Synthesis and Structure–Activity Relationships of New (5R,8R,10R)Ergoline Derivatives with Antihypertensive or Dopaminergic Activity¹⁾

Sachio Ohno,* Yuko Adachi (née Ebihara), Masayuki Koumori, Kiyoshi Mizukoshi, Mitsuaki Nagasaka, Kenji Ichihara, and Ei-ichi Kato

Research Laboratories, Maruko Seiyaku Co., Ltd., 1212 Teramae, Gejo-cho, Kasugai, Aichi 486, Japan. Received January 24, 1994; accepted March 10, 1994

A series of new (5R,8R,10R)-ergoline derivatives was synthesized, and their antihypertensive and dopaminergic activities were tested in conscious spontaneously hypertensive rats and in rats with unilateral 6-hydroxydopamine-induced lesions of the substantia nigra. (5R,8R,10R)-6-Alkyl-8-ergolinemethanols, prepared from the corresponding ergolinecarboxylates, were converted to the tosylates, which were treated with various five-membered heterocycles containing nitrogen atoms to afford the new ergolines. (5R,8R,10R)-8-(1,2,4-Triazol-1-ylmethyl)-6-methylergoline (4s, maleate: BAM-1110) exhibited potent dopaminergic activity, about 18-fold greater than that of bromocriptine mesylate. (5R,8R,10R)-8-(1,2,4-Triazol-1-ylmethyl)-6-propylergoline (8b, fumarate: BAM-1602) showed extremely potent dopaminergic activity, being about 220 and 1.15 times more active than bromocriptine mesylate and pergolide mesylate, respectively. Several compounds exhibited potent antihypertensive activity. Structure-activity relationships for antihypertensive and dopaminergic activities are discussed.

Keywords antihypertensive; dopaminergic; structure-activity relationship; ergoline; BAM-1110; BAM-1602

Dihydroergotoxine has been clinically employed for patients with cerebral and peripheral circulatory disturbances. This compound possesses weak hypotensive activity²⁾ and so has also been utilized as an antihypertensive. Bromocriptine³⁾ and pergolide,⁴⁾ dopamine D₂ receptor agonists, have been used in the therapy of Parkinson's disease, acromegaly, and hyperprolactinemia. Pergolide shows extremely potent D₂ receptor agonistic activity. These compounds have been reported to exhibit moderate antihypertensive activity in animals and

humans.⁵⁾ Cianergoline⁶⁾ and FCE 22716,⁷⁾ synthesized as antihypertensives, have relatively potent activities in animals.

Pergolide, dihydroergotoxine, cianergoline, and FCE 22716 contain the ergoline skeleton, while bromocriptine has the ergolene skeleton. It is known that these ergotrelated compounds sometimes show undesirable side effects, 8) such as nausea and vomiting, which could limit their clinical use.

We synthesized a series of new ergolines, hoping to find

 $Pr^{i} = iso-Pr, Bu^{i} = iso-Bu, Bu^{s} = sec-Bu$

Fig. 1
© 1994 Pharmaceutical Society of Japan

compounds with potent antihypertensive or dopaminergic activity and with weaker side effects. In this paper we describe the synthesis and structure–activity relationships of these new ergoline derivatives.

Chemistry

Methyl (5R,8R,10R)-8-ergolinecarboxylates $(1a-e)^{9}$ were reduced with NaBH₄ in a mixture of methanol and water or LiAlH₄ in tetrahydrofuran (THF) to afford the

methanols $(2\mathbf{a}-\mathbf{e})^{11}$ in good yields. The methanols $2\mathbf{a}-\mathbf{e}$ were converted to (5R,8R,10R)-8-ergolinylmethyl tosylates $(3\mathbf{a}-\mathbf{e})^{13}$ by treatment with *p*-toluenesulfonyl chloride (TsCl) in pyridine. The tosylates $(3\mathbf{a}-\mathbf{e})$ were treated with the sodium salts of various five-membered heterocycles containing nitrogen in N,N-dimethylformamide (DMF) to yield the desired new (5R,8R,10R)-ergoline derivatives (4-8).

TABLE I. Physical Properties of (5R,8R,10R)-8-Methylergolines (4-8)

Compd. No.	R¹	\mathbb{R}^2	NX ₄	Yield (%)	mp (°C)	Formula		nalysis (lcd (Fou	
				(1.1)	Recryst. solv.		C	Н	N
4 a	Н	Me	N^N └──	58	>260 (dec.) EtOH	$C_{19}H_{22}N_4$	74.48 (74.58	7.24 7.57	18.29 18.02)
4b	Н	Me	Me N N	51	>300 (dec.) EtOH	$C_{20}H_{24}N_4$	74.97 (74.71	7.55 7.83	17.48 17.16)
4c	Н	Me	Et N N	61	235—238 MeOH-iso-PrOH	$C_{21}H_{26}N_4$	75.41 (75.03	7.84 7.86	16.75 16.84)
4d	Н	Me	Pr N N	41	223—237 (dec.) Me ₂ CO–hexane	$C_{22}H_{28}N_4$	75.82 (75.61	8.10 8.12	16.08 15.82)
4e	н	Me	iso-Pr N N	49	282—288 (dec.) MeOH-iso-PrOH	$C_{22}H_{28}N_4$	75.82 (76.21	8.10 8.39	16.08 16.25)
4 f	Н	Me	Ph N N	66	193—195 CH ₂ Cl ₂ –AcO iso-Pr	C ₂₅ H ₂₆ N ₄ ·1/2H ₂ O	76.70 (76.79	6.95 6.77	14.31 14.34)
4f -m ^{a)}					117—120 EtOH	$C_{25}H_{26}N_4 \cdot 5/2C_4H_4O_4^{\ b)} \cdot 1/2H_2O$	61.67 (61.87	5.47 5.74	8.22 8.38)
4g	Н	Me	C ₆ H ₄ OMe–4 N N	52	126—128 CH ₂ Cl ₂	$C_{26}H_{28}N_4O \cdot 1/5CH_2Cl_2$	73.26 (73.12	6.66 6.83	13.04 12.95)
4h	Н	Me	COOEt N N	76	230—234 (dec.) Me ₂ CO	$C_{22}H_{26}N_4O_2$	69.82 (69.51	6.92 7.04	14.80 14.55)

Table I. (continued)

