982 Communications to the Editor Chem. Pharm. Bull. 42(4) 982—984 (1994) Vol. 42, No. 4

SYNTHESIS AND GLYCOSYLATION SHIFT OF 1,1'-DISACCHARIDES

Mugio NISHIZAWA,* Shinichi KODAMA, Yoshie YAMANE, Kiyoko KAYANO, Susumi HATAKEYAMA, and
Hidetoshi YAMADA

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

Nineteen kinds of nonreducing 1,1'-disaccharides have synthesized by medified Koenigs-Knorr method,
and characterized by NMR. The glycosylation shift of each anomeric carbon has been estimated.
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a,,0-Trehalose (1) is a nonreducing naturally occurring 1,1'-disaccharide distributed in the plant, fungi, yeast, red alga, lichen,
and insect kingdoms.” Although 1 and its stereoisomers were synthesized a long time ago,? only a few other 1,1'-disaccharides have
been recorded so far. Recently enzymatic transfers of D-galactose to the anomeric positions of N-acetylgentosamine” and N-
acetylkanos-amine") were reported. Conformation of 3,8-trehalose in solutiohn was also discussed recently.” In the synthesis of sweet
saponin, osladin,® we noted that most of the modern glycosylation procedures are not useful to prepare glycosides of hemiacetals, and
classic Koenigs-Knorr glycosylation is the method of choice for this purpose.” Therefore we have prepared nineteen kinds of
1,1'-disaccharide by means of AgOTf catalyzed glycosylation of hemiacetals with glycosyl chlorides, and the stereochemistries were
characterized by *C NMR. By the comparison of the chemical shifts of anomeric carbons with those of mother hemiacetals, we found
that the glycosylation shift discussed for alcohols (RR or SS combination results in a smaller shift, while SR combination induces larger

AJ) is equally applicable for the glycosylation shift of hemiacetals.*”
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Condensation of two D-glucose units was achieved as follows. A mixture of 2.3,4,6-tetra-O-benzyl-D-glucose (4a), 2,3,4,6-
tetra-O-benzyl-o.-D-glucopyranosyl chloride (4b) (1.5 eq), AgOTf (1.5 eq), tetramethylurea (hereafter TMU, 1.5 eq), and molecular
sieves 4A in dichloromethane was stirred at room temperature for 3 h, providing disaccharides after silica gel column chromatography.
Further purification by HPLC (Nomura D-Sil-5 column, 20 x 250 mm, hexane-ethyl acetate 8:1 as eluant) afforded oo isomer 1b, [a] >
+82° (¢ 0.7, CHCL,) in 24% yield, along with o isomer 2b, [al,? +46° (¢ 1.9, CHCL,) in 59% yield, and B isomer 3b, [o]p2 +16° (¢
0.4, CHCL,) in 9% yield. Stereochemistries of the products were assigned by the chemical shifts and coupling constants (J ) of their
anomeric center of °C NMR, as shown in parentheses on each structure. Debenzylation of 1b, 2b, and 3b under hydrogenolysis in the
presence of Pd(OH), in MeOH/EtOAc/H,0 12:1:1 gave 1, [0],2' +97° (¢ 0.4, CH,0H), 2, [0],2 +60° (¢ 0.5, CH,0H), and 3, (o]
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-13° (¢ 0.2, CH,OH), respectively. Anomeric carbons chemical shifts with Jg, of free 1,1'-disaccharides are also shown on each
structure. Coupling reaction between 5a and 5b under the same conditions afforded xylose/xylose analogues 7b, (o], +86° (¢ 0.6,
CHCI,), 8b, [a],° +41° (¢ 1.3, CHCl,), and 8b, [0 -5° (¢ 0.7, CHCL,), in 30%, 53%, and 18% yield, respectively. Rhamnose/rhamnose
anologs 10b, [0],2 -50° (¢ 1.4, CHCl,), and 11b, [a],2* -0.5° (¢ 1.1, CHCL,), were also prepared from 6a and 6b by the same
operations in 65% and 33% yields, respectively. Upon reaction of 4b with 5a, mixed 1,1'-disaccharides 12b, 13b, and 14b were
obtained. Glucose/thamnose series 15b-18b, as well as xylose/rhamnose disaccharides 19b-22b were also prepared. Catalytic
hydrogenolysis of 7b-11b afforded disaccharides 7, [a)y” +298° (¢ 0.1, CH,OH), 8, [a]p” +20° (¢ 0.1, CH,0OH), 9, o], -17° (¢ 0.4,
CH,OH), 10, [a],” -64° (¢ 0.8, CH,OH), and 11, [0, -15° (¢ 1.0, CH,OH) quantitatively. Upon analogous hydrogenolysis of
12b-22b, mixed 1,1'-disaccharides 12, [o],> +74° (¢ 0.3. CH,0H), 13, [o],” +84° (¢ 0.7, CH,OH), 14, [o]y” -5° (¢ 0.5, CH,OH),
15, [o],® +9° (¢ 0.5, CH,OH), and 16, [a],” +37° (c 0.2, CH;0H), 17, (o] +122° (¢ 1.0, CH,OH), 18, [a]” +19° (¢ 0.2,
CH,OH), 19, [a],” +12° (¢ 0.7, CH;0H), 20, [a]," -57°(c 0.4, CH,OH), 21, [a],® +59° (¢ 0.2, CH,OH), and 22, [a],” +15° (c 0.2,
CH,OH), were prepared, respectively. Each chemical shift value of anomeric carbon shown on the structure is compared with those of
mother free hemiacetals 23-28 as well as benzyl protected hemiacetals 23b-28b. The results are summarized in Table I, in which the R
or S represents each stereochemistry of corresponding mother hemiacetals. RR or SS disaccharides showed smaller shift (less than 3.5
ppm), while SR disaccharides induced larger AS value (more than 4 ppm). This tendency is the same as that observed for a variety of

