon 5. In fact, **2** was characterized as a 3β , 5β -dioxy derivative in which the ¹H-NMR spectrum exhibited considerable differences in the coupling system of -CH-CH₂-CH- compared with that of **1** and **3** (Table I, Fig. 1).

It was difficult to know if fulvanine D and E were really natural. No artifacts arising from 3 were formed in the methanol solution by continued heating. The absolute configuration at C-3, C-5 and C-2' of the fulvanine derivatives are being studied.

Experimental

Extraction of Fulvanine D (1) and E (2) Fraction B (1.35 g)¹⁾ was chromatographed on silica gel (CHCl₃–MeOH–H₂O, 8:2:0.2, v/v) to give three fractions (fr. a, 0.12 g; fr. b, 0.85 g; fr. c, 0.20 g). Fraction a was further subjected to column chromatographies on silica gel (hexane–AcOEt, 1:10 and CHCl₃–MeOH, 10:1, v/v) to yield a crude 2 (18 mg), which was obtained as colorless needless (6 mg) from MeOH. Fraction b (0.85 g) was also chromatographed on silica gel with CHCl₃–MeOH–H₂O (9:1:0.1, v/v) or CHCl₃–MeOH (10:1 v/v) to give five fractions (fr. d, 50 mg; fr. e, 28 mg; fr. f, 68 mg; fr. g, 20 mg; fr. h, 460 mg). 1 (14 mg) was obtained as an amorphous mass from the MeOH solution of fr. g.

Fulvanine D (1) A white powder (mp 80—83 °C). $[\alpha]_D$ —0.29° (c=1.4, MeOH). IR (KBr) cm⁻¹: 3350, 2930, 2860, 1700, 1415, 1395, 1080. Circular dichroism (CD) (c=0.60 × 10⁻³, MeOH) $\Delta \varepsilon$ (nm): -4.62 (227, negative maximum). EI-MS m/z: 229 (M⁺), 211 (M⁺ - H₂O), 193 (M⁺ - 2 × H₂O), 99, 82, 69.

Fulvanine E (2) Colorless needles (MeOH), mp 210—212 °C (dec.). $[\alpha]_D + 1.35$ (c = 0.2, MeOH). IR (KBr) cm⁻¹: 3350, 2950, 2900, 1712, 1464, 1426, 1384, 1070, 1006. CD ($c = 0.43 \times 10^{-3}$, MeOH) $\Delta \varepsilon$ (nm): 1.54 (227, positive maximum). EI-MS m/z: 197 (M⁺), 115, 97, 82.

¹H- and ¹³C-NMR spectra in Table I.

Acknowledgement We thank Dr. Yoshio Sumita, Kyoto Pharmaceutical University, for the EI-MS data.

References

- T. Inoue, K. Iwagoe, T. Konishi, S. Kiyosawa, Y. Fujiwara, *Chem. Pharm. Bull.*, 38, 3187 (1990).
- S. Kiyosawa, M. Hutoh, T. Komori, T. Nohara, I. Hosokawa, T. Kawasaki, Chem. Pharm. Bull., 16, 1162 (1968).
- 3) J. D. Roberts, F. J. Weigert, J. T. Kroschwitz, H. J. Reich, J. Am. Chem. Soc., 92, 1338 (1970).