Compd.	R^1	\mathbb{R}^2	NX ₄	Yield (%)	mp (°C)	Formula		alysis (%	
No.				(70)	Recryst. solv.	_	С	Н	N
4 i	Н	Me	N^N L	64	233—237 (dec.) MeOH–Me ₂ CO	$C_{25}H_{26}N_4$	78.50 (78.16	6.85 6.87	14.65 14.58)
4j	Н	Me	N^N COOEt	57	260—265 (dec.) CH ₂ Cl ₂ –Me ₂ CO	$C_{22}H_{26}N_4O_2$	69.82 (69.44	6.92 6.87	14.80 14.83)
4k	Н	Me	N ^N N EtOCO	18	160—163 Me ₂ CO	$C_{22}H_{26}N_4O_2 \cdot 1/2H_2O$	68.19 (68.33	7.02 6.78	14.46 14.50
41	Н	Me	N N Ne COOEt	21	248—251 (dec.) EtOH–CH ₂ Cl ₂	$C_{23}H_{28}N_4O_2$	70.38 (70.45	7.19 7.20	14.27 14.23
4m	Н	Me	EtOCO Me	18	225—227 CH ₂ Cl ₂ –Et ₂ O	$C_{23}H_{28}N_4O_2$	70.38 (70.44	7.19 7.26	14.27 14.18
4n	Н	Me	Et N N Me	29	172—174 MeOH	$C_{22}H_{28}N_4$	75.82 (75.79	8.10 8.25	16.08 16.00
40	Н	Me	N ^{.N}	91	192—194 CH ₂ Cl ₂ –iso-Pr ₂ O	$C_{19}H_{22}N_4$	74.48 (74.56	7.24 7.50	18.29 18.08
4 p	Н	Me	Me N.N. Me	31	187—190 iso-PrOH	$C_{21}H_{26}N_4 \cdot 1/2H_2O$	73.44 (73.58	7.92 7.89	16.31 16.02
4 q	Н	Me	N.N Ph	60	225—230 (dec.) Me ₂ CO	$C_{26}H_{28}N_4 \cdot 1/6H_2O$	78.16 (78.27	7.15 7.12	14.02 14.10
4r	Н	Me	N.N. Me	7	169—171 Me ₂ CO	$C_{26}H_{28}N_4 \cdot 1/2H_2O$	77.00 (76.72	7.21 7.19	13.82 13.70
4s	Н	Me	N.N	64	>243 (dec.) MeOH	$C_{18}H_{21}N_5$	70.33 (70.42	6.89 7.07	22.73 22.73
4s-m ^{a)}			N		208—212 (dec.) MeOH	$C_{18}H_{21}N_5 \cdot C_4H_4O_4^{a)}$	62.40 (62.44	5.95 5.97	16.54 16.49
4t	Н	Me	N [∕] N └──'n	7	>270 (dec.) CH ₂ Cl ₂ -MeOH	$C_{18}H_{21}N_5$	70.33 (70.53	6.89 6.86	22.75 22.85
4u	Н	Me	N^N N=N	31	206—209 Me ₂ CO	$C_{17}H_{20}N_6$	66.21 (66.46	6.54 6.53	27.2 27.5
4v	Н	Me	N N	49	>235 (dec.) EtOH	$C_{20}H_{23}N_3O_2$	71.19 (71.30	6.87 6.95	12.45 12.49
4w	Н	Me	N NMe	70	>215 (dec.) CH ₂ Cl ₂ -hexane	$C_{20}H_{24}N_4O_2 \cdot 1/12CH_2Cl_2$	67.10 (67.21	6.78 7.04	15.58 15.38
4x	Н	Me	O N O	82	>255 (dec.) iso-PrOH	$C_{19}H_{23}N_3O_2$	70.13 (70.01	7.12 7.34	12.9 12.8
4 x-s ^{b)}					> 265 (dec.) H ₂ O-EtOH	$C_{19}H_{23}N_3O_2 \cdot CH_4O_3S^{b)}$	56.99 (57.07	6.46 6.55	9.9 ⁹
4 y	Н	Me	N	69	>270 (dec.) CH ₂ Cl ₂ -hexane	$C_{24}H_{23}N_3O_2$	74.78 (74.83	6.01 6.07	10.90 10.68

TABLE I. (continued)

Compd. R ¹ R		R ² NX ₄		Yield (%)	mp (°C)	Formula	Analysis (%) Calcd (Found)			
140.				(70)	Recryst. solv.		C	Н	N	
5a	Cl	Me	N^N	41	>252 (dec.) EtOH–Et ₂ O	$C_{19}H_{21}CIN_4$	66.95 (66.91	6.21 6.28	16.44 16.26)	
5b	Cl	Me	Ph N N	22	255—260 (dec.) EtOH–Et ₂ O	$C_{25}H_{25}CIN_4$	72.02 (71.75	6.04 6.05	13.44 13.33)	
5c	Cl	Me	$\stackrel{N}{\sqsubseteq}_N^N$	17	241—245 EtOH–Et ₂ O	$\mathrm{C_{18}H_{20}ClN_5}$	63.24 (63.00	5.90 5.88	20.49 20.24)	
6a	Br	Me	N [∕] N └──	56	>260 (dec.) CHCl ₃ -Me ₂ CO	$\mathrm{C_{19}H_{21}BrN_4}$	59.23 (58.96	5.49 5.47	14.54 14.38)	
6b	Br	Me	iso-Pr N N	48	>260 (dec.) CHCl ₃ –Et ₂ O	$C_{22}H_{27}BrN_4$	61.83 (61.55	6.37 6.39	13.11 13.00)	
6c	Br	Me	Ph N N	19	>255 (dec.) EtOH-hexane	$C_{25}H_{25}BrN_4$	65.08 (64.77	5.46 5.56	12.14 11.94)	
6d	Br	Me	N,N	36	$\begin{array}{l} 225-230 \\ \mathrm{CH_2Cl_2-AcOEt} \end{array}$	$\mathrm{C_{18}H_{20}BrN_5\cdot 1/12CH_2Cl_2}$	55.21 (55.26	5.17 5.02	17.80 17.77)	
7	Н	Et	N^{N}	66 86°)	>265 (dec.) MeOH	$C_{19}H_{23}N_5$	71.00 (70.84	7.21 7.19	21.79 21.92	
7-f ^{d)}						${ m C_{19}H_{23}N_5 \cdot C_4H_4O_4{}^d} \ \cdot { m H_2O}$	60.65 (60.81	6.42 6.33	15.37 15.22)	
8a	Н	Pr	N [∕] N └──」	60	212—214 (dec.) iso-PrOH–Et ₂ O	$C_{21}H_{26}N_4$	75.41 (75.41	7.84 7.98	16.75 16.49)	
8b	Н	Pr	$\stackrel{N}{\sqsubseteq}_N^N$	84 88°)	201—203 Me ₂ CO	$C_{20}H_{25}N_5$	71.61 (71.97	7.51 7.59	20.88 20.68	
8b -f ^{d)} 8c	Н	Pr	N∕≅N	6	> 205 (dec.) MeOH > 235 (dec.) EtOH	$C_{20}H_{25}N_5 \cdot C_4H_4O_4^{d)}$ $C_{20}H_{25}N_5$	63.84 (64.05 71.61 (71.88	6.47 6.50 7.51 7.62	15.51 15.57 20.88 20.62	

a) Maleate. b) Methanesulfonate. c) Yield from 10. d) Fumarate.

Chart 2

Alternatively 7 and 8b were prepared from 4s. Treatment of 4s with cyanogen bromide in chloroform gave 9 in 93% yield, and 9 was reduced with LiAlH₄ in THF to afford 10 in 65% yield. Alkylation of 10 with alkyl iodide and K₂CO₃ in DMF yielded 7 and 8b in good yields.

Structural assignments of some azole compounds were

made on the basis of their NMR spectra as follows. Reaction of 3a with ethyl 4-imidazolecarboxylate (11a) gave 4j and 4k, and reaction with ethyl 5-methyl-4-imidazolecarboxylate (11b) gave 4l and 4m. Methylation of 11 yielded the known imidazoles 12 and 13. 15) Protons of the 1-methyl or the 1-methylene groups of 4k, 4m, and

Chart 3

Table II. Selected ¹H- and ¹³C-NMR Spectral Data for Ethyl 4- (4j, l, 12) and 5-Imidazolecarboxylates (4k, m, 13) in CDCl₃

_			¹ H-NMR (ppm)					¹³ C-NMR (ppm)					
Compd. No. R ³ I	R ⁴	1-Me or CH ₂	2-H	5-H	5-Me	J _{2,5} (Hz)	1-Me or CH ₂	2-C	4-C	5-C	5-Me		
12a	Н	Me	3.74	7.46	7.59		1.4	33.8	138.7	133.6	126.3		
4j	Н	$\operatorname{Erg}^{a)}$	3.58-4.10	7.45	7.59	_	1.2	51.5	138.0	133.2	126.0		
12b	Me	Me	3.57	7.38		2.52	_	31.4	137.0	135.8	128.9	9.5	
41	Me	Erg	3.79	7.36		2.57		48.8	136.8	135.3	129.5	9.8	
Compd. No.	R ³	R ⁴	1-Me or CH ₂	2-Н	4-H	4-Me	J _{2,4} (Hz)	1-Me or CH ₂	2-C	4-C	5-C	4-Me	
13a	Н	Me	3.92	7.53	7.73		0.8	34.0	137.3	142.4	123.4		
4k	H	Erg	3.97-b)	7.52	7.71		ca. 0	50.7	137.9	142.1	122.9		
13b	Me	Me	3.84	7.40		2.48	_	34.7	140.5	147.9	119.2	15.8	
4m	Me	Erg	$3.83_{}^{b)}$	7.39		2.49		51.5	140.7	148.7	118.7	16.3	

a) (5R,8R,10R)-6-Methyl-8-ergolinylmethyl. b) The downfield side of the peaks was overlapped with the peaks of the other protons.

