MeO

2 :R=H 2a:R=Ac

Xanthone C-Glycoside and Acylated Sugar from Polygala tenuifolia

Yukinobu Ikeya,* Kô Sugama, and Masao Maruno

Tsumura Central Research Laboratories, 3586 Yoshiwara Ami-machi, Inashiki-gun, Ibaraki 300-11, Japan. Received May 30, 1994; accepted August 5, 1994

A new xanthone C-glycoside, polygalaxanthone III (1), and a new acylated sugar, tenuifoliside E (2) were isolated from the roots of *Polygala tenuifolia*. Their structures were characterized as 4-C- $[\beta$ -D-apiofuranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranosyl]-1,3,6-trihydroxy-7-methoxyxanthone (1) and β -D-(1-O-acetyl-3-O-feruloyl-6-O-sinapoyl-fructofuranosyl- α -D-(2,4,6-O-triacetyl)glucopyranoside (2), respectively, on the basis of chemical and spectral evidence including two dimensional nuclear magnetic resonance (2D-NMR) studies.

Keywords Polygala tenuifolia; polygalaxanthone III; tenuifoliside E; Polygalaceae; phenolic glycoside

Crude drug "Yuanzhi (Japanese name: Onji)", the roots of *Polygala tenuifolia* WILLD. (Polygalaceae) is a well-known Chinese medicine used as an expectorant, tonic, sedative and for treatment of amnesia. Various xanthones, saponins and multi-acylated oligosaccharides have been isolated from this material by Ito *et al.*,¹⁾ Sakuma and Shoji,²⁾ and Miyase *et al.*³⁾ We previously reported the isolation and structure determination of five phenylpropanoid sugar esters from this plant.⁴⁾ This paper deals with the isolation and structural elucidation of a new xanthone *C*-glycoside (1) and a new phenylpropanoid sucrose ester (2) from this material.

Polygalaxanthone III (1) was obtained as a yellow amorphous powder and its molecular formula was determined to be $C_{25}H_{28}O_{15}$ from the high-resolution fast atom bombardment mass spectrum (FAB-MS). The in-

frared (IR) spectrum of 1 showed the presence of hydroxyl groups (3408 cm⁻¹), a chelated ketone (1640 cm⁻¹) and aromatic rings (1614 cm⁻¹). The ultraviolet (UV) spectrum in MeOH (λ_{max} 241, 258, 316 and 363 nm) is similar to that of 1,6-dihydroxy-3,7-dimethoxyxanthone (3; λ_{max} 234, 255, 312 and 364 nm),⁵⁾ suggesting that 1 is a 1,3,6,7tetraoxygenated xanthone. The proton nuclear magnetic resonance (1H-NMR) spectrum of 1 (Table I) showed two anomeric proton signals at δ 5.73 (d, J=9.8 Hz) and 5.64 (d, J=2.7 Hz), three singlet aromatic proton signals at δ 6.60, 7.05 and 7.73, and one methoxyl signal at δ 3.91 (3H, s). Further, the ¹H-NMR spectrum of in 1 dimethylsulfoxide- d_6 (DMSO- d_6) showed a chelated hydroxyl (C-1–OH) signal at δ 13.81 (not appearing in pyridine- d_5). The carbon nuclear magnetic resonance (13C-NMR) spectrum of 1 (Table I) exhibited eleven

Chart 1

© 1994 Pharmaceutical Society of Japan

2306 Vol. 42, No. 11

TABLE I. ¹H- and ¹³C-NMR Spectral Data for Compounds 1, 1a, 1b and 3 in Pyridine-d₅

