2193

COMPOSITE CONSTITUENT: NOVEL TRITERPENOID, 17-EPI-LUPENYL ACETATE, FROM AERIAL PARTS OF IXERIS CHINENSIS

Kenji SHIOJIMA,^a Hideki SUZUKI,^a Nobuyuki KODERA,^a Ken-ichi KUBOTA,^a Sakiko TSUSHIMA, a Hiroyuki AGETA, *, a Hsien-Chang CHANG, b and Yuh-Pan CHENb

Shôwa College of Pharmaceutical Sciences, ^a Machida, Tokyo 194, Japan, and Brion Research Institute of Taiwan, ^b 116 Chung-Ching South RD. Sec. 3, Taipei, Taiwan 10743, Republic of China

A novel triterpenoid, 17-epilupenyl acetate (1), has been isolated together with twelve known triterpenoid acetates, and the structure was determined by extensive spectroscopic analyses.

KEYWORDS Ixeris chinensis; triterpenoid; 17-epilupenyl acetate; Compositae

The dried whole plant of Ixeris chinensis (Thunb.) Nakai is a folk medicine in Taiwan with analgesic, antipyretic and anti-inflammatory actions; and isolation of a triterpenoid, bauerenyl acetate, was reported.¹⁾ On reinvestigation of the aerial part of *I. chinensis*, collected in Taiwan, we isolated a novel triterpenoid, 17-epilupenyl acetate (1, 0.0009% of the dried material), together with known compounds, lupenyl acetate (2, 0.0067%),²⁾ germanicyl acetate,²⁾ β-amyrin acetate,²⁾ multiflorenyl acetate,³⁾ taraxasteryl acetate,²⁾ ψ-taraxasteryl acetate,²⁾ 3β-acetoxytaraxaster-20-en-30-al,⁴⁾ α-amyrin acetate,²⁾ bauerenyl acetate,^{1,2)} dammaradienyl acetate,⁵⁾ tirucalla-7,21-dien-3β-yl acetate,⁶⁾ and butyrospermyl acetate.⁷⁾ In this paper, we report the isolation and structure elucidation of compound 1 on the basis of spectral evidences.

A hexane extract from 1.7 kg of dried aerial materials was chromatographed on silica gel to give an acetate fraction (6.5 g, 0.38 % of the dried materials) as hexane-benzene (8:2) elutes. This fraction was chromatographed repeatedly on 20% AgNO₃-impregnated silica gel and prep. HPLC [C-18 reverse phase, CH₃CN-CHCl₃ (9:1)] to give 1 (colorless plates), mp 219-221° C, $[\alpha]_D$ +24.7° (CHCl₃, c= 0.1), Rt_R 3.99. The MS of 1 showed the molecular ion at m/z 468.3965 ($C_{32}H_{52}O_2$), and many significant fragment ions at m/z (rel. int.): $453 (5, M^+-CH_3), 425 (2, M^+-C_3H_7), 408 (12, M^+-C_3H_7)$ AcOH), 393 (6, M⁺-CH₃-AcOH), 262 (17, a), 249 (10, b), 218 (11, c), 204 (25, d), 203 (34, d-H), 202 (12, a-AcOH), 189 (100, b-AcOH, e), and 175 (15, c-C₃H₇) (Chart 1). This fragmentation pattern was essentially identical with that of 2.8) The ¹H-NMR spectrum of 1 indicated the presence of six tertiary methyl groups, an isopropenyl group, and 3β -acetoxyl group in the molecule. The analysis of ¹H-¹H, ¹³C-¹H COSYs, HMBC, and HSQC spectra suggested that 1 was a lupane-type compound on being compared with those of 2. Useful information for stereochemistry of 1 was obtained by the NOESY spectrum. That is, cross-peaks were observed between H-24 and H-25, H-25 and H-26, H-26 and H-13 β , H-13 β and H-19 β ; H-5 α and H-9 α , H-9 α and H-27, H-27 and H-28; and H-27, H-28 and H-18α (Table I and Fig. 1). The structure of rings A, B, C and D of 1 was the same as that of 2, while the D and E ring juncture was the cis configuration of 18α-H and 28α-methyl. Two chair-chair-chair-

© 1994 Pharmaceutical Society of Japan

2194 Vol. 42, No. 10

Chart 1

m/z 218

c

m/z 204

d

m/z 189

e

TABLE I. ¹H-NMR Spectral Data (500 MHz, CDCl₃, δ)

m/z 262

m/z 249

b

	H-1	H-2	H-3	H-5	H-6	H-7	H-9	H-11
1	1.01;1.70	1.64;1.64	4.477	0.80	1.52;1.36	1.33;1.33	1.33	1.48;1.18
2	1.00;1.67	1.62;1.62	(dd, 5.8, 10.8) 4.471 (dd, 5.8, 10.7)	0.80	1.48;1.40	1.38;1.38	1.32	1.40;1.31