13 are deshielded by the adjacent carbonyl groups, and downfield shifts were observed in the ¹H-NMR spectra. In 4-imidazolecarboxamic acid derivatives the coupling constants between the 2- and the 5-protons have been reported to be 1.1—1.3 Hz. On the other hand, the coupling constants between the 2- and 4-protons in 5-imidazolecarboxamic acid derivatives are known to be ca. 0 Hz. ¹⁶ Coupling constants of the 4-carboxylates 4j and 12a were 1.2 and 1.4 Hz, while those of 4k and 13a were ca. 0 and 0.8 Hz, respectively. In the ¹H- and ¹³C-NMR spectra, the chemical shifts of 4j—m agreed very closely with those of the corresponding known compounds 12 or 13 (Table II). These results show that 4j and 4l are the 1-substituted 4-imidazolecarboxylates, whereas 4k and 4m are the 5-imidazolecarboxylates.

Treatment of 3a with 5-methyl-3-phenylpyrazole gave 4q and 4r in 60 and 7% yields, respectively. The phenyl ring and the pyrazole ring of 4q are nearly coplanar and conjugated. Consequently, the 2- and 6-protons of the phenyl group are deshielded because of the anisotropy of the pyrazole ring. In the 1 H-NMR spectrum of 4q, downfield shifts of the 2- and 6-protons of the phenyl group were observed (δ 7.72, center of multiplet). The spectrum of 4r exhibited no downfield shift of the protons of the phenyl group due to a loss of coplanarity between

two rings as a result of the steric hindrance between the ergolinylmethyl and the phenyl groups. Therefore compound 4q is the 1-substituted 5-methyl-3-phenylpyrazole and 4r is the 3-methyl-5-phenylpyrazole. Compound 4i, prepared from 3a and 4-phenylimidazole, exhibited a similar downfield shift and therefore 4i is the 1-substituted 4-phenylimidazole.

Reaction of 3a and 1,2,4-triazole afforded 4s and 4t in 64 and 7% yields, respectively. The signals of two protons of the 1,2,4-triazolyl group of 4s appear at δ 7.99 and 8.11, indicating that the two protons are non-equivalent. The two protons of 4t are equivalent, and their signals appear as a singlet at δ 8.22. These results support the conclusion that 4s and 4t are the 1- and 4-substituted 1,2,4-triazoles, respectively. Similarly, triazoles 5c, 6d, 7, and 8b are 1-substituted compounds and 8c is a 4-substituted compound.

The tetrazole 4u is a 1-substituted compound. This was determined by comparison with the chemical shift of the 5-proton of the tetrazolyl group of (5R,8S,10R)-6-methyl-8-(1-tetrazolylmethyl)ergoline and that of the corresponding 8-(2-tetrazolylmethyl) compound.¹⁷⁾

The starting compounds $1a-e^9$ were prepared from (5R,8R,10R)-6-methyl-8-ergolinecarboxylic acid (14), 9,10-dihydrolysergic acid, as shown in Chart 4.

1468 Vol. 42, No. 7

a) $H_2SO_4/MeOH$; b) NCS/dioxane or PhNMe $_3$ $^{\dagger}Br_3$ $^{-}/THF$; c) BrCN/CH $_2CI_2$;

d) H_2 , W-7 Raney Ni/DMF or Zn/AcOH; e) R^2I , K_2CO_3 /DMF

Chart 4

Structure–Activity Relationship Antihypertensive activity was evaluated by a tail-cuff method in conscious spontaneously hypertensive rats, and heart rate was measured simultaneously. Test drugs were administered orally. The results are summarized in Table III.

The ergolines 4a, 4b, 4e, 4f, 4o, 4p, 4s, 4t, 4v, 4w, 5b, and 5c showed antihypertensive activity comparable to that of cianergoline or hydralazine hydrochloride. The addition of a bromine atom at the 2-position of the ergolines remarkably enhanced the activity (6a—d) and the addition of a chlorine atom also increased the activity (5a). In this series, 6a had the highest potency. It seems that 1-imidazolyl and 2-phenyl-1-imidazolyl groups as heterocyclic substituents are preferable for antihypertensive activity (5a, 6a, 6c). The 6-ethylergoline 7 exhibited relatively high potency, but the 6-propyl compounds 8a and 8b were inactive.

Detailed results for some compounds are given in Table IV. The maximum falls of systolic blood pressure after oral administration of **5a**, **6a**, **6b**, and **6c** at 3.0 mg/kg were 88, 110, 63, and 76 mmHg, respectively, while those of cianergoline, bromocriptine mesylate, hydralazine, and nifedipine were 40, 37, 47, and 49 mmHg, respectively. The effects of these new ergolines were observed for more than 7 h.

Dopaminergic activity was evaluated by observation of contralateral rotational behavior after oral administration in rats with unilateral 6-hydroxydopamine-induced lesions of the substantia nigra. The results are summarized in Table V.

Many ergolines showed activity comparable to that of bromocriptine mesylate, although only a few compounds exhibited more than 10 times the activity of bromocriptine. Among the 6-methylergolines, the 2-ethoxycarbonylimidazole (4h), the 5-methyl-3-phenylpyrazole (4q), and

especially the 1,2,4-triazole (4s) exhibited the activity superior to that of bromocriptine mesylate. The activity was not increased by the introduction of a chlorine or bromine atom at the 2-position of the ergoline ring. The conversion of the methyl group at the 6-position to an ethyl group increased the activity (7). Furthermore, the replacement of the methyl group with a propyl group markedly enhanced the activity (8a,b). The 6-propyl ergoline (8b) showed extremely potent activity, superior to that of pergolide mesylate. It seems that a 1,2,4-triazol-1-yl group is preferable for dopaminergic activity.

As shown in Table VI, these new ergolines exhibited remarkable dopaminergic activity. Dopaminergic activity of 4s was about 18-fold greater than that of bromocriptine mesylate, although emetic activity was 10-fold less. Compound 8b was about 220 and 1.15 times more active than bromocriptine mesylate and pergolide mesylate, respectively.

The ergoline 4s (maleate: BAM-1110) is a potent dopamine D_1 - and D_2 -agonist and clinical trials are in progress. Further investigation of the ergoline 8b (fumarate: BAM-1602), an extremely potent and selective dopamine D_2 -agonist, is in progress.

Experimental

All melting points were measured on a Yanagimoto MP-S3 apparatus and are uncorrected. NMR spectra were measured on a Hitachi R-90H or a JEOL JNM-EX270 spectrometer with tetramethylsilane as an internal standard. IR spectra were measured on a Shimadzu FTIR-4200 spectrometer. Column chromatography was carried out on Fuji Davison BW-80 silica gel or Wako activated alumina. All acid salts were prepared in the usual way.

(5R,8R,10R)-8-Ergolinemethanols (2) a) (5R,8R,10R)-6-Methyl-8-ergolinemethanol (2a)¹²⁾: NaBH₄ (20 g, 529 mmol) was added in portions to a mixture of $1a^{10a}$ (20 g, 70.3 mmol), MeOH (160 ml), and H₂O (80 ml) and the whole was refluxed for 2 h with stirring. After being cooled, the reaction mixture was diluted with ice water. The resulting crystals were

TABLE III. Antihypertensive Activities of the Ergolines (4—8) Administered Orally in Spontaneously Hypertensive Rats