	¹ H-NMR (500 MHz)			¹³ C-NMR (125 MHz)			
	1	$1a^{a,b)}$	1b	1	1a ^{a,c)}	1b	3
Xanthone				, , , , , , , , , , , , , , , , , , , ,			
1				165.2^{d}	157.4	163.3	163.8
2	6.60, s	7.23, s	6.62, s	94.6	110.6	95.1	97.4
3	, -	,		165.3^{d}	154.1	167.5	166.3
4				108.4	118.1	109.1	92.7
4a				157.4	149.6	157.8	158.4
4b				157.4	149.7	156.7	156.5
5	7.05, s	7.20, s	7.09, s	103.5	112.4	103.7	103.9
6	7.05, 5	,.20, 5	, -	153.2	146.0	153.2	153.4
7				147.3	149.0	147.0	147.7
8	7.73, s	7.68, s	7.80, s	105.4	106.3	105.6	105.4
8a	7.75, 3	7.00, 3	7.00, 5	111.9	120.4	112.4	112.7
9				179.9	174.0	179.7	180.2
9a				102.6	112.1	102.2	103.8
OMe	3.91, 3H, s	3.91, 3H, s	3.78, 3H, s	56.1	56.5	56.0	55.9, 56
Glucose	5.51, 511, 8	3.51, 311, 3	3.70, 311, 5	2012			,
1'	5.73, d (9.8)	4.85, d (10.2)	5.87, d (9.7)	75.3	72.3	75.8	
2'	5.17, t (9.8)	5.70, t (9.8)	5.28, t (9.7)	72.3	69.6	72.7	
3'	4.39, t (9.0)	5.70, t (9.8) 5.31, t (9.8)	4.36, t (9.2)	80.2	74.5	80.8	
3 4'	4.35, t (9.0)	5.05, t (9.8)	4.53, t (9.2)	71.7	69.3	71.8	
5'	4.18 ^{e)}	3.78, ddd (9.8, 5.7, 2.4)	4.16, dt (9.2, 3.6)	81.2	77.8	82.8	
5 6'	4.23, dd (10.7, 5.5)	3.53, dd (12.1, 5.7)	3.75, 2H, d (3.6)	69.2	66.9	62.5	
O	4.23, dd (10.7, 5.3) 4.63, br d (10.7)	3.73, dd (12.1, 3.7)	3.73, 211, d (3.0)	.05.2	00.5	02.5	
A	4.03, bi a (10.7)	3.73, dd (12.1, 2.4)					
Apiose 1"	561 4(27)	4.90, br s		110.7	106.7		
2"	5.64, d (2.7)	4.90, 61 s 5.25, d (0.8)		77.6	76.0		
2" 3"	4.65, d (2.7)	3.23, a (0.6)		80.3	83.7		
-	4.20 4 (0.4)	: 4.11 - 4.(10.5)		74.8	72.4		
4''	4.30, d (9.4)	4.11, d (10.5)		/4.0	12.4		
	4.53, d (9.4)	4.18, d (10.5)		65.2	62.9		
5"	4.13, 2H, s	4.50, d (12.3)		03.4	02.3		
		4.65, d (12.3)					

J values in Hz. Abbreviations: br=broad, d=doublet, s=singlet, t=triplet. a) This compound was measured in CDCl₃. b) Other signals: δ 1.79, 1.98, 1.99, 2.02, 2.06, 2.07, 2.35, 2.45, 2.54 (each 3H, s, $9 \times OAc$). c) Other signals: δ 2.0.4, 20.5, 20.6, 20.7 × 3, 21.1, 21.3, 21.4, 167.8, 168.0, 168.6, 169.0, 169.6, 169.7, 169.8, 170.3, 170.4 ($9 \times OAc$). d) Assignments within any vertical column may be reversed. e) Overlapping with other signals. Signal assignments of 1 and 1a were confirmed by the $^1H-^1H$ COSY and $^{13}C-^1H$ COSY spectra.

