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Complex Formation of Cyclo(L-Phe-L-Pro), with Noradrenaline
Hydrochloride
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The '*C-NMR spectrum of cyclo(L-Phe-L-Pro), (1) and pL-noradrenaline hydrochloride (pL-NA-HCI) in a
mixture of CDCl; and CD;OD suggested the formation of a complex, which was demonstrated to be 1:1 from
examination of the titration curves. The complex retained the C,-symmetric conformation of 1 containing two
cis-peptide bonds, and was linked through hydrogen bonds between the carbonyl groups of the Phe! and Pro? residues,

and the ammonium moiety of NA -HCI.
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Complexes between host and guest, such as the binding
of a substrate to its receptor, are common in biology.
Direct observation of their interactions is difficult owing
to the low molar concentration obtainable and the com-
plexity of protein structure. Therefore, we have sought
to design and synthesize artificial receptors using various
peptides.

Noradrenaline (NA), a neurotransmitter of post-
ganglionic neurons in the sympathetic nervous system,
binds to the f-adrenergic receptor. Even a small amount
of the L-enantiomer of NA has physiological activity.

This paper focuses on the complex formation of the
proline-containing cyclic peptide, cyclo(L-Phe-L-Pro),
(1) with noradrenaline hyrochloride (NA-HCI). The
Pro residue enhances the lipophilicity of the peptide and
allows a cis—trans isomerization of the peptide bond. The
latter feature increases the number of available con-
formations of the peptide, which should be favorable for
complex formation.

assigned to Pro'CO, Pro?CO, Phe?CO, and Phe!CO,
respectively (Table I).

A solution of leq of DL-NA-HCI (racemic form) in
CD;OD was added to a solution of 1 in CDCl,, and the
mixed solution was examined by *C-NMR measurement.
The spectrum displayed split signals for the following
carbons of DL-NA-HCIL: C,, C,, C,, C,, C;, and C, (Table
IT). The splitting of the asymmetric carbon C; (0.60 ppm)
was largest. Such spectra result from the formation of
diastereomeric pairs of complexes, i.e., the complexes of
1 with b-NA-HCI and L-NA-HCI. Previously Deber e?
al. reported similar diastereomeric pairs of complexes of
cyclo(Gly-L-Pro), (n=3 or 4) with b, L. mixtures of amino
acid salts in CDClj;, and the splitting of the *C-NMR
signals.?) A schematic representation of the complex of 1

TaBLE I. '3C-NMR Spectral Data (ppm) of Cyclo(L-Phe-L-Pro), (1)
[A], and of 1 in the Complex with NA -HCI [B]?

Carbon A B Carbon A B
Results and Discussion Pro' CO 172,60  172.49 ProC,  60.65  60.85
Cyclo(L-Phe-L-Pro), (1) was prepared previously and Pro’ CO  [71.77  172.31 Pro' C,  59.69  60.07
shown to take a C,-symmetric conformation containing Phe? CO 17152 171.52 Phe C, 5485 5520
two cis peptide bonds at Pro?® residues in CDCI; and ggc CCO }68?2 ig’z‘? Pro! C 451327%2 ig'gi
CD;0OD, with 14 intramolecular hydrogen bonds as < 122‘74 135'6; Proz C, 4683 4672
35. 5. ro* C; . .
shown in Fig. 3.7 We carried out *H-!3C long-range shift Phe C, 129.72 12978 Phe C, 38.00  37.85
correlation (COLOC) spectral analysis to elucidate the 128.89  129.11 3542 3527
assignment of the carbonyl carbon signals of 1 in the Phe C, 12861  128.95 Pro*C, 3060 3048
“*C-NMR spectrum (Fig. 1). Phe’NH, Pro’H,, Pro?H,, 5, L5460 186 ProiC, 244 29.54
and Pro’H; were correlated with Pro'CO, Pro2CO, T 12676 12697 Pro>C, 2153  21.53

Pro®CO, and Phe?CO, and the four carbonyl signals
appearing at 172.60, 171.77, 171.52, and 168.88 ppm were

TaBLe II. '3C-NMR Spectral Data of pL-NA -HCl in the Complex with Cyclo(L-Phe-L-Pro), (1)

a) The solvent was a mixture of CDCl; (500 ul) and CD;0OD (150 ul) in both cases.