		Syste	olic blood p	ressure	Hea	rt rate
Compd. No.	Dose (mg/kg)	Initial value (mmHg)	Maximum change (mmHg)	Duration ^{a)} (h)	Initial value (beats/min	Maximum change) (beats/min)
4a	3	191	-43	>7	397	-24
4b	3	225	-45	>7	375	-42
4c	3	212	-35	>7	395	-10
4d	3	203	-39	>7	393	-39
4 e	3	214	-48	>24	376	-35
4f	3	202	 4 9	>7	406	-56
4g	3	202	-10	_	407	-45
4h	3	207	b)		368	b)
4i	3	207	-26	>7	380	-33
4j	3	222	-6		408	-13
4k	3	206	-24	3—5	353	-25
41	3	198	-34	>7	428	-15
4m	3	204	-35	5—7	383	9, -10
4n	3	197	-35	>7	384	-18
40	10	228	-62	>7	377	-46
4 p	3	202	- 53	>7	411	-17
4q	3	219	-33	> 7	387	-42
4r	3	233	-3	_	403	732
4s	3	204	-43	>7	388	-22
4t	3	201	-48	>7	377	-26
4u	10	218	-31	5—7	400	-42
4v	3	224	-47	>7	359	-17
4w	10	230	-60	> 7	388	16, -16
4x	3	215	- 39	>7	418	-28
4 y	10	234	-12		371	-18
5a	3	229	-88	>7	406	34
5b	3	220	- 54	>7	371	22
5c	3	222	-41	>7	420	-37
6a	3	238	-110	>7	418	$\frac{-37}{22}$, -11
6b	3	215	-63	>7	387	45
6c	3	235	-81	>7	382	-6, 8
6d	3	240	-57	>24	428	-0, 8 -47
7	1	199	-37 -44	57	385	-47 -29
8a	3	206	-3^{c}	J/	363 411	- 29 - 11 ^{c)}
8b	3	209	-6	_	388	-11°
Cia ^{d)}	3	201	-40	>7	398	$-11 \\ -28$
Ciu .	10	199	-40 -56	> 7 > 7	398 390	-28 -32
Bro e)	3	216	-30 -37	> 7 > 7	390 375	$-32 \\ -8$
DIO	10	222	54	> / > 7		
$Dih^{f)}$	10	224	- 34 - 20	> 1	364	-13
Hyd ^{g)}	3	230	20 4 7	~ 7	394	-41
Nif ^{h)}	3	230 194	-47 -49	> 7 24	394	38
T.411 .	10	194 197	49 72		381	30
	10	197	- 12	>7	382	42

a) The time at which blood pressure recovered to within 10% of the initial value. b) The pressure was not detectable after oral administration by the tail-cuff method. c) The pressure was not detectable after 3h. d) Cianergoline. e) Bromocriptine mesylate. f) Dihydroergotoxine mesylate. g) Hydralazine. h) Nifedipine.

collected, washed with hot water, and dried to give **2a** (14.8 g, 82%). An analytical sample was obtained by recrystallization from EtOH, mp > 255 °C (dec.) [lit. 12 mp 280 °C (dec.)]. 1 H-NMR (CD₃OD) δ : 0.93 (1H, q, J=11.1 Hz), 1.56—2.10 (3H, m), 2.20—3.60 [10H, m, 2.33 (3H, s)], 6.63—7.17 (4H, m), 10.53 (1H, br). *Anal.* Calcd for C₁₆H₂₀N₂O: C, 74.97; H, 7.86; N, 10.93. Found: C, 74.69; H, 7.96; N, 10.71.

The methanol (2c) was prepared in the same manner as above.

2c: 61% yield, mp > 252 °C (dec., MeOH–iso-PrOH). ¹H-NMR (DMSO- d_6) δ : 0.94 (1H, q, J=11.7 Hz), 1.62—2.08 (3H, m), 2.16—3.43 [10H, m, 2.34 (3H, s)], 4.46 (1H, t, J=5.2 Hz), 6.62—7.04 (3H, m), 10.23 (1H, br). *Anal.* Calcd for $C_{16}H_{19}BrN_2O$: C, 57.32; H, 5.71; N, 8.36. Found: C, 57.22; H, 5.83; N, 8.31.

b) (5R,8R,10R)-2-Bromo-6-methyl-8-ergolinemethanol (**2c**): A suspension of LiAlH₄ (0.31 g, 8.17 mmol) in THF (40 ml) was added dropwise to a solution of **1c** (2.0 g, 5.51 mmol) in THF with stirring in an ice bath. The mixture was stirred for 0.5 h, and AcOEt and then H₂O were added to it to decompose excess LiAlH₄. The precipitate was filtered off using Celite. The filtrate was concentrated *in vacuo*. The resulting crystals were washed with H₂O and dried to yield **2c** (1.7 g, 92%). An analytical sample was obtained by recrystallization from MeOH–iso-PrOH, mp > 252 °C (dec.).

The methanols (**2b**, **2d**, **2e**) were prepared in the same manner as above. **2b**: 87% yield, mp > 244 °C (dec., EtOH). ¹H-NMR (DMSO- d_6) δ : 0.93 (1H, q, J=11.4 Hz), 1.57—2.13 (3H, m), 2.16—3.55 [10H, m, 2.34 (3H, s)], 4.47 (1H, t, J=5.2 Hz), 6.65—7.12 (3H, m), 10.73 (1H, br). *Anal.* Calcd for $C_{16}H_{19}CIN_2O$: C, 66.09; H, 6.59; N, 9.63. Found: C, 65.98; H, 6.67; N, 9.62.

2d^{10f)}: 94% yield, mp >235 °C (dec., iso-PrOH) (lit.^{10f)} mp 252—254 °C). ¹H-NMR (DMSO- d_6) δ : 0.81—1.02 [4H, m, 0.96 (3H, t, J=6.8 Hz)], 1.79—2.03 (2H, m), 2.20—3.57 (10H, m), 4.53 (1H, t, J=5.1 Hz), 6.76 (1H, d, J=6.8 Hz), 6.97 (1H, s), 7.00 (1H, t, J=6.8 Hz), 7.10 (1H, d, J=6.8 Hz). *Anal.* Calcd for C₁₇H₂₂N₂O: C, 75.52; H, 8.20; N, 10.36. Found: C, 75.61; H, 8.33; N, 10.38.

2e¹⁰/1: 96% yield, mp 181—183 °C (AcOEt) (lit. ¹⁰/10) mp 181—182 °C).
¹H-NMR (CDCl₃) δ: 0.79—1.80 [6H, m, 0.90 (3H, t, J=7.5 Hz)], 1.90—3.80 (12H, m), 6.73—7.36 (4H, m), 7.95 (1H, br). *Anal.* Calcd for C₁₈H₂₄N₂O·1/2H₂O: C, 73.68; H, 8.59; N, 9.55. Found: C, 73.38; H, 8.57; N, 9.42.

(5R,8R,10R)-8-Ergolinylmethyl p-Toluenesulfonates (3) a) (5R,8R, 10R)-6-Methyl-8-ergolinylmethyl p-Toluenesulfonate (3a)^{14a}): TsCl (11.2 g, 58.7 mmol) was added in portions to a mixture of 2a (5.0 g, 19.5 mmol) and pyridine (100 ml) with stirring at room temperature. Stirring was continued for 3 h. After addition of H_2O (4 ml) and stirring for 0.5 h, the reaction mixture was made alkaline with aqueous K_2CO_3 and diluted with ice-water. The resulting crystals were collected, washed with H_2O , and dried. Recrystallization from CH_2Cl_2 -AcOiso-Prafforded 3a (6.4 g, 80%), mp 193—196 °C (dec.) (lit. ^{14a0} mp 191—193 °C). ¹H-NMR (CDCl₃) δ : 1.07 (1H, q, J=11.8 Hz), 1.70—3.16 [13H, m, 2.41 (3H, s), 2.44 (3H, s)], 3.33 (1H, dd, J=14.4, 4.1 Hz), 3.69—4.13 (2H, m), 6.63—6.88 (2H, m), 6.96—7.40 [4H, m, 7.33 (2H, A_2B_2 type d, J=8.2 Hz)], 7.78 (2H, A_2B_2 type d, J=8.2 Hz), 8.04 (1H, br).

b) (5R,8R,10R)-2-Chloro-6-methyl-8-ergolinylmethyl p-Toluenesulfonate (3b): TsCl (9.3 g, 48.8 mmol) was added in portions to a mixture of 2b (7.0 g, 24.1 mmol) and pyridine (100 ml) with stirring at room

TABLE IV. Effects of New Ergolines Administered Orally on Systolic Blood Pressure and Heart Rate in Spontaneously Hypertensive Rats