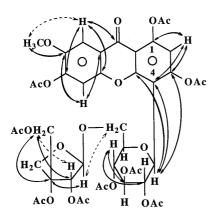


Fig. 1. NOE $(\leftarrow -\rightarrow)$ and Long-Range Correlations $(\leftarrow \rightarrow)$ Observed in NOESYPH and COLOC Spectra of 1a (in CDCl₃)

aliphatic carbon signals due to two sugar moieties. The C-5—C-8a signals of 1 are very similar to those of 3, suggesting that 1 has a hydroxyl group and a methoxyl group at the C-6 and C-7 positions, respectively, like 3. The correlation spectroscopy via long-range coupling (COLOC) spectrum of the peracetate (1a) of 1 supported the 1,3,6-triacetoxy-7-methoxyxanthone structure in 1a as shown in Fig. 1. The phase-sensitive nuclear Overhauser

effect spectroscopy (NOESYPH) spectrum of **1a** (Fig. 1) showed appreciable NOE between the methoxyl signal (δ 3.91) and the H-8 signal (δ 7.68). This indicates that the methoxyl group is located at C-7.

The 13C-NMR spectrum of 1 suggested the presence of β-apiofuranosyl moiety. 6) Methanolysis of 1 with 9% HCl in MeOH provided methyl α-apiofuranoside and methyl β -apiofuranoside together with 1b, $C_{20}H_{20}O_{11}$. On treatment with 2 N HCl, 1 gave 1b and D-apiose, $[\alpha]_D$ +7.9° (H₂O). These facts indicate the presence of a Dapiofuranosyl moiety in 1. The β -anomeric configuration of the D-apiofuranosyl moiety in 1 was confirmed by Klyne's rule⁷⁾ ($[M]_D$ of 1- $[M]_D$ of 1b value is -101° ; $[M]_D$ of methyl β -D-apiofuranoside is -156°). 8) In the ¹³C-NMR spectrum of **1b**, six aliphatic carbon signals due to a sugar moiety were appeared. The appearance of the anomeric carbon signal at higher field (δ 75.3) and the resistance to hydrolysis with HCl suggested that 1b possessed a C-glycoside nature. Ferric chloride oxidation of 1b afforded D-glucose as major product and arabinose as minor product, indicating that the sugar moiety in 1b is D-glucose.^{9,10)} In the ¹³C-NMR spectra of 1 and 1b, the C-6 signal (δ 62.5) in the glucopyranosyl moiety of **1b** showed an upfield shift of 6.7 ppm compared with that $(\delta 69.2)$ of 1, showing the oligosaccharide part of 1 to be

Table II. $^{1}\text{H-}$ and $^{13}\text{C-NMR}$ Spectral Data for Compounds 2 and 2a in CD $_{3}\text{OD}$

	¹H-NMR	¹³ C-NMR	
	2 ^{a)}	2a ^{a)}	(125 MHz) 2 ^{b)}
Fructose			
1	4.09, d (11.5)	4.30, 2H, s	66.7
	4.26, d (11.5)		
2			104.0
3	5.35, d (7.8)	5.60, d (5.4)	79.6
4	4.42, t (7.8)	5.55, t (5.4)	73.8
5	4.22, ddd (7.8, 4.9, 4.2)	4.42, ddd (6.1, 5.4, 4.6)	81.6
6	4.50, dd (11.6, 4.9)	4.48, dd (11.8, 6.1)	64.6
	4.53, dd (11.6, 4.2)	4.57, dd (11.8, 4.6)	
Glucose			
1′	5.68, d (3.7)	5.75, d (3.7)	90.5
2'	4.82, dd (10.1, 3.7)	4.89, dd (10.4, 3.7)	74.0
3′	4.06, dd (10.1, 9.4)	5.42, dd (10.4, 9.5)	69.9
4′	4.84, dd (10.3, 9.4)	4.98, dd (10.3, 9.5)	72.4
5′	4.24, ddd (10.3, 5.7, 2.4)		70.1
6′	4.12, dd (11.9, 5.7)	4.19, 2H, d (3.7)	64.2
	4.17, dd (11.9, 2.4)	, , , , (===,)	
Feruloyl			
1"			127.6
2"	7.12, d (1.8)	7.41, d (1.9)	112.0
3"		-, - (,	149.6
4"			151.2
5"	6.93, d (7.5)	7.06, d (8.1)	116.7
6"	7.11, d (7.5, 1.8)	7.24, dd (8.1, 1.9)	124.6
7"	7.65, d (15.8)	7.79, d (16.0)	148.3
8"	6.35, d (15.8)	6.62, d (16.0)	114.8
9"	, - ()	5.52, 2 (15.5)	168.1
OMe	3.95, 3H, s	3.88, 3H, s	56.7
Sinapoyl	,, -	5.00, 511, 5	50.7
1'''			126.8
2"', 6"'	6.80, 2H, s	6.99, 2H, s	107.1
3"', 5"'	0.00, 211, 3	0.55, 211, 3	149.6
4""			139.9
7'''	7.70, d (15.9)	7.73, d (16.0)	147.5
8'''	6.37, d (15.9)	6.60, d (16.0)	147.3
9′′′	0.57, u (15.5)	0.00, u (10.0)	
OMe	3.92, 6H, s	3.85, 6H, s	168.8
OIVIC	J.72, UII, S	J.0J, UII, 8	57.0

