SYNTHESIS AND GLYCOSYLATION SHIFT OF 1,1'-DISACCHARIDES

Mugio NISHIZAWA,* Shinichi KODAMA, Yoshie YAMANE, Kiyoko KAYANO, Susumi HATAKEYAMA, and Hidetoshi YAMADA

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

Nineteen kinds of nonreducing 1,1'-disaccharides have synthesized by modified Koenigs-Knorr method, and characterized by NMR. The glycosylation shift of each anomeric carbon has been estimated.

KEYWORDS 1,1'-disaccharide; Trehalose; Koenigs-Knorr glycosylation; glycosylation shift

 α,α -Trehalose (1) is a nonreducing naturally occurring 1,1'-disaccharide distributed in the plant, fungi, yeast, red alga, lichen, and insect kingdoms.¹⁾ Although 1 and its stereoisomers were synthesized a long time ago,²⁾ only a few other 1,1'-disaccharides have been recorded so far. Recently enzymatic transfers of D-galactose to the anomeric positions of *N*-acetylgentosamine³⁾ and *N*-acetylkanos-amine⁴⁾ were reported. Conformation of β,β -trehalose in solutiohn was also discussed recently.⁵⁾ In the synthesis of sweet saponin, osladin,⁶⁾ we noted that most of the modern glycosylation procedures are not useful to prepare glycosides of hemiacetals, and classic Koenigs-Knorr glycosylation is the method of choice for this purpose.⁷⁾ Therefore we have prepared nineteen kinds of 1,1'-disaccharide by means of AgOTf catalyzed glycosylation of hemiacetals with glycosyl chlorides, and the stereochemistries were characterized by ¹³C NMR. By the comparison of the chemical shifts of anomeric carbons with those of mother hemiacetals, we found that the glycosylation shift discussed for alcohols (*RR* or *SS* combination results in a smaller shift, while *SR* combination induces larger $\Delta\delta$) is equally applicable for the glycosylation shift of hemiacetals.^{8,9)}

Condensation of two D-glucose units was achieved as follows. A mixture of 2,3,4,6-tetra-O-benzyl-D-glucose (**4a**), 2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl chloride (**4b**) (1.5 eq), AgOTf (1.5 eq), tetramethylurea (hereafter TMU, 1.5 eq), and molecular sieves 4A in dichloromethane was stirred at room temperature for 3 h, providing disaccharides after silica gel column chromatography. Further purification by HPLC (Nomura D-Sil-5 column, 20 x 250 mm, hexane-ethyl acetate 8:1 as eluant) afforded $\alpha\alpha$ isomer **1b**, $[\alpha]_D^{24} + 82^\circ$ (c 0.7, CHCl₃) in 24% yield, along with $\alpha\beta$ isomer **2b**, $[\alpha]_D^{24} + 46^\circ$ (c 1.9, CHCl₃) in 59% yield, and $\beta\beta$ isomer **3b**, $[\alpha]_D^{22} + 16^\circ$ (c 0.4, CHCl₃) in 9% yield. Stereochemistries of the products were assigned by the chemical shifts and coupling constants (J_{CH}) of their anomeric center of 13 C NMR, as shown in parentheses on each structure. Debenzylation of **1b**, **2b**, and **3b** under hydrogenolysis in the presence of Pd(OH)₂ in MeOH/EtOAc/H₂O 12:1:1 gave **1**, $[\alpha]_D^{21} + 97^\circ$ (c 0.4, CH₃OH), **2**, $[\alpha]_D^{21} + 60^\circ$ (c 0.5, CH₃OH), and **3**, $[\alpha]_D^{21}$

