INHIBITORY EFFECTS OF (4-ALKOXY-2, 3, 6-TRIMETHYLPHENYL) GLYCOPYRANOSIDES ON HISTAMINE RELEASE INDUCED BY ANTIGEN-ANTIBODY REACTION

Tzer Chuan WANG, Hisao KAKEGAWA, Shigeru NAKAISHI, Hitoshi MATSUMOTO, and Toshio SATOH* Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

The inhibitory effects of newely synthesized 4-alkoxy-2, 3, 6-trimethylphenyl D-glycopyranosides on histamine release induced by antigen-antibody reaction were examined. Among the compounds tested, 4-hexoxy-2, 3, 6-trimethylphenyl α -D-mannopyranoside exhibited the strongest inhibitory effect. Furthermore, 4-hexoxy-2, 3, 6-trimethylphenyl α -D-glucopyranoside and α -D-galactopyranoside markedly inhibited antigen-induced histamine release, and their activities were more potent than those of the corresponding β -anomers. These results suggest that these compounds may possess excellent anti-allergic activities.

KEYWORDS histamine release; histamine release inhibition; antigen-antibody reaction; 4-alkoxy-2, 3, 6-trimethylphenyl glycopyranoside; 4-hexoxy-2, 3, 6-trimethylphenyl α -D-mannopyranoside

The cells involving immunological responses are known to be activated by a variety of stimuli via the recognition of carbohydrate chains of glycoproteins. Immunoglobulin E (IgE) contains D-mannose-containing carbohydrate chains in the crystallizable fragment (Fc) portion of its molecule. ¹⁾ Concanavalin A (Con A), a plant lectin, is specifically attached to the carbohydrate chains of IgE to induce the release of chemical mediators. ²⁾ High concentrations of mannose and methyl α -D-mannopyranoside have been shown to inhibit histamine release from mast cells induced not only by Con A but also by antigen-antibody reaction. ³⁾ This fact indicates the existence of the recognition of carbohydrate chains in an antigen-antibody reaction similar to the recognition of Con A of carbohydrate chains in an IgE molecule. We previously reported that alkylphenyl α -D-mannopyranosides inhibited histamine release from sensitized rat peritoneal mast cells induced by ovalbumin (antigen), and their inhibitory effects were correlated with the hydrophobic substituent constant (π) values. ⁴⁾ Among the compounds tested, 2, 4, 6-trimethylphenyl α -D-mannopyranoside exhibited the strongest inhibitory effect on antigen-induced histamine release, and had inhibitory effects on Schultz-Dale reaction and 48 h homologous passive cutaneous anaphylaxis (PCA) in rats. In the present study, we newly synthesized 4-alkoxy-2, 3, 6-trimethylphenyl glycopyranosides, and investigated their inhibitory effects on histamine release induced by antigen-antibody reaction.

The compounds tested were synthesized according the Helferich method. ⁵⁾ Namely, condensations of pentaacetyl β-D-glycopyranosides, prepared by the method of Dale, ⁶⁾ with 4-alkoxy-2, 3, 6-trimethylphenols, produced from hydroquinones and alcohols by the method of Taniguchi, ⁷⁾ in the presence of stannic chloride anhydrous in benzene produced 4-alkoxy-2, 3, 6-trimethylphenyl D-glycopyranoside tetraacetates, and then these compounds were deacetylated with a catalytic amount of sodium methoxide in methanol to afford the 4-alkoxy-2, 3, 6-trimethylphenyl D-glycopyranosides. The physical properties are shown in Table I. Preparation of rat peritoneal

© 1994 Pharmaceutical Society of Japan

mast cells, sensitization of the cells by rat anti-ovalbumin serum and assay of histamine release from passively sensitized rat peritoneal mast cells were carried out according to the methods described in the previous paper.⁴⁾

As shown in Table II, the 4-alkoxy-2, 3, 6-trimethylphenyl α -D-mannopyranosides tested inhibited histamine release induced by antigen-antibody reaction in a concentration-dependent manner, and exhibited more potent inhibitory effects than 2, 4, 6-trimethylphenyl α -D-mannopyranoside. Their inhibitory potency increased in proportion to the number of carbons in 4-alkoxy group of these compounds. These results suggest the correlation between hydrophobicities and inhibitory effects of these compounds similar to alkylphenyl α -D-mannopyranosides. Among the compounds tested, Man- α -C6 showed the strongest activity, and was approximately one thousand times more effective than 2, 4, 6-trimethylphenyl α -D-mannopyranoside. With respect to 4-alkoxy-2, 3, 6-trimethylphenyl D-glucopyranosides and D-galactopyranosides, 4-hexoxy-compounds with an α -configuration at the anomeric carbon atom exhibited good inhibitory effects, and their activities were more potent than those of the corresponding β -anomers. The inhibitory effects of Glc- α -C6 and Gal- α -C6 were almost equal, but were less potent than Man- α -C6. On the other hand, the inhibitory effects of 4-ethoxy-compounds, such as Glc- α -C2, Glc- β -C2, Gal- α -C2 and Gal- β -C2, were minor.

