THREE NOVEL CYCLOLANOSTANOL XYLOSIDES FROM CIMICIFUGA RHIZOME

Mamoru KOEDA, Yoshinobu AOKI, Nobuko SAKURAI, Ken-ichi KAWAI and Masahiro NAGAI*

Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku,

Tokyo 142, Japan

Three novel xylosides, cimicifugosides H-1(1), -3(2) and -4(3), were isolated from a commercial Cimicifuga Rhizome. Their structures were determined on the basis of chemical and spectrometric evidence including an X-ray crystallographic analysis. The xyloside 1 is 3-O-xyloside of (20R, 24R)-24, 25-epoxy- 3β , 11β -dihydroxy-9, 19-cyclolanost-7-ene-16, 23-dione, while 2 and 3 are 3-O-xylosides of 25, 26, 27-trinor-derivatives from the genin of 1.

KEYWORDS Cimicifuga Rhizome; cimicifugosides (H-1,3,4); 9,19-cyclolanostanol

Cimicifuga Rhizome (The Pharmacopoeia of Japan, 12th Ed.) is the rhizome of Cimicifuga simplex or the other species of the same genus (Ranunculaceae), and has been used as an antipyretic and an antiphlogistic in Chinese medicine. The crude drug available commercially on the Japanese market at present is imported mainly from China. The rhizomes of Cimicifuga plants are known to contain many 9,19-cyclolanostane triterpenoids¹) in addition to cinnamic acid derivatives,²) chromones³) and indolinones.⁴)

During a series of chemical investigation of Cimicifuga plants, we isolated three new xylosides, named cimicifugosides H-1 (1), $C_{35}H_{52}O_9$, mp $262^{\circ}C$, 5a) H-3 (2), $C_{32}H_{48}O_9$, mp $251^{\circ}C$ 5b) and H-4 (3), $C_{32}H_{48}O_9$, mp $267^{\circ}C$, 5c) from a batch of Cimicifuga Rhizome purchased on the Japanese market in 1991.

On comparison of the NMR spectral data with those of known Cimicifuga xylosides such as 24-O-acetyl hydroshengmanol xyloside, 1) it was easily found that the three xylosides are β -D-xylopyranosides of three different triterpenic genins at C-3, and that their genins commonly have a trisubstituted double bond and a cyclopropane ring (partial structure c in Fig.1). But the methylene protons on the cyclopropane ring were observed as a pair of AB doublets at markedly low magnetic field ($\delta_{\rm H}$ 0.96 and 1.96) compared with reported data ($\delta_{\rm H}$ 0.33 and 0.60) on cimigenol xyloside. 1)

Inspection of the $^{1}\text{H}-^{1}\text{H}$ COSY spectra disclosed that the three xylosides commonly have additional partial structures a, b, d, e and f (Fig.1) in each molecule. When partial structures a to f were applied to the 9,19-cyclolanostane

© 1994 Pharmaceutical Society of Japan

2206 Vol. 42, No. 10

skeleton, rings A, B, C, and D and a part of the side chain (Chart 1) of the triterpenic genins were presumable except for the binding site (C-11 or 12) of the hydroxyl in the partial structure d. A structure 11β -OH on ring C was presumed as follows: Spatial arrangement of the cyclopropane methylene and the hydroxyl similar to 1,3-diaxially substituted cyclohexane reasonably accounts for the marked downfield shift of the methylene protons. 6)

Cimicifugoside H-1 (1) gave a diketonic genin (4) on enzymatic hydrolysis. Diacetate of 4 (5), C34H48O7, mp 184° C 5d) was subjected to an X-ray crystallographic analysis, 7) and the molecular structure was determined as shown in Fig.2. Cimicifugoside H-1 (1) is, then, expressed as $(20R, 24R) - 24, 25 - \text{epoxy-} 11\beta - \text{hydroxy-} 3\beta - (\beta - D - \text{xylopyranosyloxy}) - 9, 19 - \text{cyclolanost-} 7 - \text{ene-} 16, 23 - \text{dione.}$

$$\beta$$
-D-xyl(p)-O β -D-xyl(p)-O β -D-xyl(p)-O β -D-xyl(p)-O cimicifugoside H-3(2) β -D-xyl(p)-O β -D-xyl(p)-D β -D-xyl(p)-

 $${\rm Chart}\ 1$$ Table I. $^{13}{\rm C-NMR}$ Chemical Shifts of 1,2 and 3 in ${\rm C}_5{\rm D}_5{\rm N}$

