A TOTAL SYNTHESIS OF ARENASTATIN A, AN EXTREMELY POTENT CYTOTOXIC DEPSIPEPTIDE, FROM THE OKINAWAN MARINE SPONGE DYSIDEA ARENARIA

Motomasa KOBAYASHI, Michio KUROSU, Weiqi WANG, and Isao KITAGAWA*

Faculty of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565, Japan

An asymmetric synthesis of a cyclic depsipeptide arenastatin A (1), which was isolated from the marine sponge *Dysidea arenaria* and exhibited extremely potent cytotoxicity with IC50 5 pg/ml for KB cells, has been accomplished.

KEYWORDS marine sponge; Dysidea arenaria; depsipeptide; arenastatin A; cytotoxic

During our continuing investigations searching for new bioactive substances in marine organisms, 1) we have been investigating the chemical constituents of the Okinawan marine sponge *Dysidea arenaria* and have recently isolated an extremely potent cytotoxic (IC50 5 pg/ml for KB cells) depsipeptide designated arenastatin A (1) via bioassay-guided separation. The plane structure of arenastatin A (1) was first elucidated on the basis of 2D-NMR analysis. 2) Then the absolute stereostructure of 1 was determined partially by HPLC identification of the fragmental D-amino acid and 2(S)-hydroxy acid derivatives 2) and finally by a synthesis of a tetrahydrofuranoid 2, which was obtained by methanolysis of 1 with K2CO3-MeOH and subsequent imidazole treatment. 3) Due to scarcity of the natural supply of 1 for further biological evaluation, our effort has been directed toward the total synthesis. In this paper, we report an asymmetric total synthesis of arenastatin A (1).

Chart 1 depicts strategic bond disconnections and retrosynthetic analysis of arenastatin A(1). Arenastatin A(1), having an epoxy moiety adjacent to a phenyl group and a cyclic diester structure, is fairly unstable under both acidic and alkaline conditions. Thus, the construction of the cyclic skeleton has been designed by an intramolecular Wittig-Horner reaction of 4, and the epoxy function has been introduced in the final stage.

Segment A (5) has been synthesized starting from 1-O-TBDPS-1,3-pentanediol 8 as shown in Chart 2. Dess-Martin oxidation of 8 followed by Wittig-Horner reaction gave an α , β -unsaturated ester 9, which, upon DIBAL reduction and subsequent Sharpless asymmetric epoxidation⁴) using L-diethyl tartrate, was converted to a 2S, 3S-epoxide 10 in 90% yield with 96%ee. Epoxide 10 was treated with Me₂CuLi and then subjected to NaIO₄ oxidation to furnish a 1,3S-

© 1994 Pharmaceutical Society of Japan

November 1994 2395

diol, and selective protection of the 3-hydroxyl moiety was effected *via* three steps to give 11 in 65% yield from 10. Dess-Martin oxidation of 11 provided an aldehyde while preserving the C-2 methyl configuration, and the aldehyde was further subjected to Wittig reaction using a semistabilized ylide in benzene⁵) and subsequently to selective deprotection of the TES group to give segment $A(5)^6$) in 63% yield from 11.

65%; d) i) Dess-Martin periodinane, CH2Cl2, ii) Ph3PCH2PhCl, ⁿBuLi, benzene, ii) HF• pyridine,

THF-CH₂Cl₂, 3 steps 63%. (TBDPS: ^tbutyldiphenylsilyl TES: triethylsilyl)

Segment B (6) has been prepared from L-leucine as shown in Chart 3. Thus, 2(S)-hydroxy-4-methylpentanoic acid (12), obtained by sodium nitrite and aqueous sulfuric acid treatment of L-leucine, was first esterified with diazomethane, and then the hydroxyl moiety was protected with a p-methoxybenzyl (MPM) group to afford 13 in 65% yield with 100%ee. Treatment of 13 with a diluted aqueous KOH-dioxane solution furnished segment B (6) without racemization at C-2.

