Synthesis of Ethoxyethynylarenes by the Palladium-Catalyzed Reaction of Aryl Iodides with Ethoxy(trialkylstannyl)acetylenes¹⁾

Takao Sakamoto,* Akito Yasuhara, Yoshinori Kondo, and Hiroshi Yamanaka

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan. Received May 2, 1994; accepted June 14, 1994

Palladium-catalyzed reaction of aryl and heteroaryl iodides with ethoxy(trialkylstannyl)acetylenes gave the ethoxyethynylarenes and -heteroarenes, which were easily transformed by hydration reaction into ethyl areneacetates and heteroareneacetates.

Keywords palladium-catalyzed reaction; aryl iodide; ethoxy(trialkylstannyl)acetylene; ethoxyethynylarene; ethyl areneacetate

Palladium-catalyzed reaction of aryl halides or triflates with terminal acetylenes has been developed as a useful synthetic method of arylacetylenes, 2) since the first reports appeared in 1975.3-5) Although terminal acetylenes substituted with alkyl, aryl, hydroxymethyl, alkoxymethyl, and trimethylsilyl groups are generally used in this palladium-catalyzed reaction, acetylenes having electronattracting or -donating groups are resistant to this reaction. The problem can be overcome by using metalloacetylenes instead of terminal acetylenes. For example, the reaction of iodobenzenes with acetylenes having electron-attracting groups such as a perfluoroalkyl6) or an ethoxycarbonyl group⁷⁾ failed to give the expected products, but zinc derivatives of the acetylenes smoothly reacted with iodobenzenes to give the corresponding perfluoroalkylethynylbenzenes or ethyl phenylpropiolates. 6,7) Aryl- and heteroarylpropiolates were also obtained by the palladiumcatalyzed reaction using ethyl tributylstannylpropiolate.⁷⁾

Here we report the palladium-catalyzed reaction of aryl and heteroaryl iodides with trialkylstannylacetylenes having an electron-donating ethoxyl group, ethoxy(trial-kylstannyl)acetylenes, to give ethoxyethynylarenes and -heteroarenes which were easily transformed into ethyl arylacetates and heteroarylacetates.⁸⁾

The reaction of iodobenzene (1a) with ethoxyacetylene in the presence of dichlorobis(triphenylphosphine)palladium [PdCl₂(PPh₃)₂] and cuprous iodide in triethylamine at room temperature gave resinous products. On the other hand, ethoxyethynylbenzene (3a) was obtained in 60% yield, when 1a and ethoxy(tributylstannyl)acetylene (2a) were allowed to react in the presence of PdCl₂(PPh₃)₂ and tetraethylammonium chloride in dimethylformamide (DMF) at room temperature for 1 h. As shown in Table I, when tetrahydrofuran (THF) was used as a solvent, a somewhat lower yield of 3a was observed. A comparable yield was obtained using acetonitrile as a solvent, but the reaction afforded by-products which made the chromatographic separation difficult. The reaction of bromobenzene under similar conditions failed to give the expected product.

In order to examine the scope of the reaction, 4-substituted iodobenzenes (1b—i) and some heteroaryl iodides (1j—n) were allowed to react under the conditions shown in Table II. The iodobenzenes except for 4-acetylamino- (1g) and 4-(N,N-dimethylamino)iodoben-

zene (1i) gave the expected ethoxyethynylbenzenes in 45—66% yields.

In the case of the heteroaryl iodides, the products obtained from the reaction of 2- and 4-iodopyridine were unstable, and were converted by hydration reaction into the corresponding pyridineacetates.

When the reaction of iodobenzenes and heteroaryl iodides with ethoxy(trimethylstannyl)acetylene (2b) instead of 2a was carried out to examine the effect of the stannyl group, the same products were obtained, as expected, in slightly different yields (Table II).

It is well known that acetylenes are easily hydrated in the presence of mercury sulfate in acidic media to yield ketones. The hydration of ethoxyethynylarenes (3) proceeded smoothly in the presence of sulfuric acid in aqueous acetone without mercury sulfate, except for the reaction of 3h, to give ethyl areneacetates in the yields shown in Table III.