	H-12	H-13	H-15	H-16	H-18	H-19	H-21	H-22
1	0.88;1.58	1.19	1.07;1.50	1.45;1.51	1.35		1.53;1.84	1.74;1.14
2	1.08;1.67	1.66	1.00;1.68	1.36;1.45	1.36	(ddd, 3.1, 8.9, 8.9) 2.376 (ddd, 5.8, 11.2, 11.2	1.32;1.92	1.37;1.19

	H-23	H-24	H-25	H-26	H-27	H-28	H-29	H-30
1	0.848	0.837	0.865	0.953	0.865	0.901	a 4.638(br s) b 4.741(br s)	1.734
2	0.845	0.835	0.854	1.029	0.938	0.786	a 4.568(m) b 4.686(br d, 2.	1.683

Coupling constant are shown in parentheses and acetyl methyl protons were observed at δ 2.043 in 1, δ 2.041 in 2. Methylene signals are shown for α ; β .

TABLE II. ¹³C-NMR Spectral Data (125 MHz, CDCl₃, δ)

INDEL II.	C 147711 Spectral Data (123 14112, CDC13, 0)										
Carbon numbers											
	1	2	3	4	5	6	7	8	9	10	
1	38.57	23.72	80.98	37.83	55.65	18.13	33.79	40.87	51.33	37.16	
2	38.38	23.71	80.97	37.79	55.37	18.20	34.20	40.85	50.34	37.08	
	11	12	13	14	15	16	17	18	19	20	
1	21.57	27.07	43.36	40.66	27.33	33.08	40.47	49.39	54.16	150.94	
2	20.94	25.10	38.04	42.82	27.42	35.57	43.00	48.28	48.00	150.97	
	21	22	23	24	25	26	27	28	29	30	
1	29.62	37.46	27.92	16.50	16.61	15.60	14.84	29.99	107.63	22.60	
2	29.83	39.99	27.95	16.50	16.17	15.97	14.51	18.00	109.35	19.28	

Acetyl signals were observed at δ 21.33, 171.04 in 1, δ 21.32, 171.03 in 2.

boat-envelope conformations of 1 with different side chain form (1a, shown in Fig. 1, steric energy 82.394 Kcal/mole, and 1b, whose side chain at C-19 being opposite direction, 82.810 Kcal/mole) were simulated by Chem3D Plus/MM2.⁹⁾ The preferred conformation 1a was well confirmed by NOEs as shown in the figure, especially H-30 and H-28. The presence of another preferred conformation 1b in the solution was proved by the two singlet signals of H-29 protons and NOEs between H-29b and H-18 α ; H-30 and H-19 β . This case is very similar to that of hop-22(29)-ene. ¹⁰⁾

Although yield of compound 1 was only 1/75 of that of 2, the former could be a very interesting alternative product of lupeol biosynthesis.

ACKNOWLEDGEMENT The authors are indebted to Mr. Yôichi Takase of this College for MS measurements.

REFERENCES AND NOTES

- 1) Y.-L. Huang, C.-C. Chen, Y.-P. Chen, H.-Y. Hsu, J. Taiwan Pharm. Assoc., 36, 211 (1984).
- 2) Y. Arai, Y. Kusumoto, M. Nagao, K. Shiojima, H. Ageta, Yakugaku Zasshi, 103, 356 (1983).
- 3) H. Ageta, Y.Arai, *Phytochemistry*, **22**, 1801 (1983).
- 4) W. Herz, P. Kulanthaivel, *Phytochemistry*, 22, 513 (1983).
- 5) S. K. Talapatra, D. S. Bhar, B. Talapatra, Aust. J. Chem., 27, 1137 (1974).
 6) Y. Niimi, H. Hirota, T. Tsuyuki, T. Takahashi, Chem. Pharm. Bull., 37, 57 (1989).
- 7) V. V. S. Murti, T. R. Seshadri, S. Sivakumaran, Phytochemistry, 11, 2089 (1972).
- 8) K. Shiojima, Y. Arai, K. Masuda, Y. Takase, T. Ageta, H. Ageta, Chem. Pharm. Bull., 40, 683 (1992).
- 9) Chem3D Plus 3.0 and N. L. Allinger, MM2 Params, Cambridge Scientific Computing Inc.
- 10) H. Ageta, K. Shiojima, H. Suzuki, S. Nakamura, Chem. Pharm. Bull., 41, 1939 (1993).

(Received July 20, 1994; accepted September 1, 1994)