Next, segment C (7) has been synthesized starting from β -alanine through a reaction sequence as shown in Chart 4. A 2-(trimethylsilyl)ethyl ester 14, prepared from β -alanine in three steps, was coupled with a D-O-methyltyrosine derivative 15 using DEPC⁷) to afford 16 in 82% yield. Removal of the Cbz group of 16, followed by phosphonoacetylation in the presence of WSCI⁸) and subsequent deprotection of the 2-(trimethylsilyl)ethyl group, provided segment C (7)⁹) in 90% yield.

$$\beta\text{-alanine} \xrightarrow{\textbf{a}} \begin{array}{c} H_2N \\ O \\ 14 \end{array} \begin{array}{c} O \\ \text{Si} \\ \end{array} \begin{array}{c} + \\ CbzHN \\ O \\ \end{array} \begin{array}{c} O \\ 15 \end{array} \begin{array}{c} \textbf{b} \\ CbzHN \\ O \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ O \\ \end{array} \begin{array}{c} C \\ \textbf{Si} \\ \end{array} \begin{array}{c} \textbf{C} \\ \textbf{Me} \\ O \\ \textbf{Me} \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ O \\ \textbf{Me} \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ O \\ \textbf{Me} \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ O \\ \textbf{Me} \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ O \\ \textbf{Me} \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ O \\ \textbf{Me} \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ O \\ \textbf{Me} \\ \end{array} \begin{array}{c} O \\ \textbf{Me} \\ \\ \textbf$$

Then the connection of these segments A, B, and C was carried out as summarized in Chart 5. Segment A (5) was first coupled with an acid chloride 17, which was prepared by (COCl)2 treatment of segment B (6), in the presence of Et₃N and DMAP to furnish 18 in 90% yield. Removal of the MPM protecting group in 18 using PhSH and BF₃·OEt₂ and subsequent coupling with segment C (7) using IPCF¹⁰) afforded diester 19 in 81% yield. Removal of the TBDPS group in 19 with n-Bu₄NF-AcOH¹¹) and successive Dess-Martin oxidation yielded aldehyde 4, which was then subjected to an intramolecular Wittig-Horner reaction¹²) to give cyclic depsipeptide 3¹³) in 40% yield.

2396 Vol. 42, No. 11

Finally, compound 3 was treated with dimethyldioxirane 14) to furnish arenastatin A (1) and its 7,8-epoxy-stereoisomer 20¹⁵) in 2.2:1 ratio totally in 80% yield. 16) The compound 1 thus synthesized has been found identical with the natural authentic sample by HPLC, IR, ¹H-NMR, [α]D, and CD comparisons. The detailed biological activities of arenastatin A (1) and allied compounds are under investigation.

ACKNOWLEDGEMENT The authors are grateful to the Ministry of Education, Science, and Culture of Japan for financial support.

REFERENCES AND NOTES

- 1) a) M. Kobayashi, S. Aoki, H. Sakai, N. Kihara, T. Sasaki, I. Kitagawa, Chem. Pharm. Bull., 41, 989 (1993); b) M. Kobayashi, S. Aoki, I. Kitagawa, Tetrahedron Lett., 35, 1243 (1994); c) Part XXXIII: M. Kobayashi, K. Kanzaki, S. Katayama, K. Ohashi, H. Okada, S. Ikegami, I. Kitagawa, Chem. Pharm. Bull., 42, 1410 (1994), and preceding papers.