	1	2	3		1	2	3		1	2	3		1	2	3
C-1	27.4	27.4	27.5	16	218.4	218.2	82.0	25	60.7			Xyl1	107.4	107.3	107.4
2	29.8	29.7	29.9	17	61.1	61.3	63.6	26	18.4			_ 2		75.4	75.5
3	88.4	88.4	88.5	18	20.1	20.1	21.2	27	24.6			3	78.5	78.4	78.5
4	40.7	40.7	40.7	19	18.6	18.6	18.8	28	27.7	27.7	28.1	4	71.2	71.1	71.2
5	43.8	43.8	44.2	20	27.6	27.7	25.9	29	25.9	25.9	26.0	5	67.1	67.0	67.0
6	22.1	22.0	22.1	21	20.4	20.3	20.7	30	14.5	14.5	14.6				
7	115.5	115.4	113.8	22	47.4	44.6	44.9	GG.				R ~	\ P		
8	147.2	147.2	149.4	23	205.6	210.8	211.2				್ಟ್	∫ ∞(()_AC	μ _P	
9	27.6	27.5	27.5	24	65.8	69.2	82.3	O _{C34} \			C21		C23		C27
10	29.4	29.3	29.2					C3	03	S C12	0		OZE	725	
11	63.0	62.9	63.6								CIS) (20			
12	47.3	47.3	48.9					Ω	dr. de	CII OCI	£80 3	C17	Czer		
13	44.4	44.4	46.4				0.0			. 04	J. C14		•		
14	46.1	46.1	50.9				and the same of th		3 0			Ció Os			
15	49.8	49.7	48.7			01	CI	C30	T C10	C8T		15			
						8. 6	A	250	R		8	•••			
					0		.01		z 💓	G, U					
					C	C320	31		8						
							O-	Y O							

Fig. 2. ORTEP Drawing of Diacetate of 4 (5) with Atomic Numbering

Cimicifugoside H-3 (2) has a trinor-triterpenic genin part ($C_{27}H_{40}O_{5}$) because the xyloside 2 has the molecular formula $C_{32}H_{48}O_{9}$. Structural similarity of 2 to 1 was shown by comparison of their ^{13}C -NMR spectral data (Table I), though

October 1994 2207

minor differences were observed between chemical shifts assignable to C-22,23 and 24. The reducing nature of 2 was demonstrated by a positive coloration (blue) with alkaline blue tetrazolium reagent: an α -ketol structure at C-23 and 24 is reasonably justified. We propose the structure 11β ,24-dihydroxy- 3β -(β -D-xylopyranosyloxy)-25,26,27-trinor-9,19-cyclolanost-7-ene-16,23-dione for 2.

Cimicifugoside H-4 (3), positive to alkaline blue tetrazolium reagent, has the same molecular formula as 2. On treatment with potassium hydroxide in methanol, 3 afforded an α -hydroxyenone {g in Fig.1, UV λ max (MeOH); 273nm (ϵ =18,800)}. Taking NOE and NOESY experiments into consideration, we propose the structure 3 shown in Chart 1. Its genin part, foetidinol, has recently been isolated from the rhizome of Cimicifuga foetida. Thus, cimicifugoside H-4(3) is 3-O-xyloside of foetidinol.

Cimicifugoside H-1 has a parental structural feature for some of the 9,19-cyclolanostanes isolated so far from Cimicifuga plants. It is particular to the triterpenic genins of known Cimicifuga glycosides that the three cimicifugosides have a hydroxy group at C-11. The genin parts of cimicifugosides H-3 and H-4 are probably those resulting from loss of the three carbons from cimicifugoside H-1. A probable biogenetic route to cimicifugoside H-4 is an intramolecular aldol condensation between C-16 and C-24 of cimicifugoside H-3.

REFERENCES AND NOTES

- 1) N.Sakurai, M.Koeda, T.Inoue, M.Nagai, Chem. Pharm. Bull., 42, 48 (1994) and references cited therein.
- 2) T.Inoue, C.Nakada, K.Izawa, Shoyakugaku Zasshi, 24, 76 (1970).
- 3) Y.Kondo, T.Takemoto, Chem. Pharm. Bull., 20, 1940 (1972).
- 4) K.Baba, M.Kozawa, K.Hata, T.Ishida, M.Inoue, *Chem. Pharm. Bull.*, **29**, 2182 (1981).
- 5) Full characteristics will be presented in a full paper. a) 1: $[\alpha]_D$ -43.5° (MeOH). Anal. Calcd. for C35H52O9: C,68.15; H,8.50. Found: C,67.87; H,8.70. b) 2: $[\alpha]_D$ -22.3° (CHCl3-MeOH=1:1). HR-(+)-FABMS Calcd for C32H49O9: 577.3377. Found: 577.3382. (M+H)+c) 3: $[\alpha]_D$ -75.0° (CHCl3-MeOH 1:1). (+)-FABMS m/z: 577. (-)-FABMS m/z: 575. HR-(+)-FABMS Calcd for C32H48O9Na:599.3196. Found:599.3208. (M+Na)+d) 5: $[\alpha]_D$ +10.1° (CHCl3).
- 6) Y.Kawazoe, Y.Sato, M.Natsume, H.Hasegawa, T.Okamoto, K.Tsuda, Chem. Pharm. Bull., 10, 338 (1962).
- 7) X-Ray crystallographic analysis of $5:C_{34}H_{48}O_{7}$, prismatic crystals, space group $P2_{1}2_{1}2_{1}$ with $a=13.582(3)\dot{A}$, $b=22.856(3)\dot{A}$, $c=10.292(3)\dot{A}$, $V=3194(1)\dot{A}^{3}$, Z=4, $Dc=1.182gcm^{-3}$, R=0.056 for 2395 reflections.
- 8) J.X.Li, S.Kadota, X.F.Pu, T.Namba, Tetrahedron Lett., 35, 4575 (1994).

(Received August 8, 1994; accepted September 2, 1994)