Compd.	Dose	n	Initial value ^{a)}	Cł	Changes in blood pressure (mmHg) ^{a)}				Initial	Changes in heart rate (beats/min) ^{a)}				
No.	(mg/kg)		(mmHg)	1	3	5	7	24 (h)	 value^{a)} (beats/min) 	1	3	5	7	24 (h)
Control	-	4	213± 9	-1 ± 4	-2± 5	-4 ± 5	-7 ± 6	-1±5	399±13	-3+10	-7 + 10	-7 + 10	-4+11	-4+12
5a	3	3	229 ± 21	-64 ± 3	-78 ± 12	-85 ± 19	-88 ± 16	-4+2	406 + 9	16+15	22 + 9	23 + 7	34+ 6	13 + 10
6a	3	3	238 ± 4	-110 ± 9	-68 ± 8	-58 ± 4	-49 + 7	-6 ± 3	418 + 12	22 ± 21	-6+18	3+35	-11 + 31	-17+15
6b	3	3	215 ± 10	-55 ± 9	-60 ± 11	-63 ± 10	-55+8	-1 ± 2	387 + 30	39 + 15	36+15	45 + 14	30 + 10	19 + 13
6c	3	3	235 ± 12	-66 ± 12	-63 ± 6	-76 + 8	-66 + 9	-6 ± 5	382 + 1	-7 ± 8	3+20	8+13	-2+1	11 + 11
Cianergoline	3	5	201 ± 7	-27 ± 3	-33 ± 3	-40 ± 3	-30 + 7	-1 ± 6	398 ± 5	-17+9	-28 ± 11	-25+11	-25+11	-6+14
	10	5	199 ± 2	-39 ± 9	-55 ± 6	-56 ± 5	-48 + 4	-20 ± 7	390 + 10	_	-32 ± 11		-16+11	-11 + 7
Bromocriptine	3	4	216 ± 6	-31 ± 8	-37 ± 10	-25 ± 14	-27+8	-6 ± 4	375 + 16	5+14	-8 ± 16	-4+13	-4+13	-2+14
mesylate	10	4	222 ± 5	-46 ± 7	-54 ± 4	-49 ± 5	-45+7	-4+2	364 ± 8	-14+9	-5+20	-4 ± 19	-3+14	23 + 11
Hydralazine	3	4	230 ± 13	-44 ± 3	-47 ± 4	-43+6	-39 + 2	-20+5	394 ± 6	38 + 8	28 + 3	$\frac{1}{22} + 7$	19 + 8	9+14
Nifedipine	3	4	$194 \pm \ 3$	-49 ± 5	-40 + 3	-17+5	-12+1	1+2	381 + 2	30 ± 4	25 ± 6	7 + 3	0 ± 3	1+ 2
	10	4	197± 1	-70 ± 11	-72 ± 10	-46 ± 6	-37 ± 6	-5 ± 4	382 ± 4	42± 5	34 ± 7	12 ± 5	7 ± 8	-1 ± 2

a) Each value is the mean \pm standard error.

Table V. Contralateral Rotational Activities of the Ergolines (4—8) Administered Orally in Rats with Unilateral 6-Hydroxydopamine-Induced Lesion of Substantia Nigra

Compd.		Rotat	ional	behav	ior ^{a)}	rotate	d/trea	ted an	imals	
No.				I	Dose (mg/kg				
	0.03	0.1	0.3	1.5	3.12	6.25	25	50	100	200
4a						0/2	2/2		2/2	
4b									1/2	
4c							0/2		2/2	
4d							1/2		2/2	
4e							1/2	2/2		
4f							0/2	•	2/2	
4g							,		0/2	
4h				1/5	4/5	5/5	2/2		2/2	
4i				1,0	.,, 5	0,0	0/2		-,-	
4j							0,2		0/2	
4k							1/2	1/2	0,2	
41							0/2	1/2	2/2	
							1/2		$\frac{2}{2}$	
4m									2/2	
4n						0.10	0/2		2/2	
40						0/2	2/2		2/2	
4 p						0/2	2/2			
4 q				0/5	4/5	5/5			2/2	
4r							0/2			
4 s			0/5	3/5	5/5	5/5			2/2	
4u						0/2	2/2		2/2	
4v						0/2	2/2	2/2		
4w									0/2	
4x							1/2		2/2	
4 y							0/2		1/2	
5a					0/2	2/2	2/2			
5b					٥, ـ	-,-	1/2			
5c					0/2	2/2	2/2			
6a					0/2	2/2	$\frac{2}{1/2}$			
							0/2	0/2		
6c						1/2	2/2	0/2		
6d			0/4	4/4	4/4	1/2	2/2			
7-m		0/4	0/4	4/4	4/4		2/2			
8a		0/4	3/4	4/4			2/2			
8b			- 1 -				2/2			
8b -m	0/6	4/6	6/6						0.15	0.15
Ciab)									0/2	0/2
$\mathbf{Bro}^{c)}$						0/5	3/5			
$Dih^{d)}$							0/2		1/2	1/2
Per e)		1/2	2/2							

a) Observed for 8 h. b) Cianergoline. c) Bromocriptine mesylate. d) Dihydroergotoxine mesylate. e) Pergolide mesylate.

Table VI. Contralateral Rotational Behavior after Oral Administration of the Ergolines in Rats with Unilateral 6-Hydroxydopamine-Induced Lesion of Substantia Nigra

Compd. No.	Dose (mg/kg)	Turned/ treated	Maximum turns/5 min ^{a)}	Onset (h) ^{a)}	End (h)a)
4s	1	6/6	29.8 ± 7.7	0.46 ± 0.08	2.00 ± 0.22
	3	6/6	76.0 ± 6.7	0.33 ± 0.05	3.33 ± 0.31
7-m	1	4/4	31.8 ± 9.4	1.13 ± 0.38	4.00 ± 0.5
	3	4/4	66.8 ± 3.5	0.38 ± 0.07	6.25 ± 0.6
8a	1	4/4	32.0 ± 4.8	1.13 ± 0.31	>8
	3	4/4	70.0 ± 3.2	0.69 ± 0.12	> 24
8b -m	0.1	4/6	25.0 ± 11.0	0.25 ± 0.00	3.38 ± 0.4
	0.3	6/6	50.5 ± 3.5	0.29 ± 0.04	4.16 ± 0.3
	1	6/6	60.7 ± 4.4	0.25 ± 0.00	>8
Bromocriptine	10	4/6	16.5 ± 6.7	3.63 ± 0.24	7—8
mesylate	30	6/6	60.0 ± 4.3	0.92 ± 0.14	>8
Pergolide	0.1	3/6	1.8 ± 0.8	3.83 ± 0.17	4.33 ± 0.1
mesylate	0.3	6/6	50.0 ± 7.4	0.71 ± 0.16	>8
•	1	6/6	65.5 ± 6.2	0.33 ± 0.05	> 24

a) Each value is the mean ± standard error for turned animals.

TABLE VII. Emetic Activity in Dogs and Acute Toxicity in Mice

Compd. No.	Emetic activity ^{a)} vomited/treated animals $(\mu g/kg, i.v.)$ or/and ED_{50} (mg/kg, p.o.)	LD ₅₀ or mortality (mg/kg, <i>p.o.</i>)
4a	100(0/2), 300(1/2)	330
4b	300(0/2), 1000(2/2)	500(0/2), 1000(2/2)
4c	100(0/2), 300(1/2)	215
4d		200(0/2), 500(2/2)
4e	100(0/2), 300(1/2)	640
4f	100(0/2), 300(2/2)	1200
4g		>1000
4h	30(1/4), 100(2/4)	900
4i		100(1/2), 200(2/2)
4j		> 1000
4k		200(0/2), 500(2/2)
41		1000(1/2)
4m		200(0/2), 500(2/2)
4n		200(1/2), 500(2/2)
40		200(0/2), 500(2/2)
4 p		200(0/2), 500(2/2)
4q	100(0/4), 300(3/4)	> 1500
4 s	100(2/4), 300(4/4)	525
4 s-m	0.31	
4u		200(0/2), 500(2/2)
4v		200(0/2), 500(2/2)
4w		200(0/2), 500(1/2), 1000(2/2)
4x	100(0/4), 300(4/4)	>2000
4 y		500(0/2), 1000(1/2)
5a		200(0/2), 500(2/2)
5b		200(0/2), 500(1/2), 1000(2/2)
5c		200(0/2), 500(2/2)
6a	400 (0) 200 (0)	100(0/2), 200(2/2)
6c	100(0/2), 300(0/2)	950
6d		100(0/2), 200(1/2), 500(2/2)
7	20/4/40 0.01	100(0/5), 200(2/5), 250(2/5)
7-m	20(4/4), 0.01	100(0/2) 200(2/2)
8a	2(4/4)	100(0/2),200(2/2)
8b-m	0.5(4/4), 0.0041	108
Cia ^{b)}	30(0/2), 100(2/2)	>1500
Broc)	3(0/4), 10(3/4), 30(4/4), 0.028	2800
Dih ^{d)}	3(0/4), 10(4/4)	>1500
Per ^{e)}	1(0/2), 3(2/2), 10(2/2), 0.0050	190

a) Observed for 7 h. b) Cianergoline. c) Bromocriptine mesylate. d) Dihydroergotoxine mesylate. e) Pergolide mesylate.