- 2) M. Kobayashi, S. Aoki, N. Ohyabu, M. Kurosu, W. Wang, I. Kitagawa, *Tetrahedron Lett.*, 35, in press. 3) M. Kobayashi, M. Kurosu, N. Ohyabu, W. Wang, S. Fujii, I. Kitagawa, *Chem. Pharm. Bull.*, 42, in press. 4) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, K. B. Sharpless, *J. Am. Chem. Soc.*, 109, 5765
- 5) The E-selectivity of the double bond in 8 was 91% in benzene, while 81% in THF and 71% in DMF.
- 6) 5: ¹H-NMR (270 MHz, CDCl₃)δ: 7.2-7.7 (15H), 6.42 (1H, d, *J*=15.8 Hz), 6.24 (1H, dd, *J*=15.8, 7.9), 3.9 (3H, m), 2.4 (1H, m), 1.7 (2H, m), 1.15 (3H, d, J=6.9), 1.06 (9H, s). MS: m/z 426 (M⁺-H₂O) (C₂₉H₃₄OSi by HR-MS).
- 7) S. Yamada, N. Ikota, T. Shioiri, S. Tachibana, J. Am. Chem. Soc., 97, 7174 (1975).
- 8) J. C. Sheehan, P. A. Cruickshank, G. L. Boshart, J. Org. Chem., 26, 2525 (1961).
- 9) 7:1H-NMR (270 MHz, CDCl₃)δ: 7.12 (2H, d, *J*=8.6 Hz), 6.80 (2H, d, *J*=8.6), 4.71 (1H, m), 4.05 (4H, m), 3.76 (3H, s), 3.42 (2H, m), 3.0 (2H, m), 2.88, 2.81 (both 1H, d, J=3.3), 2.45 (2H, m), 1.25 (6H, m). FAB-MS: m/z 467 $(M+Na)^+$ (C₁₉H₂₉N₂O₈PNa by HR FAB-MS).
- 10) P. Jouin, B. Castro, C. Zeggaf, A. Pantaloni, J. P. Senet, S. Lecolier, G. Sennyey, Tetrahedron Lett., 28, 1661
- 11) The 1,3-acylmigration was restrained in the presence of AcOH.
- 12) M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune, W. R. Roush, T. Sakai, Tetrahedron Lett., 25, 2183 (1984).
- 13) 3:¹H-NMR (500 MHz, CDCl₃)δ: 7.12 (2H, d, *J*=8.6 Hz), 6.82 (2H, d, *J*=8.6), 6.71 (1H, m, H-3), 6.40 (1H, d, *J*=15.8, H-8), 6.01 (1H, dd, *J*=15.8, 8.6, H-7), 5.72 (1H, d, *J*=16.2, H-2), 5.05 (1H, m, H-5), 4.90 (1H, m, H-15), 4.70 (1H, m, H-24), 3.78 (3H, s, H-30), 3.50 (2H, m, H-22), 1.14 (3H, d, *J*=6.8, H-13), 0.75, 0.72 (both 3H, d, J=6.4). FAB-MS: m/z 591 (M+H)⁺ (C₃₄H₄₃N₂O₇ by HR FAB-MS). CD maxima (MeOH): $[\Theta]_{253}$ +15000, $[\Theta]_{228}$ -10000, $[\Theta]_{219}$ -40000.
- 14) R. W. Murray, R. Jeyaraman, J. Org. Chem., 50, 2847 (1985).
- 15) **20**: ¹H-NMR (500 MHz, CDCl₃)δ: 7.13 (2H, d, *J*=8.6 Hz), 6.82 (2H, d, *J*=8.6), 6.72 (1H, m, H-3), 5.78 (1H, d, J=15.4, H-2), 5.20 (1H, m, H-5), 5.00 (1H, m, H-15), 4.76 (1H, m, H-24), 3.79 (3H, s), 3.61 (1H, d, J=1.7, H-8), 2.90 (1H, dd, J=8.1, 1.7, H-7), 1.05 (3H, d, J=7.3, H-13), 0.90, 0.88 (both 3H, d, J=6.4). FAB-MS: m/z 607 $(M+H)^+$ (C34H43N2O8 by HR FAB-MS). CD maxima (MeOH): $[\Theta]_{267}$ +12000, $[\Theta]_{224}$ +4500.
- 16) The MCPBA oxidation of 3 in the presence of Na₂HPO₄ yielded 1 and 20 in poor yields with less stereoselectivity.

(Received August 29, 1994; accepted October 14, 1994)