From the present study, it is apparent that the recognitions of not only carbohydrate chains but also hydrophobic binding portion exist in an antigen-antibody reaction. Among the componds tested in the present investigation, Man- α -C6, Glc- α -C6 and Gal- α -C6 appear to be useful lead compounds in the development of new anti-allergic drugs. The anti-allergy actions of these compounds are now in progress.

Table I. Physical Properties of 4-Alkoxy-2,3,6-trimethylphenyl D-glycopyranosides

OH HO H₃C CH₃ HO
$$O$$
 H₃C CH₃ HO O CH₂)n-1CH₃

Man- α -Cn n=2,4,6

Glc-α-Cn n=2,6 Gal-α-Cn n=2,6

Glc- β -Cn n=2,6 Gal- β -Cn n=2,6

Compound	n	mp (℃)	Yield (%)	$\left[lpha ight]_{\mathrm{D}}^{20^{a)}}$	NMR (ppm) ^{b)}	
					¹ H	¹³ C
Man-α-C2	. 2	145-146	35	+ 89	5.62	105.5
Man-α-C4	4	184-183	37	+ 90	5.62	105.3
Man-α-C6	6	180-183	29	+ 87	5.61	105.5
Glc-α-C2	2	168-170	15	+ 121	5.75 (d, J=3.9Hz)	102.9
Glc-\alpha-C6	6	143-145	19	+ 124	5.76 (d, J=3.9Hz)	103.0
Glc-β-C2	2	203-205	36	- 4.9	5.26 (d, J=7.2Hz)	106.2
Glc-β-C6	6	132-135	35	- 5.8	5.26 (d, J=7.2Hz)	106.4
Gal-α-C2	2	202-205	20	+ 121	5.83 (d, J = 4.0 Hz)	103.3
Gal-α-C6	6	145-148	18	+ 125	5.83 (d, J=4.0Hz)	103.4
Gal-β-C2	2	204-207	35	- 3.2	5.19 (d, J=7.8Hz)	106.1
Gal-β-C6	6	156-157	34	- 5.1	5.19 (d, J=7.8Hz)	106.1

a) Determined in methanol (c=1).

b) Chemical shifts of anomeric center measured in pyridine- d_5

Table II. Inhibitory Effects of 4-Alkoxy-2,3,6-trimethylphenyl D-glycopyranosides on Histamine Release from Rat Peritoneal Mast Cells Induced by Antigen-Antibody Reaction

	Conc.	Inhibition		Conc.	Inhibition
Compd.	(M)	(%)	Compd.	(M)	(%)
		2.6	Glc-β-C2	1x10 ⁻⁵	2.1
2,4,6-Trimethylphenyl	1x10 ⁻⁴	3.6		1×10^{-4}	1.8
α-D-mannopyranoside	$1x10^{-3}$	56.1	Glc-β-C6	1x10 ⁻⁵	6.5
Man-α-C2	1×10^{-5}	13.0		1x10 ⁻⁴	28.4
	1×10^{-4}	50.0	Gal-α-C2	1x10 ⁻⁵	3.7
Man-α-C4	1x10 ⁻⁶	9.2		1x10 ⁻⁴	10.3
	1×10^{-5}	32.3	Gal-α-C6	1x10 ⁻⁶	33.7
	1×10^{-4}	87.1		1x10 ⁻⁵	69.2
Man-α-C6	$1x10^{-6}$	50.2		1x10 ⁻⁴	93.6
	1x10 ⁻⁵	91.4	Gal-β-C2	1x10 ⁻⁵	2.1
Glc- α -C2	1×10^{-5}	5.5	0 iii p 0 2	1×10^{-4}	1.8
	1×10^{-4}	6.5	Gal-β-C6	1x10 ⁻⁶	14.3
Glc-\alpha-C6	1x10 ⁻⁶	32.3		1x10 ⁻⁵	29.4
	1x10 ⁻⁵	75.4		1x10 ⁻⁴	48.1

REFERENCES

- 1) S. Kochwa, W. D. Terry, J. D. Capra, N. L. Yang, Ann. N. Y. Acad. Sci., 190, 47 (1971).
- 2) A. M. Magro, Nature, 249, 572 (1974).
- 3) R. Keller, Clin. Exp. Immunol., 13, 139 (1973).
- 4) T. C. Wang, H. Kakegawa, H. Matsumoto, T. Satoh, Biol. Pharm. Bull., 17, 93 (1994).
- 5) B. Helferich, Ber., 77, 194 (1944).
- 6) J. K. Dale, J. Am. Chem. Soc., 51, 2788 (1929).
- 7) K. Taniguchi, Jpn. Patent, 85, 215, 643 (1985).

(Received February 17, 1994; accepted February 23, 1994)