STRUCTURE OF FUROBINORDENTATIN, A NOVEL BICOUMARIN FROM CITRUS YUKO Yuko TAKEMURA,^a Motoharu JU-ICHI,*,^a Kenichiro HATANO,^b Chihiro ITO,^c and Hiroshi FURUKAWA*,^c Faculty of Pharmaceutical Sciences, Mukogawa Women's University, ^a Nishinomiya, Hyogo 663, Japan, Faculty of Pharmaceutical Sciences, Nagoya City University, ^b Mizuho, Nagoya 467, Japan, and Faculty of Pharmacy, Meijo University, ^c Tempaku, Nagoya 468, Japan The structure of furobinordentatin, isolated from the root of *Citrus yuko* (Rutaceae), has been elucidated by spectroscopic studies and a single crystal X-ray analysis as 1. Furobinordentatin is a novel type of bicoumarin composed of two nordentatin (2) units linked with the forming of a dihydrofuran ring. KEYWORDS bicoumarin; furobinordentatin; Citrus yuko; Rutaceae; dimer; crystal structure Many new coumarins and acridone alkaloids have been isolated from *Citrus* plants.¹⁾ In particular, novel type acridone-coumarin dimers (acrimarines²⁾ and neoacrimarines³⁾) and bicoumarins⁴⁾ were characteristic constituents of *Citrus* plants. As part of our studies on the constituents of this family,¹⁾ we studied the constituents of the root of *C. yuko* Hort. ex Tanaka⁵⁾ (Rutaceae) and isolated a novel bicoumarin, named furobinordentatin (1). This paper deals with the structure elucidation of this new bicoumarin on the basis of spectroscopic data and X-ray crystal analysis. Furobinordentatin (1), mp 225-227 $^{\circ}$ C was obtained as racemic colorless cubes (from acetone) in $2.9x10^{-6}\%$ yield. The molecular formula $C_{38}H_{40}O_{9}$ [M+ 640.2675. Calcd. 640.2672] was established by HR-MS. The UV [$\lambda_{max}(EtOH)$: 228 (sh), 265, 283 and 329 nm] and IR [ν_{max} (CHCl3): 1720 and 1625 cm⁻¹] absorptions indicated the presence of a 5,7-dioxygenated coumarin nucleus. $^{6)}$ The 1 H and 13 C-NMR spectra including 1 H- 1 H COSY and HMQC technique indicated the presence of two pairs of characteristic signals of H-4 and H-3 δ H 8.19, 6.19, 8.03, 6.12 (each 1H, d, J=9.5~Hz)] of coumarin skeleton, two geminal dimethyls [δ_H 1.43, 1.22, 1.46, 1.58 (each 3H, s)], and two 1,1-dimethylallyl groups [δ_{H} 6.23, 6.22 (each 1H, dd, J= 11.0, 17.6 Hz), 4.84 (1H, d, J= 17.6 Hz), 4.82 (1H, d, J= 11.0 Hz), 4.81 (1H, d, J= 17.6 Hz), 4.80 (1H, d, J= 11.0 Hz), 1.61, 1.58 (each 3H, s), 1.57 (6H, s)]. The partial structure of -(O)-C(11)H-C(10)H-C(10')H-C(11')-(O)- was shown by the four proton signals [δ_H 4.72 (1H, d, J=11.0 Hz), 1.90 (1H, dd, J=8.1, 11.0 Hz), 2.70 (1H, t, J=8.1 Hz), 5.17 (1H, d, J=8.1 Hz) Hz)] and four carbon signals [δ C 73.86, 52.08, 45.60, 74.40]. In HMBC spectrum, 2 J and 3 J correlations were observed for H-11' (δ_H 5.17)/C-6' (δ_C 106.61), C-7' (δ_C 155.23), C-9' (δ_C 77.87) and C-10' (δ_C 45.60), which indicated the linear orientation of pyranocoumarin nucleus. Treatment of 1 with diazomethane afforded O,O'dimethylether (3). In NOE experiment on 3, irradiation of the methoxy signal at δ 4.12 showed increments on the signal at δ 7.93 (H-4') and 5.13 (H-11') and irradiation the signal at δ 3.75 showed increments on the signal at δ 7.87 (H-4) and 4.69 (H-11), supporting the estimation of the linear orientations of two pyranocoumarin nuclei. The NOEs were also observed between the signal at δ 5.13 (H-11'), 2.41 (H-10') and 4.69 (H-11) indicating the cis relationships of these three protons. On the basis of these results, the structure of furobinordentatin was assigned to 1 composed of two nordentatin $(2)^{7}$ units linked with the forming of dihydropyran ring. The complete structure and the relative stereochemistry were unequivocally established by X-ray analysis⁸⁾ as shown in Fig. 1. Furobinordentatin is the first bicoumarin linked with the forming of dihydrofuran ring between pyran ring of linear pyranocoumarin. **ACKNOWLEDGEMENTS** This work was supported in part by Grants-in-Aid from the Suzuken Memorial Foundation. ## REFERENCES AND NOTES - 1) Y. Takemura, T. Nakata, H. Uchida, M. Ju-ichi, K. Hatano, C. Ito, H. Furukawa, *Chem. Pharm. Bull.*, 41, 2061 (1993) and references cited therein. - 2) Y. Takemura, M. Inoue, H. Kawaguchi, M. Ju-ichi, C. Ito, H. Furukawa, M. Omura, *Heterocycles*, 34, 2363 (1992) - 3) Y. Takemura, T. Kurozumi, M. Ju-ichi, M. Okano, N. Fukamiya, C. Ito, T. Ono, H. Furukawa, *Chem. Pharm. Bull.*, 41, 1757 (1993). - 4) C. Ito, M. Nakagawa, M. Inoue, Y. Takemura, M. Ju-ichi, M. Omura, H. Furukawa, *Chem. Pharm. Bull.*, 41, 1657 (1993). - 5) The plant material was collected at Katsura (Tokushima Prefecture, Japan). The authors thank Mr. H. Nishino (Katsura Town Office) for collection of the plant material. - 6) R. D. H. Murray, J. Mendez, A. S. Brown, "The Natrural Coumarins", John Wiley & Sons, Inc., New York, 1982, p. 27. - 7) H. Fuhrer, T. R. Govindachari, B. S. Joshi, B. R. Pai, *Ind. J. Chem.*, 8, 198 (1970). - 8) Crystal data for 1. C₃₈H₄₀O₉, M= 640.7, triclinic, a=9.768 (1), b= 12.706 (1), c= 13.847 (3)Å³, α =80.79 (1), β = 81.87 (1), γ =82.07 (1)°, V= 1667 (4)Å³, Z=2, space group Pī, Dc=1.276 g/cm³. Data were collected on an Enraf-Nonius CAD4 diffractometer with graphite monochromated Mo K α radiation. The structure was solved by direct methods using MULTAN 82 and refined by least-squares techniques. All non-hydrogen atoms were refined with anisotropic thermal parameters. Final cycles of two-blocked matrix least-squares refinement were carried to convergence at R= 0.079. (Received February 3, 1994; accepted February 23, 1994)