J values in Hz. Abbreviations: d=doublet, s=singlet, t=triplet. a) Other signals: 2, δ 1.96, 2.05, 2.12, 2.13 (each 3H, s, 4×OAc); **2a**, δ 1.91, 1.93, 1.98, 2.07, 2.12, 2.13 (each 3H, s, 6×OAc), 2.26 (6H, s, 2×OAc). b) Other signals: δ 20.7×2, 20.8, 21.0, 171.8, 172.1, 172.2, 172.2, 172.7 (4×OAc). All assignments were confirmed by the ${}^1\text{H}-{}^1\text{H}$ COSY and ${}^1\text{S}-{}^1\text{H}$ COSY spectra.

an apiofuranosyl- $(1\rightarrow 6)$ - β -glucopyranosyl structure. This was confirmed from the NOE experiment of **1a** (Fig. 1). The position of the glucopyranosyl moiety was determined to link at the C-4 position of xanthone nucleus from the COLOC spectrum as shown in Fig. 1. Consequently, the structure of polygalaxanthone III was determined to be 4-C-[β -D-apiofuranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl]-1,3,6-trihydroxy-7-methoxyxanthone (1).

Tenuifoliside E (2) was obtained as a white amorphous powder and its high-resolution FAB-MS gave an $[M+H]^+$ ion peak at m/z 893.2705 ($C_{41}H_{49}O_{22}$). The IR spectrum of 2 showed the presence of hydroxyl groups (3448 cm⁻¹), carbonyl groups (1744 and 1724 cm⁻¹), a double bond (1632 cm⁻¹) and an aromatic ring (1604 cm⁻¹). The ¹H-NMR spectrum (Table II) showed that 2 possesses four acetyl groups, a feruloyl group and a sinapoyl group. The ¹³C-NMR spectrum of 2 (Table II) showed twelve carbon signals arising from a disaccharide moiety. The appearance of two anomeric carbon signals at δ 104.0 and 90.5 suggested the disaccharide to be sucrose. ¹¹⁾ On alkaline methanolysis of 2 with 3% sodium methoxide in methanol, 2 afforded methyl ferulate, methyl

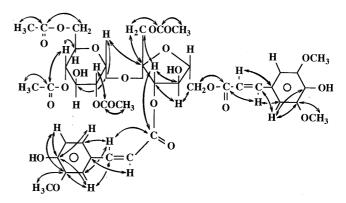


Fig. 2. Long-Range Correlations (←→) Observed in HMBC Spectrum of 2 (in CD₃OD)

sinapate and sucrose. From these observations, 2 was suggested to be a sucrose ester having three acetyl, one feruloyl and one sinapoyl groups.