In conclusion, the introduction of an ethoxyethynyl group on the aromatic ring was accomplished in one step

TABLE I. Palladium-Catalyzed Reaction of Halobenzenes with 2a

$$X \xrightarrow{Bu_3SnC = COEt} (2a)$$

$$PdCl_2(PPh_3)_2 \qquad C = COEt$$

$$1 (X=I, Br) \qquad 3a$$

X	Solvent	Reaction temp. (°C)	Additive	Reaction time (h)	Yield (%)
I	DMF	50		1	10
I	DMF	Room temp.	_	3	42
I	DMF	Room temp.	Et ₄ NCl	1	60
I	THF	Room temp.	Et ₄ NCl	2	45
I	MeCN	Room temp.	Et ₄ NCl	1	57
I	MeCN	Reflux	Et ₄ NCl	1	0
Br	DMF	Room temp.	Et ₄ NCl	18	0
Br	DMF	Reflux	Et_4NCl	18	0

Chart 1

TABLE II. Palladium-Catalyzed Reaction of Aryl Iodides with 2a, b

$$ArI \xrightarrow{R_3SnC \equiv COEt (2a, b)} ArC \equiv COEt$$

$$1a-n \qquad 3a-n$$

	R = Bu			R=Me		
Product	Reaction temp. (°C)	Reaction time (h)	Yield (%)	Reaction Reaction Yield temp. (°C) time (h) (%)		
3a	Room temp.	1	60	Room temp. 6 53		
3b	Room temp.	1	52	Room temp. 2 80		
3c	Room temp.	5	59	Room temp. 4 75		
3d	Room temp.	1.5	59	Room temp. 3 60		
3e	Room temp.	15	45	Room temp. 3 75		
3f	Room temp.	1.5	66	Room temp. 6 54		
3g	50	2	0	50 2 0		
3h	50	3	62	50 2 61		
3i	50	12	0	b)		
3j	50	1.5	a)	b)		
3k	50	2	61	50 5 64		
31	Room temp.	0.5	a)	b)		
3m	50	2	60	50 5 60		
3n	Room temp.	5	45	Room temp. 3 60		

a) The crude products were hydrated without isolation to the pyridineacetate. b) Not tried.

Table III. Hydration Reaction of 3a-n to Ethyl Areneacetates (4a-n)

$$ArC = COEt \xrightarrow{H_2O, H_2SO_4} ArCH_2COOEt$$
3a—n
4a—n

Product	Reaction temp. (°C)	Reaction time (h)	Yield (%)	
4a	Room temp.	0.5		
4b	Reflux	2.5	62	
4c	Reflux	2	59	
4d	Room temp.	12	81	
4 e	Room temp.	0.5	51	
4f	Room temp.	6	60	
4h′	Reflux.	1.5	$62^{b)}$	
4 j	Reflux.	2	16	
4k	Reflux.	8	88	
41	Reflux.	2	22	
4m	Reflux.	2	70	
4n	Room temp.	12	32	

a) The value in the brackets refers to gas-chromatographic yield. b) The product was ethyl 4-(N-methylsulfonylamino)phenylacetate (4h').

by using palladium-catalyzed reaction of aryl iodides with ethoxy(trialkylstannyl)acetylenes. The subsequent hydration reaction of the ethoxyethynylarenes provides a synthetic approach to areneacetates, along with other methods such as the palladium-catalyzed reactions of aryl halides with ethyl tributylstannylacetate¹⁰⁾ and with ethoxycarbonylmethylzinc bromide.¹¹⁾

Experimental

General Comments Melting points are uncorrected. Boiling points are bath temperatures of the Kugelrohr apparatus. IR spectra were measured on a JASCO IR-A1 spectrophotometer. 1H -NMR spectra were recorded on a JEOL PMX-60 (60 MHz) spectrometer using tetramethylsilane as an internal standard. Chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). The following abbreviations are used: s=singlet, d=doublet, dd=double doublet, ddd=double doublet, t=triplet, q=quartet, m=multiplet, br=broad. MS were recorded on a JEOL JMS-PX303 spectrometer.

Ethoxy(tributylstannyl)- (2a) and ethoxy(trimethylstannyl)acetylene

(2b) were synthesized according to the literature.¹²⁾ Since 2a was difficult to purify by distillation or silica gel column chromatography, 1.3 eq of crude 2a to aryl halides was used.

General Procedure for the Palladium-Catalyzed Reaction of Aryl Iodides (1) with Ethoxy(trialkylstannyl)acetylenes (2) A mixture of an aryl iodide (2a or 2b), Et₄NCl, and $PdCl_2$ (PPh_3)₂ in DMF was allowed to react under the conditions shown in Table II. The reaction mixture was diluted with H_2O and extracted with Et_2O . The Et_2O extract was washed with H_2O and dried over MgSO₄. The residue obtained from the Et_2O extract was purified by silica gel column chromatography.