temperature. Stirring was continued for 3 h. After addition of $\rm H_2O$ (4 ml) and stirring for 0.5 h, the reaction mixture was made alkaline with aqueous $\rm K_2CO_3$, diluted with $\rm H_2O$ and extracted with AcOEt. The extract was washed with $\rm H_2O$, dried over MgSO₄, and concentrated in vacuo. The residue was dissolved in $\rm CH_2Cl_2$, treated with activated carbon, and recrystallized from $\rm CH_2Cl_2$ -hexane to yield $\rm 3b$ (9.0 g, 84%), mp 145—148 °C. $\rm ^1H$ -NMR (CDCl₃) $\rm \&S$: 1.05 (1H, q, $\rm J$ =11.4 Hz), 1.73—3.38 [14H, m, 2.43 (6H, s), 3.24 (1H, dd, $\rm J$ =14.7, 4.2 Hz)], 3.96 (2H, d, $\rm J$ =5.4 Hz), 6.62—7.13 (3H, m), 7.30 (2H, $\rm A_2B_2$ type d, $\rm J$ =8.1 Hz), 7.76 (2H, $\rm A_2B_2$ type d, $\rm J$ =8.1 Hz), 7.95 (1H, br). Anal. Calcd for $\rm C_{23}H_{25}ClN_2O_3S$: C, 62.08; H, 5.66; N, 6.30. Found: C, 61.93; H, 5.56; N, 6.31.

Compounds 3c-e were prepared in the same manner as described for 3a or 3b.

3c: 86% yield, mp 138—141 °C (EtOH). ¹H-NMR (CDCl₃) δ : 1.08 (1H, q, J=11.4 Hz), 1.78—3.35 [14H, m, 2.47 (6H, s)], 3.80—4.19 (2H, m), 6.69—6.93 (1H, m), 6.98—7.18 (2H, m), 7.37 (2H, A_2B_2 type d, J=8.1 Hz), 7.83 (2H, A_2B_2 type d, J=8.1 Hz), 7.99 (1H, br). *Anal.* Calcd for $C_{23}H_{25}BrN_2O_3S$: C, 56.44; H, 5.15; N, 5.72. Found: C, 56.44; H, 5.15; N, 5.71.

3d: 81% yield, mp 184—186 °C (CH₂Cl₂–AcOiso-Pr). ¹H-NMR (CDCl₃) δ : 1.04 (3H, t, J=7.0 Hz), 1.09 (1H, q, J=12.1 Hz), 2.11—3.12 [12H, m, 2.47 (3H, s)], 3.37 (1H, dd, J=14.9, 4.3 Hz), 3.93—4.08 (2H, m), 6.81 (1H, d, J=5.9 Hz), 6.89 (1H, s), 7.11—7.21 (2H, m), 7.38 (2H, A₂B₂ type d, J=8.1 Hz), 7.83 (2H, A₂B₂ type d, J=8.1 Hz), 7.91 (1H, br). *Anal*. Calcd for C₂₄H₂₈N₂O₃S: C, 67.90; H, 6.65; N, 6.60. Found: C, 67.80; H, 6.71; N, 6.48.

 $3e^{14b}$: 85% yield, mp 175—177 °C (AcOEt) (lit. 14b) mp 147—150 °C). ¹H-NMR (CDCl₃) δ : 0.89 (3H, t, J=7.4 Hz), 1.07 (1H, q, J=12.2 Hz),

Table VIII. $^{1}\text{H-NMR}$ Spectral Data for (5R,8R,10R)-8-Methylergolines (4—8) in CDCl₃