Chemical shifts 6 (ppm) of bL-NA -HCI

Cyclic peptide

Form C, Cp C, C, C, C, Cy C,
No cyclic peptide 145.45 145.43 132.59 117.90 115.84 113.38 69.81 46.78
D 145.25 145.30 132.49 117.58 115.57 113.40 69.42 46.67
1 L 145.38 b 132.56 113.02 70.02 46.74

117.94 »

a) The solvent was a mixture of CDCI; (500 ul) and CD;0D (150 u41).  b) No splitting of the signal.
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Fig. 1. 'H-'3C COLOC Spectrum of Cyclo(L-Phe-L-Pro), (1)
The solvent was a mixture of CDCl; (500 ul) and CD;0OD (150 ul).
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Fig. 2. The Shifts of the Signals of the Carbonyl Carbons of
Cyclo(L-Phe-L-Pro), (1) in the '*C-NMR Spectra upon Addition of
L-NA-HCI '

The formation constant of the complex between 1 and L-NA - HCI was calculated
by a non-linear least-squares method as 1.260 x 10°M™ !, —@—, Pro?CQ; —&—,
Phe!CO; —[O—, Phe*CO; —[]—, Pro!CO.

with one enantiomer of bL-NA -HCI is shown in Chart 1.
It is suggested that the ammonium moiety of NA -HCI
is bound to the carbonyl groups of 1 through hydrogen
bonds in the cavity. Adrenaline hydrochloride did not
form such a complex, implying that the primary amine of
NA -HCl is necessary for the complex formation.

Table I shows '*C-NMR spectra of 1 in the free state
and as the complex with DL-NA-HCI in a mixture of
CDCl; and CD;OD. Little difference was apparent. It is
suggested that essentially no conformational change of
1 occurs upon complex formation, and 1 still takes a
C,-symmetric conformation containing two cis peptide
bonds in these solvents.

Figure 2 shows a plot of the changes of chemical shifts
of the carbonyl carbons of 1 in the 3C-NMR spectra vs.
the mole ratio of L-NA-HCI to 1. Saturation of each
titration curve is attained at a mole ratio of about 1:1.
Tt was suggested that the stoichiometry of the complex of
1 with L-NA-HCl is 1: 1. The formation constant of the
complex was calculated by a non-linear least-squares
method as 1.260 x 106 M ™. Furthermore, the shifts of the
signals of Pro*CO and Phe!CO are large, while those of
Phe?CO and Pro'CO are relatively small. This implies
that the hydrogen bonds were formed between the car-
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hydrogen bonds in the complex with rL-noradrenaline hydrochloride
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Fig. 3. The Positions of the Hydrogen Bonds in the Complex of Cyclo(L-Phe-L-Pro), (1) with L-NA-HCI

bonyl groups of Pro? and Phe! residues of 1, and the
ammonium moiety of L-NA -HCI (Fig. 3).

Experimental

13C-NMR and COLOC spectra were determined with a Bruker
AM-400 in a mixture of CDCl; and CD;OD at 25 °C using tetramethylsi
lane (TMS) as an internal standard.

Complex Formation of Cyclo(L-Phe-L-Pro), (1) with pL-NA-HCl A
solution of 1eq of DL-NA-HCI (racemic form) (3.085mg, 1.50x 10~°

mol) in CD;0D (150ul) was added to a solution of cyclo(L-Phe-L-Pro),
(1) (14.640 mg, 1.50 x 10~ mol) in CDCly (500 ul).
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