Ethoxyethynylbenzene (3a) 1) The residue obtained from the reaction mixture of iodobenzene (1a) (0.60 g, 3 mmol), ethoxy(tributylstannyl)-acetylene (2a) (1.44 g, 4 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂-(PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (15 ml) was chromatographed using hexane as an eluent. Yield 0.26 g.

2) The residue obtained from the reaction mixture of **1a** (0.60 g, 3 mmol), ethoxy(trimethylstannyl)acetylene (**2b**) (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂(PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (15 ml) was chromatographed using the same solvent. Yield 0.23 g. Colorless liquid, bp 80 °C/3 mmHg (lit. ¹³⁾ bp 53—55 °C/0.01 mmHg). ¹H-NMR (CDCl₃/TMS) δ : 1.43 (3H, t, J=6 Hz), 4.22 (2H, q, J=6 Hz), 7.1—7.5 (5H, m). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 2250. MS m/z: 146.0739 (Calcd for C₁₀H₁₀O: 146.0732).

4-Nitro-1-(ethoxyethynyl)benzene (3b) 1) The residue obtained from the reaction mixture of 4-nitroiodobenzene (**1b**) (0.50 g, 2 mmol), **2a** (0.93 g, 2.6 mmol), Et₄NCl (0.33 g, 2 mmol), and PdCl₂(PPh₃)₂ (70 mg, 0.1 mmol) in DMF (10 ml) was chromatographed using hexane-CH₂Cl₂ (1:1) as an eluent. Yield 0.20 g.

2) The residue obtained from the reaction mixture of **1b** (0.75 g, 3 mmol), **2b** (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂-(PPh₃)₂ (60 mg, 0.09 mmol) in DMF (5 ml) was chromatographed using the same solvent. Yield 0.46 g. Yellow viscous liquid. ¹H-NMR (CDCl₃/TMS) δ : 1.42 (3H, t, J=7 Hz), 4.32 (2H, q, J=7 Hz), 7.50 (2H, d, J=9 Hz), 8.17 (2H, d, J=9 Hz). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 2250, 1520, 1345. MS m/z: 191.0589 (Calcd for C₁₀H₉NO₃: 191.0582).

Ethyl 4-(Ethoxyethynyl)benzoate (3c) 1) The residue obtained from the reaction mixture of ethyl 4-iodobenzoate (1c) (1.10 g, 4 mmol), 2a (1.87 g, 5.2 mmol), Et₄NCl (0.66 g, 4 mmol), and PdCl₂ (PPh₃)₂ (0.14 g, 0.2 mmol) in DMF (20 ml) was chromatographed using hexane as an eluent. Yield 0.51 g.

2) The residue obtained from the reaction mixture of 1c (0.83 g, 3 mmol), 2b (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂ (PPh₃)₂ (60 mg, 0.09 mmol) in DMF (5 ml) was chromatographed using the same solvent. Yield 0.52 g. Colorless viscous liquid. ¹H-NMR (CDCl₃/TMS) δ : 1.42 (3H, t, J=7 Hz), 1.48 (3H, t, J=7 Hz), 4.35 (2H, q, J=7 Hz), 4.45 (2H, q, J=7 Hz), 7.52 (2H, d, J=8 Hz), 8.08 (2H, d, J=8 Hz). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 2288, 1722. MS m/z: 218.0961 (Calcd for C₁₃H₁₄O₃: 218.0943).

4-(Ethoxyethynyl)benzonitrile (3d) 1) The residue obtained from the reaction mixture of 4-iodobenzonitrile (**1d**) (0.69 g, 3 mmol), **2a** (1.44 g, 4 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂(PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (15 ml) was chromatographed using hexane–CH₂Cl₂ (2:1) as an eluent. Yield 0.30 g.

2) The residue obtained from the reaction mixture of **1d** (0.69 g, 3 mmol), **2b** (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂-(PPh₃)₂ (60 mg, 0.09 mmol) in DMF (5 ml) was chromatographed using the same solvent. Yield 0.31 g. Colorless viscous liquid. ¹H-NMR (CDCl₃/TMS) δ : 1.45 (3H, t, J=7 Hz), 4.27 (2H, q, J=7 Hz), 7.40 (2H, d, J=8 Hz), 7.52 (2H, d, J=8 Hz). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 2250, 2225. MS m/z: 171.0696 (Calcd for C₁₁H₉NO: 171.0684).