The ¹H-NMR spectrum of the peracetate (2a) of 2 (Table II) showed signals belonging to two aromatic acetyl groups at δ 2.26 (6H, s)and two new aliphatic acetyl groups in addition to four aliphatic acetyl signals in 2. The H-4 signal of the fructofuranosyl moiety and the H-3' signal of the glucopyranosyl moiety in the ¹H-NMR spectrum of 2a showed downfield shifts of 1.05 and 1.50 ppm, respectively, compared with those of 2. This indicates the presence of C-4 and C-3' free hydroxyl groups in 2. From the heteronuclear multiple bond connectivity (HMBC) spectrum, the substitutive positions of the acyl groups in 2 were determined as shown in Fig. 2. From the above observations, tenuifoliside E was determined to be β -D-(1-O-acetyl-3-O-feruloyl-6-O-sinapoyl)fructofuranosyl- α -D-(2,4,6-O-triacetyl)glucopyranoside (2).

Though many xanthones have been isolated from *P. tenuifolia*, this is the first isolation of xanthone *C*-glycoside.

Experimental

The instruments used for obtaining physical data and the conditions for chromatography were the same as described in the previous paper. (Gas liquid chromatography (GLC) was carried out on a Shimadzu gas chromatograph GC-14A with hydrogen flame ionization detector.

Isolation 1 and 2 The dried roots (4.8 kg) of *P. tenuifolia* (purchased from Yamamoto Yakuhin Kogyo Co. Ltd., Tokyo) were pulverized and extracted three times with boiling MeOH (201, 3h). The concentrated methanolic extract (1084.8 kg) was dissolved in H₂O and successively extracted with ether and BuOH. The BuOH solution was concentrated to give a dark mass (638.8 g). A part (408 g) of this mass was chromatographed on Sepabeads SP-207 (Mitsubishi Chemical Industries, Ltd.) (2.6 l), developing with H₂O (7 l), 20% MeOH (6.5 l), 40% MeOH (6.51) and then MeOH (6.51). The MeOH eluate was concentrated to give a residue (182.7 g), which was chromatographed on SiO₂ (1.15 kg) with a mixture of CHCl₃-MeOH. The fraction (0.58 g) eluted with CHCl₃-MeOH (9:1) was purified by preparative thin layer chromatography (prep. TLC) [hexane-acetone (1:1)] to give 2 (50 mg, yield 0.0016%). A part (13.6 g) of the fraction eluted with $CHCl_3$ -MeOH (3:7) and MeOH was rechromatographed on Sephadex LH-20 (5cm i.d. × 25 cm) developing with MeOH to give crude 1 (2.06 g). This crude 1 was purified by prep. TLC [EtOAc-MeOH-H₂O (6:2:1)] to give 1 (255 mg, yield 0.11%).

Polygalaxanthone III (1) A yellow amorphous powder, $[\alpha]_D^{24} - 7.8^{\circ}$ (c = 0.602, MeOH). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3408 (OH), 1640 (C=O), 1614 (aromatic ring). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 207 (4.31), 241 (4.39), 258 (4.37), 316 (4.05), 363 (4.09). Positive ion FAB-MS m/z: 569 [M+H]⁺. High-resolution FAB-MS, Calcd for $C_{25}H_{29}O_{15}$ ([M+H]⁺): 569.1506. Found: 569.1505.

Tenuifoliside E (2) A white amorphous powder, $[\alpha]_D^{24}$ –45.5° (c =1.12, MeOH). IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3448 (OH), 1744, 1724 (C=O), 1632 (C=C), 1604 (aromatic ring). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 202 (4.48), 220 (4.34), 237 (4.33), 330 (4.45). Negative ion FAB-MS m/z: 891 [M-H] $^-$. Positive ion FAB-MS m/z: 893 [M-H] $^+$. High-resolution FAB-MS, Calcd for C₄₁H₄₉O₂₂ ([M+H] $^+$): 893.2716. Found: 893.2705.

