June 1994 Communications to the Editor Chem. Pharm. Bull. 42(6) 1373—1375 (1994) 1373

ASYMMETRIC [2+2] PHOTOCYCLOADDITION REACTION OF A CHIRAL DIOXOPYRROLINE TO 2-(TRIMETHYL-
SILYLOXY)BUTADIENE: CHIRAL SYNTHESIS OF ERYTHRINA ALKALOIDS!)
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The detailed stereochemical pathway of [2+2] photocycloaddition reaction of isoquinolinodioxopyrroline to 2-
(trimethylsilyloxy)butadiene was clarified by using an enantiomerically pure substrate. The photoadducts were con-
verted into the synthetic intermediates of Erythrina alkaloids, providing an efficient synthetic method in optically
active forms.
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[2+2] Photocycloaddition of dioxopyrroline to olefins has been intensively investigated to clarify factors controlling the stereo-
chemical pathway of the reaction.?) In this communication, we describe an asymmetric [2+2] photocycloaddition reaction of a
chiral isoquinolinodioxopyrroline to 2-trimethylsilyloxybutadiene, which not only revealed the detailed stereochemical outcome
of the above photocycloaddition reaction but also provided a new synthetic method of chiral Erythrina alkaloids.

The chiral dioxopyrroline (-)-1 of (5S)-configuration (mp 147-149°C, [a]p22 -73.0°) was prepared from L-DOPA in a similar
way as described in the synthesis of the corresponding methyl ester.3)

A solution of (-)-1 and 2-trimethylsilyloxybutadiene (2 mol eq) in dimethoxyethane (DME) was irradiated for 1 h at 0°C under
a high-pressure mercury lamp with a Pyrex filter (> 300 nm) to give the two adducts 24) (56%) and 34 (11%). The adducts
showed opposite Cotton effects ([6] +1100° at 378 nm for 2 and [6] -3600° at 375 nm for 3), suggesting that they are enantiomeric
concerning the stereochemistry of the cyclobutane ring juncture (C2a and C11b). The stereochemistry of the vinyl and OTMS
groups at C-1 was elucidated by the fact that adducts 2 and 3 showed similar chemical reactivities with that of the corresponding
photoadduct) which lacks 6-ethoxycarbonyl group; thus the vinyl and OTMS group are in exo- and endo-configuration, respec-
tively. The enantiomer excess (ee) of the adducts was determined as 20% for the major adduct (+)-26) and >99% for the minor
adduct (-)-36) from the respective diastereomer excess (de) observed in the 1H-NMR spectra of the derived (-)-(R)-a-methoxy-a.-
trifluoromethylphenylacetate 4 and 5 (Mosher's ester)”) which were prepared by the route shown in Chart 1. Their absolute stereo-
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chemistries were established by conversion into the known erythrinan derivatives®) described below (Chart 4).

The low ee of (+)-2 suggested that this cycloaddition accompanied epimerization of Cg-COOEt group in one of the product
(-)-3, which resulted in the enantiomer of (-)-2. In fact, the ee of 2 was found to largely depend on the reaction time. Short irradia-
tion (30 min) of (-)-1 and the diene (2 mol eq) at 0°C gave (+)-2 of 78% ee92) and (-)-3 of >99% ee in 57% and 16% yields, re-
spectively.

The more detailed pathway was evidenced from the following experiments. The dioxopyrroline (-)-1 was recovered without
any loss of its optical activity by irradiation in DME for 1 h. Irradiation of (-)-3 of >99% ee in DME at 0°C for 3 h gave ()-2 9b)
in 18% yield. The formation of the racemate indicated that (-)-3 underwent not only the epimerization of the Cg-COOEt group but
also cycloreversion of the cyclobutane ring and recombination of the formed (-)-1 with 2-trimethylsilyloxybutadiene. A similar ir-
radiation of (-)-3 in the presence of the diene (10 mol excess) gave (+)-2 of 88% ee, %) though the chemical yield was low (25%),
indicating that the cycloreversion-recombination process was accelerated in the presence of the excess diene.10) Irradiation of (+)-
2 of 70% ee under a similar condition slowly produced (-)-3 of 31% ee!12) in 10% yield with recovery of (+)-2 in 78% yield with-
out change of its ee. Similar irradiation of (+)-2 of 70% ee in the presence of the diene (10 mol excess) gave (-)-3 of 56% eel1b) in
10% yield with recovery of (+)-2 in 69% yield without loss of its ee. The partial racemization of (-)-3 in these reactions must be
due to the direct epimerization of (+)-2 to (+)-3, since, if (+)-3 were produced from (-)-2 through cycloreversion-recombination,
the ee of the recovered (+)-2 should decrease.

From the above results, the whole reaction process is depicted as shown in Chart 2, where steps shown by bold arrows were ob-
served in the photocycloaddition reaction of (-)-1 to the diene. Reaction rates of each step can be evaluated as k1 >ko>k3>k4>ks5>

kg: in these, cycloaddition is greatly accelerated by the presence of the excess diene, since the reaction is bimolecular.
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Accepting the above scheme, the face selectivity (k1/k2) of the diene to (-)-1 in the photocycloaddition was estimated approxi-
mately as 2.5 (which is suggested by the early stage ratio of (+)-2 vs. (-)-3), indicating that the 3-face addition is more favorable
than the a-face addition, the result being in distinct contrast to Diels-Alder cycloaddition3) of the diene to the same substrate,
where the a-face addition was exclusively observed under high pressure conditions. Thus, the major path of the photochemical
step may be explained by assuming that (-)-1 reacts to the diene by taking the COOEt equatorial conformation (A), where the
aromatic ring is appreciably twisted from the average plane toward the a-face (dihedral angle of C1-C10b-C10a-C10 is ca. -31°),
giving steric hindrance for approaching the diene from a-face (Chart 3). Although (-)-1 takes the COOE:t axial conformation (B)
(in which the corresponding dihedral angle is ca. +23°) at the ground state (X-ray analysis),3) the calculated steric energy differ-
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ence between A and B is small (0.6 kcal/mol).12) Preferentially the reaction from A gives (+)-2 and that from B gives (-)-3 with a
ratio of 2.5:1.

Photoadducts (+)-2 and (-)-3 were converted into synthetic intermediates of Erythrina alkaloids without loss of their ee. A solu-
tion of (+)-2 of 20% ee in toluene was heated under reflux at 120°C for 2 h and the crude pyrolysate was treated with ethylene
glycol in CH2Cl catalyzed by BF3+Et70 at room temperature to give the ketal 613)(71% from 2). Reduction of 6 with NaBHy in
ethanol gave the alcohol 713) (100%), which afforded the ketone 813) (70%) by deacetalization. Similarly, (-)-3 of >99% ee was
converted into the acetal 1013) (86% from 3), the alcohol 1113) (84%), and then the ketone 1213) (95%). Erythrinans 8 and 12
were identical with the authentic samples obtained by an intramolecular cyclization method8) in the spectral data and TLC behav-
ior except for optical rotations. The derived Mosher's esters (9 and 13) were of 20% and >99% de, respectively. Thus the present

synthesis provides a new method to synthesize Erythrina alkaloids in optically active forms.
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