4-(Ethoxyethynyl)toluene (3e) 1) The residue obtained from the reaction mixture of 4-iodotoluene (1e) $(0.55\,\mathrm{g},\,2.5\,\mathrm{mmol})$, 2a $(1.17\,\mathrm{g},\,3.25\,\mathrm{mmol})$, Et₄NCl $(0.41\,\mathrm{g},\,2.5\,\mathrm{mmol})$, and PdCl₂ $(\mathrm{PPh_3})_2$ $(0.10\,\mathrm{g},\,0.14\,\mathrm{mmol})$ in DMF $(10\,\mathrm{ml})$ was chromatographed using hexane as an eluent. Yield $0.36\,\mathrm{g}$.

2) The residue obtained from the reaction mixture of **1e** (0.65 g, 3 mmol), **2b** (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂-(PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (5 ml) was chromatographed using the same solvent. Yield 0.36 g. Colorless liquid, bp 120 °C/3 mmHg (lit. ¹⁴⁾ bp 77—79 °C/0.01 mmHg). ¹H-NMR (CDCl₃/TMS) δ : 1.40 (3H, t, J=7 Hz), 2.30 (3H, s), 4.20 (2H, q, J=7 Hz), 7.07 (2H, d, J=8 Hz), 7.23 (2H, d, J=8 Hz). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 2260. MS m/z: 160.0909 (Calcd for C₁, H₂, O: 160.0888).

4-(Ethoxyethynyl)anisole (3f) 1) The residue obtained from the

reaction mixture of 4-iodoanisole (1f) (0.70 g, 3 mmol), 2a (1.44 g, 4 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂ (PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (15 ml) was chromatographed using hexane–CH₂Cl₂ (1:1) as an eluent. Yield 0.35 g.