Acetylation of 1 A solution of 1 (45 mg) in a mixture of Ac₂O (0.25 ml), 4-(dimethylamino)pyridine (10 mg) and pyridine (0.5 ml) was stirred at 50 °C for 7 h, then diluted with ether. The ethereal solution was washed with 1 n HCl, 5% NaHCO₃, then H₂O and concentrated to give a residue. The residue was purified by prep. TLC [hexane–EtOAc (1:2)] to give 1a (32 mg) as white powder (from ether–hexane), mp 122—125 °C, $[\alpha]_{\rm L}^{24} + 2.1^{\circ}$ (c=0.960, MeOH). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1780, 1754 (C=O), 1622 (aromatic ring). Positive ion FAB-MS m/z: 969 [M+Na]⁺, 947 [M+H]⁺. High-resolution FAB-MS, Calcd for C₄₃H₄₇O₁₆ ([M+H]⁺): 947.2457. Found: 947.2508.

Methanolysis of 1 A solution of 1 (40 mg) in 9% HCl–MeOH (2 ml) was heated under reflux for 4 h. After cooling, the reaction mixture was neutralized with Amberlite IR-410 (OH⁻ form) and the resin was removed by filtration. After removal of the solvent from the filtrate under reduced pressure, the product was purified by prep. TLC [EtOAc–MeOH–H₂O (7:4:1)] to afford **1b** (Rf 0.83, 10.5 mg), crude methyl β-apiofuranoside (Rf 0.79, 5.1 mg) and methyl α-apiofuranoside (Rf 0.69, 2.8 mg) as colorless syrup. Crude methyl β-apiofuranoside was further purified by prep. TLC [acetone–CH₂Cl₂–H₂O (14:6:1)] to give methyl β-apiofuranoside (2.6 mg) as colorless syrup.

Methyl α -apiofuranoside and methyl β -apiofuranoside were identified by comparing the ¹H- and ¹³C-NMR data with reported values. ⁶

1b: A light yellow amorphous powder, $[\alpha]_D^{24} + 12.9^{\circ}$ (c = 0.557, MeOH). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3428 (OH), 1644 (C=O), 1620 (aromatic ring). Positive ion FAB-MS m/z: 437 [M+H]⁺. High-resolution FAB-MS, Calcd for $C_{20}H_{21}O_{11}$ ([M+H]⁺): 437.1084. Found: 437.1081.

Hydrolysis of 1 A solution of 1 (60 mg) in $2 \,\mathrm{N}$ HCl (2 ml) was stirred at room temperature for $48 \,\mathrm{h}$, then neutralized with $\mathrm{Ag_2CO_3}$ and filtered. The filtrate was evaporated and purified by prep. TLC [EtOAc–MeOH– $\mathrm{H_2O}$ (7:2:1)] to give a yellow amorphous powder (Rf 0.69, 18.7 mg) and a syrup (Rf 0.43, 10.5 mg), $[\alpha]_D^{23} + 7.9^\circ$ ($c = 0.33, 24 \,\mathrm{h}$ after dissolving in $\mathrm{H_2O}$), which was identified as D-apiose (an α,β -anomeric mixture) by comparison of TLC and $[\alpha]_D$ with those of D-apiose prepared from apigenin-7-O-apioside. Yellow amorphous powder was identical with 1b by comparing the $^1\mathrm{H}$ -NMR, IR and $[\alpha]_D$.

Oxidation of 1b with FeCl₃ A mixture of 1b (12 mg) and FeCl₃· $6H_2O$ (70 mg) in H_2O (2 ml) was refluxed for 8 h. The reaction mixture was passed through an Amberlite MB-3 column and the elute was concentrated to give a residue (8.4 mg). A part (0.5 mg) of the residue was treated with hexamethyldisilazane and trimethylchlorosilane in pyridine to afford trimethylsilyl (TMS) derivatives of glucose and arabinose; these were identical with authentic samples by GLC comparison. GLC conditions: column, HP-1 (0.31 mm i.d. × 25 m); He flow rate, 50 ml/min;

column temperature, 100 °C \rightarrow 180 °C (5 °C/min); $t_{\rm R}$, 1,2,3,4,6-penta-O-trimethylsilylglucopyranoside, 14.9, 17.0 min and 1,2,3,4-tetra-O-trimethylsilylarabinopyranoside, 9.2, 9.7 min. The residue (7.9 mg) was purified by prep. TLC [CHCl₃–MeOH–H₂O (20:10:1), Rf 0.15] to give a syrup (2.1 mg), [α]²³ +44° (c=0.18, H₂O), which was identified as D-glucose by TLC [BuOH–acetone–H₂O (20:10:1), Rf 0.35].