Compd. No.	Chemical shifts (ppm)
4a	1.19 (1H, q, $J = 12.3$ Hz), 1.97 (1H, t, $J = 11.3$ Hz), 2.16 (1H, td, $J = 10.4$, 4.2 Hz), 2.36—2.52 [4H, m, 2.44 (3H, s)], 2.59—2.74 (2H, m), 2.82—3.05 (2H, m), 3.41 (1H, dd, $J = 14.9$, 4.2 Hz), 3.89 (1H, dd, $J = 13.8$, 7.8 Hz), 3.96 (1H, dd, $J = 13.8$, 6.5 Hz), 6.84—7.00 [3H, m, 6.97 (1H, s)], 7.10—7.25 (3H, m), 7.50 (1H, s), 7.95 (1H, br)
4b	1.18 (1H, q, $J = 12.0 \text{Hz}$), 1.79—3.10 [13H, m, 2.41 (3H, s), 2.43 (3H, s)], 3.37 (1H, dd, $J = 14.2$, 4.2 Hz), 3.77 (2H, d, $J = 6.9 \text{Hz}$), 6.74—6.93 (4H, m), 6.97—7.21 (2H, m), 7.89 (1H, br)
4c	1.18 (1H, q, $J = 12.0$ Hz), 1.38 (3H, t, $J = 7.4$ Hz), 1.70—3.10 [12H, m, 2.43 (3H, s), 2.71 (2H, q, $J = 7.4$ Hz)], 3.37 (1H, dd, $J = 14.4$, 3.9 Hz), 3.78 (2H, d, $J = 6.9$ Hz), 6.70—7.23 (6H, m), 8.03 (1H, br)
4d	1.01 (3H, t, $J = 6.9$ Hz), 1.17 (1H, q, $J = 12.0$ Hz), 1.60—3.12 [14H, m, 2.43 (3H, s)], 3.37 (1H, dd, $J = 14.4$, 3.9 Hz), 3.78 (2H, d, $J = 6.8$ Hz), 6.71—7.25 (6H, m), 7.94 (1H, br)
4 e	1.18 (1H, q, $J = 11.7$ Hz), 1.34 (3H, d, $J = 6.7$ Hz), 1.35 (3H, d, $J = 6.7$ Hz), 1.80—3.19 [11H, m, 2.43 (3H, s)], 3.37 (1H, dd, $J = 14.3$, 4.4 Hz), 3.80 (2H, d, $J = 6.8$ Hz), 6.65—7.25 (6H, m), 8.14 (1H, br)
4f	1.03 (1H, q, $J = 12.0$ Hz), 1.58—3.04 [10H, m, 2.39 (3H, s)], 3.34 (1H, dd, $J = 14.7$, 3.9 Hz), 3.97 (2H, d, $J = 6.6$ Hz), 6.62—6.88 (2H, m), 6.94—7.24 (4H, m), 7.28—7.67 (5H, m), 8.04 (1H, br)
4 g	1.03 (1H, q, $J = 12.0 \text{Hz}$), 1.63—3.07 [10H, m, 2.40 (3H, s)], 3.36 (1H, dd, $J = 14.6$, 4.2 Hz), 3.84 (3H, s), 3.96 (2H, d, $J = 6.8 \text{Hz}$), 6.68—7.24 (8H, m), 7.41—7.64 (2H, m), 8.14 (1H, br)
4h	1.19 (1H, q, $J = 11.8$ Hz), 1.42 (3H, t, $J = 7.1$ Hz), 1.80—3.10 [10H, m, 2.41 (3H, s)], 3.34 (1H, dd, $J = 14.1$, 4.2 Hz), 4.38 (2H, d, $J = 6.9$ Hz), 4.38 (2H, q, $J = 7.1$ Hz), 6.66—7.26 (6H, m), 7.97 (1H, br)
4 i	1.18 (1H, q, <i>J</i> =11.7 Hz), 1.60—3.15 [10H, m, 2.42 (3H, s)], 3.38 (1H, dd, <i>J</i> =14.3, 4.2 Hz), 3.57—4.11 (2H, m), 6.68—7.55 (9H, m), 7.62—7.85 (2H, m), 7.98 (1H, br)
4 j	1.15 (1H, q, $J = 12.0$ Hz), 1.39 (3H, t, $J = 6.9$ Hz), 1.60—3.10 [10H, m, 2.42 (3H, s)], 3.37 (1H, dd, $J = 14.3$, 3.9 Hz), 3.58—4.10 (2H, m), 4.35 (2H, q, $J = 6.9$ Hz), 6.63—7.25 (4H, m), 7.45 (1H, d, $J = 1.2$ Hz), 7.59 (1H, d, $J = 1.2$ Hz), 8.06 (1H, br)
4k	1.17 (1H, q, $J = 12.0$ Hz), 1.37 (3H, t, $J = 7.2$ Hz), 1.80—3.10 [10H, m, 2.41 (3H, s)], 3.36 (1H, dd, $J = 14.1$, 4.0 Hz), 3.97—4.50 [4H, m, 4.28 (2H, q, $J = 7.2$ Hz)], 6.66—7.23 (4H, m), 7.52 (1H, s), 7.71 (1H, s), 7.81 (1H, br)
41	1.15 (1H, q, $J = 11.5$ Hz), 1.40 (3H, t, $J = 7.0$ Hz), 1.76—3.09 [13H, m, 2.41 (3H, s), 2.57 (3H, s)], 3.37 (1H, dd, $J = 14.7$, 4.1 Hz), 3.79 (2H, d, $J = 6.5$ Hz), 4.34 (2H, q, $J = 7.0$ Hz), 6.63—6.88 (2H, m), 6.94—7.22 (2H, m), 7.36 (1H, s), 8.11 (1H, br)
4m	1.13 (1H, q, $J = 11.7$ Hz), 1.38 (3H, t, $J = 7.1$ Hz), 1.76—3.08 [13H, m, 2.41 (3H, s), 2.49 (3H, s)], 3.37 (1H, dd, $J = 14.4$, 4.2 Hz), 3.83—4.44 [4H, m, 4.30 (2H, q, $J = 7.1$ Hz)], 6.67—7.23 (4H, m), 7.39 (1H, s), 8.02 (1H, br)
4n	1.14 (1H, q, $J = 11.7$ Hz), 1.33 (3H, t, $J = 7.3$ Hz), 1.76—3.10 [15H, m, 2.20 (3H, d, $J = 0.8$ Hz), 2.43 (3H, s)], 3.37 (1H, dd, $J = 14.8$, 4.1 Hz), 3.69 (2H, d, $J = 6.8$ Hz), 6.51 (1H, q, $J = 0.8$ Hz), 6.63—7.23 (4H, m), 8.14 (1H, br)
40	1.15 (1H, q, $J = 12.5$ Hz), 1.81—3.10 (7H, m), 2.41 (3H, s), 3.35 (1H, dd, $J = 14.7$, 4.4 Hz), 3.85—4.27 (2H, m), 6.24 (1H, dd, $J = 2.4$, 2.2 Hz), 6.69—7.17 (4H, m), 7.35 (1H, d, $J = 2.4$ Hz), 7.48 (1H, d, $J = 2.2$ Hz), 8.13 (1H, br)
4p	1.19 (1H, q, $J = 12.5$ Hz), 1.83—3.11 [15H, m, 2.21 (3H, s), 2.25 (3H, s), 2.43 (3H, s)], 3.37 (1H, dd, $J = 14.3$, 4.1 Hz), 3.73—4.11 (2H, m), 5.76 (1H, s), 6.74—7.26 (4H, m), 7.84 (1H, br)
4q	1.25 (1H, q, $J = 12.3$ Hz), 1.83—3.15 [13H, m, 2.33 (3H, s), 2.42 (3H, s)], 3.35 (1H, dd, $J = 14.2$, 4.1 Hz), 3.81—4.20 (2H, m), 6.28 (1H, s), 6.67—7.44 (7H, m), 7.56—7.97 [3H, m, 7.85 (1H, br)]
4r 4s	0.98 (1H, q, $J = 12.5$ Hz), 1.66—3.02 [13H, m, 2.31 (3H, s), 2.36 (3H, s)], 3.30 (1H, dd, $J = 14.3$, 4.0 Hz), 4.02 (2H, d, $J = 6.6$ Hz), 6.03 (1H, s), 6.60—6.84 (2H, m), 6.90—7.20 (2H, m), 7.35 (5H, s), 7.95 (1H, br)
45	1.21 (1H, q, $J = 12.2$ Hz), 2.03 (1H, t, $J = 11.2$ Hz), 2.17 (1H, td, $J = 10.4$, 4.3 Hz), 2.38—2.78 [6H, m, 2.45 (3H, s)], 2.86—3.05 (2H, m), 3.40 (1H, dd, $J = 14.5$, 4.3 Hz), 4.11 (1H, dd, $J = 13.9$, 7.5 Hz), 4.20 (1H, dd, $J = 13.9$, 6.3 Hz), 6.81—6.95 (2H, m), 7.10—7.30 (2H, m), 7.99 (1H, s), 7.99 (1H, br), 8.11 (1H, s)
4t	1.21 (1H, q, $J = 12.5$ Hz), 2.10 (1H, t, $J = 11.1$ Hz), 2.18 (1H, td, $J = 10.4$, 4.3 Hz), 2.32—2.54 [4H, m, 2.45 (3H, s)], 2.62—2.75 (2H, m), 2.85—3.05 (2H, m), 3.41 (1H, dd, $J = 14.9$, 4.3 Hz), 3.99 (1H, dd, $J = 14.0$, 7.8 Hz), 4.05 (1H, dd, $J = 14.0$, 7.0 Hz),
4 u	(211, m), $2.63 = 3.03 (211, m)$, $3.41 (111, ud, J = 14.9, 4.3 Hz)$, $3.99 (1H, ud, J = 14.0, 7.8 Hz)$, $4.03 (1H, ud, J = 14.0, 7.0 Hz)$, $6.82 = 6.93 [2H, m, 6.91 (1H, s)]$, $7.12 = 7.38 (2H, m)$, $7.94 (1H, br)$, $8.22 (2H, s)$ $1.26 (1H, q, J = 12.5 Hz)$, $1.88 = 3.13 [10H, m, 2.42 (3H, s)]$, $3.37 (1H, ud, J = 14.3, 3.9 Hz)$, $4.60 (2H, d, J = 6.3 Hz)$, $6.68 = 6.92 = 6.93 [2H, ud, J = 12.5 Hz)$, $4.60 (2H, d, J = 6.3 Hz)$, $4.60 (2H, d,$
4v	(2H, m), 6.97—7.20 (2H, m), 7.89 (1H, br), 8.46 (1H, s) 1.19 (1H, q, $J = 11.2$ Hz), 1.82—3.10 [14H, m, 2.43 (3H, s), 2.72 (4H, s)], 3.21—3.60 [3H, m, 3.49 (2H, d, $J = 6.4$ Hz)], 6.70—
4w	7.20 (4H, m), 7.89 (1H, br) 1.18 (1H, q, $J = 11.2$ Hz), 1.86—3.10 [13H, m, 2.45 (3H, s), 3.01 (3H, s)], 3.23—3.58 [3H, m, 3.49 (2H, d, $J = 6.4$ Hz)], 3.87
4x	(2H, s), 6.77 - 7.26 (4H, m), 7.88 (1H, br) $(2H, q, J = 11.8 Hz), 1.82 - 3.83 [15H, m, 2.47 (3H, s)], 4.20 - 4.47 (2H, m), 6.75 - 7.23 (4H, m), 7.98 (1H, br)$
4y	1.22 (1H, q, $J = 11.7$ Hz), 1.88—3.10 [10H, m, 2.43 (3H, s)], 3.36 (1H, dd, $J = 14.7$, 3.8 Hz), 3.67 (2H, d, $J = 6.3$ Hz), 6.72—7.28 (4H, m), 7.57—8.20 [5H, m, 7.97 (1H, br)]
5a	1.14 (1H, q, $J = 11.4$ Hz), 1.75—3.10 [10H, m, 2.43 (3H, s)], 3.26 (1H, dd, $J = 14.6$, 4.2 Hz), 3.70—4.10 (2H, m), 6.70—7.13 (5H, m), 7.43 (1H, brs), 8.10 (1H, br)
5b	1.03 (1H, q, $J = 12.4$ Hz), 1.60—3.50 [11H, m, 2.44 (3H, s), 3.27 (1H, dd, $J = 14.8$, 4.4 Hz)], 4.02 (2H, q, $J = 7.2$ Hz), 6.67—7.70 (10H, m), 8.28 (1H, br)
5c	1.17 (1H, q, $J = 12.1$ Hz), 1.83—3.04 [10H, m, 2.43 (3H, s)], 3.26 (1H, dd, $J = 14.4$, 3.9 Hz), 4.13 (2H, d, $J = 6.3$ Hz), 6.70—7.15 (3H, m), 7.91 (1H, br), 7.92 (1H, s), 8.03 (1H, s)
6a	1.13 (1H, q, $J = 11.7$ Hz), 1.78—3.05 [10H, m, 2.43 (3H, s)], 3.18 (1H, dd, $J = 14.4$, 3.9 Hz), 3.87 (2H, d, $J = 6.6$ Hz), 6.65—7.12 (5H, m), 7.43 (1H, br s), 7.95 (1H, br)
6b	1.17 (1H, q, $J = 12.0$ Hz), 1.37 (3H, d, $J = 6.8$ Hz), 1.38 (3H, d, $J = 6.8$ Hz), 1.80—3.43 [12H, m, 2.48 (3H, s)], 3.84 (2H, d, $J = 7.2$ Hz), 6.77—7.23 (5H, m), 8.04 (1H, br)
6c	0.98 (1H, q, $J = 12.0$ Hz), 1.56—2.97 [10H, m, 2.40 (3H, s)], 3.15 (1H, dd, $J = 14.3$, 3.8 Hz), 3.96 (2H, d, $J = 6.8$ Hz), 6.58—6.83 (1H, m), 6.90—7.68 (9H, m), 8.21 (1H, br)
6d	1.17 (1H, q, $J = 11.7$ Hz), 1.85—3.05 [10H, m, 2.43 (3H, s)], 3.19 (1H, dd, $J = 14.7$, 4.5 Hz), 4.12 (2H, d, $J = 6.3$ Hz), 6.71—7.10 (3H, m), 7.91 (1H, s), 7.95 (1H, br), 8.02 (1H, s)
7	1.04 (3H, t, $J = 7.2 \text{ Hz}$), 1.21 (1H, q, $J = 11.9 \text{ Hz}$), 2.28 (1H, t, $J = 11.1 \text{ Hz}$), 2.45—2.80 (4H, m), 2.83—3.09 (4H, m), 3.38 (1H, dd, $J = 14.3$, 3.8 Hz), 4.16 (1H, dd, $J = 14.0$, 7.3 Hz), 4.21 (1H, dd, $J = 14.0$, 5.9 Hz), 6.82—6.95 (2H, m), 7.12—7.23 (2H, m), 7.96 (1H, br), 7.99 (1H, s), 8.12 (1H, s)