- 2) The residue obtained from the reaction mixture of **1f** (0.70 g, 3 mmol), **2b** (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂-(PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (5 ml) was chromatographed using the same solvent. Yield 0.28 g. Colorless viscous liquid. ¹H-NMR (CDCl₃/TMS) δ : 1.40 (3H, t, J = 7 Hz), 3.37 (3H, s), 4.15 (2H, q, J = 7 Hz), 6.75 (2H, d, J = 8 Hz), 7.27 (2H, d, J = 8 Hz). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 2260. MS m/z: 176.0846 (Calcd for C₁₁H₁₂O₂: 176.0837).
- **4-Ethoxyethynyl-N-methylsulfonyl-N-(methoxymethyl)aniline (3h)** 1) The residue obtained from the reaction mixture of N-methylsulfonyl-N-methoxymethyl-4-iodoaniline (1h) $(1.02\,\mathrm{g}, 3\,\mathrm{mmol})$, 2a $(1.44\,\mathrm{g}, 4\,\mathrm{mmol})$, Et₄NCl $(0.50\,\mathrm{g}, 3\,\mathrm{mmol})$, and PdCl₂(PPh₃)₂ $(0.10\,\mathrm{g}, 0.14\,\mathrm{mmol})$ in DMF (15 ml) was chromatographed using hexane–CH₂Cl₂ (1:1) as an eluent. Yield $0.53\,\mathrm{g}$.
- 2) The residue obtained from the reaction mixture of **1h** (1.02 g, 3 mmol), **2b** (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂-(PPh₃)₂ (60 mg, 0.09 mmol) in DMF (5 ml) was chromatographed using the same solvent. Yield 0.46 g. Colorless needles (hexane–acetone), mp 97—98 °C. ¹H-NMR (CDCl₃/TMS) δ : 1.42 (3H, t, J=7 Hz), 2.95 (3H, s), 3.38 (3H, s), 4.83 (2H, q, J=7 Hz), 4.88 (2H, s), 7.32 (4H, s). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 2266. Anal. Calcd for C₁₃H₁₇NO₄S: C, 55.11; H, 6.25; N, 4.94; S, 11.31. Found: C, 55.04; H, 6.24; N, 4.73; S, 11.40.
- 3-(Ethoxyethynyl)pyridine (3k) 1) The residue obtained from the reaction mixture of 3-iodopyridine (1k) (0.41 g, 2 mmol), 2a (0.93 g, 2.6 mmol), Et₄NCl (0.33 g, 2 mmol), and PdCl₂(PPh₃)₂ (70 mg, 0.1 mmol) in DMF (10 ml) was chromatographed using hexane-CH₂Cl₂ (1:1) as an eluent. Yield 0.18 g.
- 2) The residue obtained from the reaction mixture of **1k** (0.31 g, 1.5 mmol), **2b** (0.38 g, 1.65 mmol), Et₄NCl (0.25 g, 1.5 mmol), and PdCl₂(PPh₃)₂ (30 mg, 0.04 mmol) in DMF (3 ml) was chromatographed using the same solvent. Yield 0.14 g. Colorless liquid, bp 120 °C/3 mmHg. ¹H-NMR (CDCl₃/TMS) δ : 1.40 (3H, t, J=6 Hz), 4.23 (2H, q, J=6 Hz), 7.15 (1H, dd, J=8, 6 Hz), 7.60 (1H, ddd, J=8, 2, 2 Hz), 8.43 (1H, d, J=2 Hz), 8.53 (1H, d, J=2 Hz). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 2267. MS m/z: 147.0683 (Calcd for C₉H₉NO: 147.0684).
- 3-Ethoxyethynyl-1-(phenylsulfonyl)indole (3m) 1) The residue obtained from the reaction mixture of 3-iodo-1-(phenylsulfonyl)indole (1m) (0.96 g, 2.5 mmol), 2a (1.17 g, 3.25 mmol), Et_4NCl (0.41 g, 2.5 mmol), and $\text{PdCl}_2(\text{PPh}_3)_2$ (0.10 g, 0.14 mmol) in DMF (10 ml) was chromatographed using hexane-CH₂Cl₂ (1:2) as an eluent. Yield 0.59 g.
- 2) The residue obtained from the reaction mixture of **1m** (1.15 g, 3 mmol), **2b** (0.77 g, 3.3 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂-(PPh₃)₂ (60 mg, 0.09 mmol) in DMF (5 ml) was chromatographed using the same solvent. Yield 0.72 g. Colorless viscous liquid. ¹H-NMR (CDCl₃/TMS) δ : 1.47 (3H, t, J=7 Hz), 4.25 (2H, q, J=7 Hz), 7.1—8.0 (10H, m). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 2260. MS m/z: 325.0757 (Calcd for C₁₈H₁₅NO₃: 325.0773).
- **2-Ethoxyethynylthiophene (3n)** 1) The residue obtained from the reaction mixture of 2-iodothiophene (1n) (0.55 g, 2.5 mmol), 2a (1.17 g, 3.25 mmol), Et₄NCl (0.41 g, 2.5 mmol), and PdCl₂(PPh₃)₂ (70 mg, 0.1 mmol) in DMF (10 ml) was chromatographed using hexane-CH₂Cl₂ (1:1) as an eluent. Yield 0.36 g.
- 2) The residue obtained from the reaction mixture of **1n** (1.05 g, 5 mmol), **2b** (1.28 g, 5.5 mmol), Et₄NCl (0.83 g, 5 mmol), and PdCl₂-(PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (10 ml) was chromatographed using the same solvent. Yield 0.46 g. Colorless liquid, bp 80 °C/3 mmHg. ¹H-NMR (CDCl₃/TMS) δ : 1.40 (3H, t, J=7 Hz), 4.22 (2H, q, J=7 Hz), 6.8—7.2 (3H, m). IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 2225. MS m/z: 152.0295 (Calcd for C₈H₈OS: 152.0296).
- General Procedure for the Hydration Reaction of Ethoxyethynylarenes (3) A mixture of an ethoxyethynylarene (3), H₂SO₄, H₂O, and acetone was allowed to react under the conditions shown in Table III. The reaction mixture was diluted with H₂O, made alkaline with solid K₂CO₃, and extracted with CHCl₃. The CHCl₃ extract was dried over MgSO₄. The residue obtained from the CHCl₃ extract was purified by recrystallization or silica gel column chromatography.
- Ethyl Phenylacetate (4a) The residue obtained from the reaction mixture of 2a (90 mg, 0.62 mmol), $\rm H_2O$ (1 ml), $\rm H_2SO_4$ (0.10 g, 1 mmol), and acetone (4 ml) was chromatographed using hexane as an eluent. Yield 40 mg. Colorless liquid, bp 100 °C/4 mmHg (lit. 15) bp 67—69 °C/0.1 mmHg). $\rm ^1H$ -NMR (CDCl₃/TMS) δ : 1.26 (3H, t, J=7 Hz), 3.63 (2H,

s), 4.18 (2H, q, J = 7 Hz), 7.33 (5H, s). IR $v_{\text{max}}^{\text{neat}}$ cm⁻¹: 1730.