optically active alcohols.””

Table 1. Glycosylation Shift (A) of 1,1'-Disaccharide

R-R S-S S-R R-R S-S S-R
gle(B)-gle(B) (3b) | glo(o-gle(o) (1b) | gle(oy-gle(B) (2b) gle(B)-gle(B) (3) | gle(a)-gle(a) (1) | gle(o)-gle(B) (2)
+1.9 +1.9 +3.4 +3.4 +8.4 +6.8 +1.7  +1.7 +1.5  +1.5 +7.8 +6.5
xyl(B)-xyl(®) (9b) | xyl(o)-xyl(@) (7b) | xyl(c)-xyl(B) (8b) xyl(B)-xyl(B) (9 xyl(o)-xyl() (7) xyl(a)-xyl(B) (8)
+1.9 +19 +2.8 +2.8 +7.3  +6.7 +1.9 +19 +2.1  +2.1 +8.7 +6.9
rha(a)-rha(o) (10b) rha(B)-rha(ot) (11b) rha(o)-rha(o) (10) rha(f)-rha(or) (11)
+1.0 +1.0 +6.6 +6.4 +1.4 +14 +5.7 +6.6
gle(B)-xyl(B) (14b) | gle(a)-xyl(o) (12b) | gle(c)-xyl(B) (13b) gle(B)-xyl(B) (14) | gle(a)-xyl(o) (12) | gle(a)-xyl(B) (13)
+1.8  +2.1 +3.0 +3.0 +8.0 +7.1 +2.3  +1.1 +1.8  +1.8 +7.5 +6.3
glc(B)-rha(o) (16b) | glc(a)-rha(B) (1 7b) | glc(o)-rha(o) (15b) - glc(B)-rha(ar) (16) | glc(a)-rha(B) (17) glc(o)-rha(o) (15)
03 +1.5 +2.2  +2.8 +5.4 +6.8 +0.3  +2.7 +2.4  +1.0 +6.4  +8.1

rha(B)-gle(B) (18b) rha(B)-gle(B) (18)
+7.4 +53 +5.6 +4.0
xyl(B)-rha(ar) (20b) | xyl(or)-rha(P) (21 b) | xyl(a)-rha(o) (19b) xyl()-rha(e) (20) xyl(o)-rha(B) (21) | xyl(ow)-rha(ar) (1 9)
0.1  +1.5 +2.3 429 +5.1 +6.6 +0.4 +2.8 +2.6 +1.1 +59 +1.7
rha(B)-xyl(B) (22b) rha(B)-xyl(B) (22b)
+7.8  +5.7 +6.0 +4.7
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