© 1994 Pharmaceutical Society of Japan

-13° (c 0.2, CH₃OH), respectively. Anomeric carbons chemical shifts with J_{CH} of free 1,1'-disaccharides are also shown on each structure. Coupling reaction between **5a** and **5b** under the same conditions afforded xylose/xylose analogues **7b**, $[\alpha]_D^{23}$ +86° (c 0.6, CHCl_{3}), **8b**, $[\alpha]_{D}^{20}$ +41° (c 1.3, CHCl_{3}), and **9b**, $[\alpha]_{D}^{22}$ -5° (c 0.7, CHCl_{3}), in 30%, 53%, and 18% yield, respectively. Rhamnose/rhamnose anologs 10b, $\left[\alpha\right]_{D}^{20}$ -50° (c 1.4, CHCl₃), and 11b, $\left[\alpha\right]_{D}^{24}$ -0.5° (c 1.1, CHCl₃), were also prepared from **6a** and **6b** by the same operations in 65% and 33% yields, respectively. Upon reaction of 4b with 5a, mixed 1,1'-disaccharides 12b, 13b, and 14b were obtained. Glucose/rhamnose series 15b-18b, as well as xylose/rhamnose disaccharides 19b-22b were also prepared. Catalytic hydrogenolysis of **7b-11b** afforded disaccharides **7**, $[\alpha]_D^{21}$ +298° (c 0.1, CH₃OH), **8**, $[\alpha]_D^{21}$ +20° (c 0.1, CH₃OH), **9**, $[\alpha]_D^{21}$ -17° (c 0.4, CH₃OH), **10**, $[\alpha]_D^{19}$ -64° (c 0.8, CH₃OH), and **11**, $[\alpha]_D^{18}$ -15° (c 1.0, CH₃OH) quantitatively. Upon analogous hydrogenolysis of **12b-22b**, mixed 1,1'-disaccharides **12**, $[\alpha]_D^{21}$ +74° (c 0.3. CH₃OH), **13**, $[\alpha]_D^{21}$ +84° (c 0.7, CH₃OH), **14**, $[\alpha]_D^{21}$ -5° (c 0.5, CH₃OH), **15**, $[\alpha]_D^{-18}$ +9° (c 0.5, CH₃OH), and **16**, $[\alpha]_D^{-20}$ +37° (c 0.2, CH₃OH), **17**, $[\alpha]_D^{-20}$ +122° (c 1.0, CH₃OH), **18**, $[\alpha]_D^{-21}$ +19° (c 0.2, CH₃OH), **19**, $[\alpha]_D^{21} + 12^\circ$ (c 0.7, CH₃OH), **20**, $[\alpha]_D^{21} - 57^\circ$ (c 0.4, CH₃OH), **21**, $[\alpha]_D^{20} + 59^\circ$ (c 0.2, CH₃OH), and **22**, $[\alpha]_D^{20} + 15^\circ$ (c 0.2, CH₃OH), and **22**, $[\alpha]_D^{20} + 15^\circ$ (c 0.2, CH₃OH), and **26**, $[\alpha]_D^{20} + 15^\circ$ (c 0.2, CH₃OH), and **27**, $[\alpha]_D^{20} + 15^\circ$ (c 0.2, CH₃OH), and **29**, $[\alpha]_D^{20} + 15^\circ$ (c 0.2, CH₃OH), and $[\alpha]_D^{20$ CH₃OH), were prepared, respectively. Each chemical shift value of anomeric carbon shown on the structure is compared with those of mother free hemiacetals 23-28 as well as benzyl protected hemiacetals 23b-28b. The results are summarized in Table I, in which the Ror S represents each stereochemistry of corresponding mother hemiacetals. RR or SS disaccharides showed smaller shift (less than 3.5 ppm), while SR disaccharides induced larger $\Delta\delta$ value (more than 4 ppm). This tendency is the same as that observed for a variety of optically active alcohols.^{8,9)}