Ethyl 4-Nitrophenylacetate (4b) The residue obtained from the reaction mixture of 2b (0.19 g, 1 mmol), H₂O (2 ml), H₂SO₄ (0.20 g, 2 mmol), and acetone (8 ml) was chromatographed using hexane–CH₂Cl₂ (2:1) as an eluent. Yield 0.13 g. Pale yellow scales (hexane), mp 63—64 °C. ¹H-NMR (CDCl₃/TMS) δ: 1.35 (3H, t, J=7 Hz), 3.85 (2H, s), 4.30 (2H, q, J=7 Hz), 7.60 (2H, d, J=9 Hz), 8.27 (2H, d, J=9 Hz). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1735, 1520, 1350. *Anal.* Calcd for C₁₀H₁₁NO₄: C, 57.41; H, 5.30; N, 6.70. Found: C, 57.17; H, 5.25; N, 6.58.

Ethyl 4-Ethoxycarbonylphenylacetate (4c) The residue obtained from the reaction mixture of 2c (0.50 g, 2.3 mmol), $\rm H_2O$ (4.5 ml), $\rm H_2SO_4$ (0.50 g, 5.1 mmol), and acetone (18 ml) was chromatographed using hexane-CH₂Cl₂ (1:1) as an eluent. Yield 0.32 g. Colorless liquid. bp 150 °C/3 mmHg. ¹H-NMR (CDCl₃/TMS) δ: 1.25 (3H, t, J=7 Hz), 1.38 (3H, t, J=7 Hz), 3.68 (2H, s), 4.17 (2H, q, J=7 Hz), 4.40 (2H, q, J=7 Hz), 7.40 (2H, d, J=10 Hz), 8.00 (2H, d, J=10 Hz). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1735, 1712. MS m/z: 236.1052 (Calcd for C₁₃H₁₆O₄: 236.1049).

Ethyl 4-Cyanophenylacetate (4d) The residue obtained from the reaction mixture of 2d (0.17 g, 1 mmol), H₂O (2 ml), H₂SO₄ (0.20 g, 2 mmol), and acetone (8 ml) was recrystallized from EtOH. Yield 0.15 g. Colorless needles. mp 86.5—88 °C (lit. ¹⁶) mp 97 °C). ¹H-NMR (CDCl₃/TMS) δ: 1.28 (3H, t, J=7 Hz), 3.88 (2H, s), 4.37 (2H, q, J=7 Hz), 7.35 (2H, d, J=8 Hz), 7.65 (2H, d, J=8 Hz). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 2230, 1730. *Anal.* Calcd for C₁₁H₁₁NO₂: C, 69.83; H, 5.86; N, 7.40. Found: C, 69.92; H, 5.94; N, 7.36.

Ethyl 4-Methylphenylacetate (4e) The residue obtained from the reaction mixture of 2e (0.21 g, 1.3 mmol), H₂O (2.6 ml), H₂SO₄ (0.26 g, 2.65 mmol), and acetone (10 ml) was chromatographed using hexane–CH₂Cl₂ (1:1) as an eluent. Yield 0.12 g. Colorless liquid, bp 130 °C/20 mmHg. ¹H-NMR (CDCl₃/TMS) δ: 1.22 (3H, t, J=7 Hz), 2.30 (3H, s), 3.55 (2H, s), 4.13 (2H, q, J=7 Hz), 7.23 (4H, s). IR $\nu_{\rm max}^{\rm neat}$ cm⁻¹: 1739. MS m/z: 178.0976 (Calcd for C₁₁H₁₄O₂: 178.0994).

