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SYNTHESIS OF 9E- AND 9Z- LOCKED RETINOIC ACID ANALOGS AS LIGANDS FOR
RAR AND RXR"
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New retinoic acid (RA) analogs 9E-locked-RA 3 and 9Z- locked-RA 4 were synthemzed
from dithiane 6 and B-cyclocitral 13, respectively. Both analogs behaved as ‘agonistic llgands
for a mixture of retinoic acid receptor (RAR) and retinoid X receptor (RXR).
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RA is a signaling molecule -
which plays a role in several types of
vitamin A action including growth,
differentiation, and development,
though not in vision.” In the past
several years, two d1st1nct classes of
nuclear hormone receptors medlatm g
RA-dependent transcription® have =
been identified. The first class is
composed of the ¢, B and Y RARs
which bind all-E-RA 1, and the second class of receptors o, B and Y.
RXRs bind 9Z-RA 2 with much higher affinity comparcd to 1. P

Here we describe syntheses of new RA analogs 3 and 4 havmg the structure such that 9E to 9Z
and 9Z to 9E isomerizations were respectlvely prohibited, in order to investigate-the behaviors of
these analogs as hgands for RAR and RXR.

The 9E-locked trienone 5§ was synthes1zcd by Albeck et al.” via a Wittig reaction between B-
cyclocitrylphosphonium bromide and 3-formyl-2-cyclohexenone. Although we first followed this
method, the yields of starting materials were-low and the Wittig reaction gavc a trace amount of 5.
Therefore we prepared 5 by our original procedure as shown in Chart 1.

Diketone 7, derived from the reaction of lithium salt of dithiane 69 with 5-chloro-2- -pentanone
ethylene ketal (Aldrich) and subsequent deprotections of the thioketal and ketal groups (57% in 3
steps), was easily cyclized in the presence of MeONa® to afford trienone 5 (quantitative yield), which
was unable to directly elongate to the retinoate analog by an Emmons-Horner reaction.- Thus, trienone
5 was converted to tetraenones 8 and 9 in a 1:1 ratio in 72% yleld [recovered 24% of 5] by an'aldol
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a) n-Bulli, 5-chloro-2-pentanone ethylene ketal / THF, -78°C, b) HgO, HgCl, /97% MeOH, r.t.,
) p-TsOH / acetone, r.t., d) MeONa / THF, r.t., ) LDA, Me,NN=CMe, / THF, r.t., f) ACOH:THF:
H20:AcONa (5:2:2:1), r.t., g) low pressure column chromatography, h) LDA, TMSCH,CO,Et /
THF, -78°C, i) preparative HPLC in the dark, j) 25% NaOH / EtOH, 50°C

Chart 1

ef,i 9Z, 11E-17
(less polar)

92, 13219 R=Et — 97 13221 R=H
(less polar) J

97-20 R=Et
(more polar)

9Z, 112-18 (more polar)

j

CO.R 974 R=H

k) 3-butoxy-2-cyclohexenone, LDA / THF, -78°C, I) MeLi / THF, -78-0°C, m) 15% H,SOy, r.t.,
n) Acz0, EtsN, DMAP / CH,Cly, r.t., 0) DBU / toluene, reflux

Chart 2
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type condensation followed by mild deprotection.® Peterson olefination (92%) of 8 followed by
preparative HPLC gave 13Z-isomer 10” and all-E-isomer 117 of the retinoate analogs in a 1:1 ratio,
which were hydrolyzed to RA analogs 12® and 3%, respectively, without double-bond isomerization.

9Z-Locked trienone 16 was prepared by a modified procedure of the synthetic method of 11Z-
locked retinal® (Chart 2). Aldol condensation between B-cyclocitral 13'? and 3-butoxy-2-
cyclohexenone'? afforded hydroxy ketone 14 (61%), which was converted into 7E-trienone 16 as a
sole product [observed NOE (nuclear Overhauser effect) between 7-H and 9-Me] by the sequence of
the addition of methyl lithium, hydrolysis (60%), acetylation (83%) and elimination (83%). Final
transformation of 16 to 9Z-locked RAs 21 and 4 was achieved by means of the route used for 9E-
locked RAs 12% and 3. '

Transcriptional activities of synthesized RA analogs 3, 12, 4 and 21 were investigated by CAT
(chloramphenicol acetyl transferase) assay. All analogs indicated weak activities compared with those
of 1and 2 [3; 1/10 of 1 or 2: 12, 4 and 21; 1/100 of 1 or 2]. This suggests that synthesized analogs 3,
12, 4 and 21 exhibited agonistic actions for a mixture of RAR and RXR. Relationship concerning the
structure and transcriptional activities is now under study.
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