Table I. Glycosylation Shift ($\Delta\delta$) of 1,1'-Disaccharide

Table I. Glycosylation Shift (\(\Delta\)) of 1,1-Disacchange					
R-R	S-S	S-R	R-R	S-S	S-R
$glc(\beta)-glc(\beta)$ (3b)	$glc(\alpha)-glc(\alpha)$ (1b)	$glc(\alpha)$ - $glc(\beta)$ (2b)	$glc(\beta)-glc(\beta)$ (3)	$glc(\alpha)-glc(\alpha)$ (1)	$glc(\alpha)-glc(\beta)$ (2)
+1.9 +1.9	+3.4 +3.4	+8.4 +6.8	+1.7 +1.7	+1.5 +1.5	+7.8 +6.5
$xyl(\beta)-xyl(\beta)$ (9b)	$xyl(\alpha)$ - $xyl(\alpha)$ (7b)	$xyl(\alpha)-xyl(\beta)$ (8b)	$xyl(\beta)-xyl(\beta)$ (9)	$xyl(\alpha)-xyl(\alpha)$ (7)	$xyl(\alpha)-xyl(\beta)$ (8)
+1.9 +1.9	+2.8 +2.8	+7.3 +6.7	+1.9 +1.9	+2.1 +2.1	+8.7 +6.9
$rha(\alpha)-rha(\alpha)$ (10b)		$rha(\beta)$ - $rha(\alpha)$ (11b)	$rha(\alpha)-rha(\alpha)$ (10)		$rha(\beta)$ - $rha(\alpha)$ (11)
+1.0 +1.0		+6.6 +6.4	+1.4 +1.4	!	+5.7 +6.6
$\left \operatorname{glc}(\beta) - \operatorname{xyl}(\beta) (\mathbf{14b}) \right $	$glc(\alpha)$ -xyl(α) (12b)	$glc(\alpha)$ -xyl(β) (13b)	$glc(\beta)$ - $xyl(\beta)$ (14)	$glc(\alpha)-xyl(\alpha)$ (12)	$glc(\alpha)$ -xyl(β) (13)
+1.8 +2.1	+3.0 +3.0	+8.0 +7.1	+2.3 +1.1	+1.8 +1.8	+7.5 +6.3
$\operatorname{glc}(\beta)$ -rha(α) (16b)	$glc(\alpha)$ -rha(β) (17b)	$glc(\alpha)$ -rha(α) (15b)	$\operatorname{glc}(\beta)\operatorname{-rha}(\alpha)$ (16)	$glc(\alpha)$ -rha(β) (17)	$\operatorname{glc}(\alpha)\operatorname{-rha}(\alpha)$ (15)
-0.3 +1.5	+2.2 +2.8	+5.4 +6.8	+0.3 +2.7	+2.4 +1.0	+6.4 +8.1
		$rha(\beta)-glc(\beta)$ (18b)			rha(β)-glc(β) (18)
ľ		+7.4 +5.3			+5.6 +4.0
$xyl(\beta)$ -rha(α) (20b)	$xyl(\alpha)$ -rha(β) (21b)	$xyl(\alpha)$ -rha(α) (19b)	$xyl(\beta)$ -rha(α) (20)	$xyl(\alpha)$ -rha(β) (21)	$xyl(\alpha)$ -rha(α) (19)
-0.1 +1.5	+2.3 +2.9	+5.1 +6.6	+0.4 +2.8	+2.6 +1.1	+5.9 +7.7
		$rha(\beta)$ - $xyl(\beta)$ (22b)			$ rha(\beta)-xyl(\beta) (\mathbf{22b})$
		+7.8 +5.7			+6.0 +4.7

ACKNOWLEDGMENT We are grateful for financial aid from Ono Pharmaceutical Co. Ltd.

REFERENCES

- 1) N. K. Richtmyer, Method Carbohydr. Chem., 1, 370 (1962).
- 2) H. Bredereck, G. Höschele, K. Ruck, Chem. Ber., 86, 1277 (1953).
- 3) Y. Nishida, T. Wiemann, J. Thiem, Tetrahedron Lett., 33, 8043 (1992).
- 4) Nishida, Y.; Wiemann, T.; Sinnwell, V.; Thiem, J. J. Am. Chem. Soc., 115, 2536 (1993).
- 5) C. A. Duda, E. S. Stevens, J. Am. Chem. Soc., 115, 8487 (1993).
- 6) H. Yamada, M. Nishizawa, C. Katayama, Tetrahedron Lett., 33, 4009 (1992).
- 7) H. Yamada, M. Nishizawa, SYNLETT, 1993, 54.
- 8) S. Seo, Y. Tomita, K. Tori, Y. Yoshimura, J. Am. Chem. Soc., 100, 3331 (1978).
- 9) R. Kasai, M. Okihara, J. Asakawa, K. Mizutani, O. Tanaka, *Tetrahedron*, **1979**, **35**, 1427 (1979).

(Received January 17, 1994; accepted March 4, 1994)