Ethyl 4-Methoxyphenylacetate (4f) The residue obtained from the reaction mixture of 2f (0.60 g, 0.5 mmol), $\rm H_2O$ (1 ml), $\rm H_2SO_4$ (0.98 g, 1 mmol), and acetone (4 ml) was chromatographed using hexane–CH₂Cl₂ (1:1) as an eluent. Yield 40 mg. Colorless liquid, bp 100 °C/3 mmHg (lit.¹⁷⁾ bp 138—140 °C/30 mmHg). ¹H-NMR (CDCl₃/TMS) δ: 1.27 (3H, t, J=7 Hz), 3.57 (2H, s), 3.80 (3H, s), 4.18 (2H, q, J=7 Hz), 6.90 (2H, d, J=9 Hz), 7.22 (2H, d, J=9 Hz). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1730. MS m/z: 194.0941 (Calcd for C₁₁H₁₄O₃: 194.0943).

Ethyl 4-(*N*-Methylsulfonylamino)phenylacetate (4h') The residue obtained from the reaction mixture of 2h (0.53 g, 1.8 mmol), H₂O (4 ml), H₂SO₄ (0.37 g, 3.8 mmol), HgSO₄ (0.50 g, 1.8 mmol), and acetone (16 ml) was chromatographed using CH₂Cl₂ as an eluent. Yield 0.67 g. Colorless prisms, mp 82—83 °C (hexane–acetone). ¹H-NMR (CDCl₃/TMS) δ: 1.23 (3H, t, J=8 Hz), 2.97 (3H, s), 3.62 (2H, s), 4.15 (2H, q, J=7 Hz), 7.23 (4H, s), 7.5—7.7 (1H, br). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3380, 1730. *Anal.* Calcd for C₁₁H₁₅NO₄S: C, 51.35; H, 5.88; N, 5.44; S, 12.46. Found: C, 51.24; H, 5.83; N, 5.32; S, 12.56.

Ethyl 3-Pyridineacetate (4k) The residue obtained from the reaction mixture of 2k (0.73 g, 5 mmol), H_2O (10 ml), H_2SO_4 (0.98 g, 10 mmol), and acetone (40 ml) was chromatographed using CH₂Cl₂ as an eluent. Yield 0.73 g. Colorless liquid, bp 120 °C/3 mmHg (lit. 11) bp 115—120 °C/3 mmHg). ¹H-NMR (CDCl₃/TMS) δ: 1.23 (3H, t, J=7 Hz), 3.62 (2H, s), 4.17 (2H, q, J=7 Hz), 7.27 (1H, dd, J=8, 5 Hz), 8.5—8.7 (2H, m). IR $\nu_{\rm cHCl_3}^{\rm CHCl_3}$ cm $^{-1}$: 1732.

Ethyl 1-Phenylsulfonyl-3-indoleacetate (4m) The residue obtained from the reaction mixture of 2m (0.50 g, 1.54 mmol), $\rm H_2O$ (3 ml), $\rm H_2SO_4$ (0.30 g, 3.06 mmol), and acetone (6 ml) was chromatographed using CH₂Cl₂ as an eluent. Yield 0.37 g. Pale yellow prisms, mp 70—70.5 °C (hexane–acetone) ¹H-NMR (CDCl₃/TMS) δ: 1.22 (3H, t, J=7 Hz), 3.77 (2H, s), 4.23 (2H, q, J=7 Hz), 7.2—7.7 (7H, m), 7.9—8.2. IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 1730. Anal. Calcd for C₁₈H₁₇NO₄S: C, 62.96; H, 4.99; N, 4.08; S, 9.34. Found: C, 62.93; H, 5.13; N, 3.99; S, 9.30.

Ethyl 2-Thiopheneacetate (4n) The residue obtained from the reaction mixture of 2n (0.30 g, 2 mmol), $\rm H_2O$ (4 ml), $\rm H_2SO_4$ (0.40 g, 4 mmol), and acetone (16 ml) was chromatographed using hexane–CH₂Cl₂ (1:2) as an eluent. Yield 0.12 g. Colorless liquid, bp 130 °C/20 mmHg. ¹H-NMR (CDCl₃/TMS) δ : 1.27 (3H, t, J=7 Hz), 3.82 (2H, s), 4.18 (2H, q, J=7 Hz), 6.9—7.3 (3H, m). IR $\nu_{\rm max}^{\rm neat}$ cm⁻¹: 1725. MS m/z: 170.0393 (Calcd for $\rm C_8H_{10}O_2S$: 170.0402).