Acetylation of 2 A solution of 2 (15 mg) in a mixture of Ac_2O (0.25 ml) and pyridine (0.5 ml) was allowed to stand at room temperature overnight, then diluted with ether. The ethereal solution was washed with 1 N HCl, 5% NaHCO₃ and H₂O, and then concentrated to give a residue. This residue was purified by prep. TLC [hexane–acetone (1:1)] to give 2a (9.5 mg) as a white amorphous powder. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1754 (C=O), 1638 (C=C), 1598 (aromatic ring). Positive ion FAB-MS m/z: 1083 [M+Na]⁺. High-resolution FAB-MS, Calcd for $C_{49}H_{56}O_{26}Na$ ([M+Na]⁺): 1083.2958. Found: 1083.2962.

Alkaline Methanolysis of 2 Methanolysis of 2 (4.0 mg) was carried out with 3% NaOMe in MeOH (1 ml) at room temperature for 30 min. The reaction mixture was passed through an Amberlite IR-120B column. Methyl ferulate, methyl sinapate and sucrose were detected in the mixture by TLC. Methyl ferulate: Rf 0.30 [hexane-acetone (2:1)]. Methyl sinapate: Rf 0.24 [hexane-acetone (2:1)]. Sucrose: Rf 0.35 [BuOH-acetone-H₂O (4:5:1)]; Rf 0.33 [CHCl₃-MeOH-H₂O (6:4:1)].

Acknowledgements The authors thank Mr. K. Kano, Mr. T. Katsuhara, and Miss Y. Imamura, Tsumura Central Research Laboratories for measurements of MS and COLOC spectra.

References

- H. Ito, H. Taniguchi, T. Kita, Y. Matsuki, E. Tachikawa, T. Fujita, *Phytochemistry*, 16, 1614 (1977); T. Fujita, D.-Y. Liu, S. Ueda, Y. Takeda, *ibid.*, 31, 3977 (1992).
- S. Sakuma, J. Shoji, Chem. Pharm. Bull., 29, 2431 (1981); Idem, ibid., 30, 810 (1982).
- T. Miyase, Y.Iwata, A. Ueno, Chem. Pharm. Bull., 39, 3082 (1991);
 Idem, ibid., 40, 2741 (1992);
 T. Miyase, A. Ueno, Shoyakugaku Zasshi, 47, 267 (1993).
- Y. Ikeya, K. Sugama, M. Okada, H. Mitsuhashi, *Chem. Pharm. Bull.*, 39, 2600 (1991).
- Y. Ikeya, K. Sugama, M. Okada, H. Mitsuhashi, *Phytochemistry*, 30, 2061 (1991).
- I. Kitagawa, K. Hori, M. Sakagami, F. Hashiuchi, M. Yoshikawa, J. Ren, Chem. Pharm. Bull., 41, 1350 (1993).
- 7) W. Klyne, Biochem. J., 47, xil (1950).
- 8) S. J. Angyal, C. L. Bodkin, J. A. Mills, P. M. Pojar, *Aust. J. Chem.*, **30**, 1259 (1977).
- 9) M. Aritomi, T. Kawasaki, Chem. Pharm. Bull., 32, 2676 (1984).
- 10) B. H. Koeppen, D. G. Roux, Biochem. J., 97, 444 (1965).
- N. Shimazaki, Y. Mimaki, Y. Sashida, *Phytochemistry*, 30, 1475 (1991).