Ethyl 2-Pyridineacetate (4j) The Et₂O extract obtained from the reaction mixture of 2-iodopyridine (1j) (1.20 g, 5 mmol), 2a (2.20 g, 6 mmol), Et₄NCl (0.82 g, 5 mmol), and PdCl₂(PPh₃)₂ (0.16 g, 0.23 mmol)

in DMF (40 ml) was concentrated during addition of acetone. Water (20 ml) and concentrated $\rm H_2SO_4$ (0.50 g, 5 mmol) were added to the acetone solution (100 ml), and the mixture was refluxed for 2 h. After evaporation of the solvent, the residue was made alkaline with solid $\rm K_2CO_3$ and extracted with $\rm Et_2O$. The $\rm Et_2O$ extract was dried over MgSO_4 and evaporated. The residue was column-chromatographed using $\rm CH_2Cl_2$ as an eluent. The product obtained from the $\rm CH_2Cl_2$ eluate was distilled under reduced pressure to give a colorless liquid. Yield 0.13 g, bp 120 °C/3 mmHg (lit. 11) bp 110—113 °C/3 mmHg). 1 H-NMR (CDCl_3/TMS) δ : 1.22 (3H, t, J=7 Hz), 3.82 (2H, s), 4.17 (2H, q, J=7 Hz), 7.0—8.3 (3H, m), 8.3—8.5 (1H, m). IR $\rm v_{max}^{\rm CHCl_3}$ cm $^{-1}$: 1735.

Ethyl 4-Pyridineacetate (4l) The Et₂O extract obtained from the reaction mixture of 4-iodopyridine (1l) (0.62 g, 3 mmol), 2a (1.36 g, 3.6 mmol), Et₄NCl (0.50 g, 3 mmol), and PdCl₂(PPh₃)₂ (0.10 g, 0.14 mmol) in DMF (10 ml) was concentrated during addition of acetone. Water (5 ml) and concentrated H₂SO₄ (0.29 g, 3 mmol) were added to the acetone solution (50 ml), and the mixture was refluxed for 2 h. Treatment as described above gave a colorless liquid. Yield 0.11 g, bp 100 °C/3 mmHg (lit. 14) bp 90—91 °C/3.5—4 mmHg). 1 H-NMR (CDCl₃/TMS) δ : 1.25 (3H, t, J=7 Hz), 3.60 (2H, s), 4.17 (2H, q, J=7 Hz), 7.22 (2H, d, J=5 Hz), 8.53 (2H, d, J=5 Hz). IR $^{\text{CHCl}_3}$ cm $^{-1}$: 1735.

References and Notes

- A part of this work was published as a communication: T. Sakamoto, A. Yasuhara, Y. Kondo, H. Yamanaka, Synlett, 1992, 502.
- 2) R. F. Heck, "Palladium Reagents in Organic Synthesis," Academic

- Press, New York, 1985, p. 299.
- 3) L. Casser, J. Organomet. Chem., 93, 253 (1975).
- 4) H. A. Dieck, R. H. Heck, J. Organomet. Chem., 93, 259 (1975).
- K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 4467.
- 6) N. Yoneda, S. Matsumoto, N. Miyaura, T. Fukuhara, A. Suzuki, Bull. Chem. Soc. Jpn., 63, 2134 (1990).
- 7) T. Sakamoto, F. Shiga, A. Yasuhara, D. Uchiyama, Y. Kondo, H. Yamanaka, *Synthesis*, 1992, 746.
- After our communication¹⁾ had been published, the palladiumcatalyzed reaction of iodobenzenes with alkoxyethynylzinc chloride was reported.⁹⁾
- 9) A. Löffler, G. Himbert, Synthesis, 1992, 495.
- M. Kosugi, Y. Negishi, M. Kaneyama, T. Migita, Bull. Chem. Soc. Jpn., 58, 3383 (1985).
- H. Yamanaka, M. An-naka, Y. Kondo, T. Sakamoto, Chem. Pharm. Bull., 33, 4309 (1985).
- 12) G. Himbert, L. Henn, Justus Liebigs Ann. Chem., 1987, 771.
- W. Verboom, H. Westmijie, H. J. T. Bos, P. Vermeer, Tetrahedron Lett., 1978, 1441.
- 14) H. Zimmer, D. K. Gerge, Chem. Ber., 89, 2284 (1956).
- S. M. McElvain, C. L. Stevens, J. Am. Chem. Soc., 68, 1917 (1946).
- R. Beugelmans, M. Bois-Choussy, B. Boudet, Tetrahedron, 38, 3479 (1982).
- 17) J. C. Cain, J. L. Simonsen, C. Smith, J. Chem. Soc., 1913, 1035.