TABLE VIII. (continued)

Compd. No.	Chemical shifts (ppm)
8a	0.70—1.73 [6H, m, 0.87 (3H, t, J =7.3 Hz), 1.17 (1H, q, J =11.7 Hz)], 1.90—3.53 (10H, m), 3.88 (2H, d, J =6.4 Hz), 6.65—7.30 (6H, m), 7.47 (1H, s), 7.90 (1H, br)
8b	0.89 (3H, t, $J = 7.3$ Hz), 1.19 (1H, q, $J = 12.2$ Hz), 1.40—1.59 (2H, m), 2.23 (1H, t, $J = 11.1$ Hz), 2.42—3.06 (8H, m), 3.36 (1H, dd, $J = 14.5$, 4.0 Hz), 4.17 (1H, dd, $J = 14.2$, 7.3 Hz), 4.19 (1H, dd, $J = 14.2$, 6.3 Hz), 6.86 (1H, d, $J = 5.9$ Hz), 6.89 (1H, s), 7.10—7.25 (2H, m), 7.99 (1H, s), 7.99 (1H, br), 8.11 (1H, s)
8c	0.89 (3H, t, J =7.2 Hz), 1.18 (1H, q, J =12.2 Hz), 1.48 (2H, m), 2.12—3.03 [9H, m, 2.19 (1H, t, J =10.9 Hz)], 3.36 (1H, dd, J =14.5, 4.0 Hz), 3.98 (1H, dd, J =14.1, 7.9 Hz), 4.03 (1H, dd, J =14.1, 6.6 Hz), 6.84 (1H, d, J =6.6 Hz), 6.90 (1H, s), 7.11—7.24 (2H, m), 7.98 (1H, br), 8.22 (2H, s)

 $1.41-1.58~(2H,\,m),~2.04-3.12~[12H,\,m,~2.11~(1H,\,t,~J=11.0\,Hz),~2.46~(3H,\,s)],~3.33~(1H,\,dd,~J=14.8,~4.0\,Hz),~3.96~(1H,\,dd,~J=9.7,~6.9\,Hz),~4.00~(1H,\,dd,~J=9.7,~5.3\,Hz),~6.80~(1H,\,d,~J=6.3\,Hz),~6.88~(1H,\,s),~7.10-7.22~(2H,\,m),~7.37~(2H,\,d,~J=8.3\,Hz),~7.82~(2H,\,d,~J=8.3\,Hz),~7.94~(1H,\,br).~Anal.~Calcd~for~C_{25}H_{30}N_2O_3S:~C,~68.46;~H,~6.89;~N,~6.39.~Found:~C,~68.44;~H,~6.95;~N,~6.23.$

(5R,8R,10R)-Ergolines (4—8) a) (5R,8R,10R)-6-Methyl-8-(4-phenyl-1-imidazolylmethyl)ergoline (4i): NaH (60% in oil, 0.40 g, 10.0 mmol) was added in portions to a solution of 4-phenylimidazole (1.9 g, 13.2 mmol) in DMF (50 ml) with stirring and then 3a (2.0 g, 4.87 mmol) was added. The mixture was heated for 2 h at ca. 90 °C with stirring. After removal of the solvent the residue was chromatographed on an alumina column with Me₂CO. Recrystallization from MeOH–Me₂CO gave colorless needles (1.2 g, 64%), mp 233—237 °C (dec.).

b) (5R,8R,10R)-6-Methyl-8-(1-pyrazolylmethyl)ergoline (**40**): NaH (60% in oil, 0.70 g, 17.5 mmol) was added in portions to a solution of pyrazole (1.5 g, 22.0 mmol) in DMF (20 ml) with stirring and then **3a** (2.5 g, 6.09 mmol) was added. The mixture was heated for 1 h at ca.90 °C with stirring. After being cooled, the reaction mixture was diluted with H₂O. The resulting crystals were collected and washed with H₂O. Recrystallization from CH₂Cl₂-iso-Pr₂O yielded colorless scales (1.7 g, 91%), mp 192—194 °C.

c) (5R,8R,10R)-6-Methyl-8-(1,2,4-triazol-1-ylmethyl)ergoline (4s) and (5R,8R,10R)-6-Methyl-8-(1,2,4-triazol-4-ylmethyl)ergoline (4t): NaH (60% in oil, 0.96 g, 24.0 mmol) was added in portions to a solution of 1,2,4-triazole (2.5 g, 36.2 mmol) in DMF (30 ml) with stirring and then 3a (5.0 g, 12.2 mmol) was added. The mixture was heated for 2 h at ca. 90 °C with stirring. After being cooled, the reaction mixture was diluted with H_2O . The resulting crystals were collected and washed with H_2O . The crude product was chromatographed on a silica gel column with AcOEt-EtOH-DMF (25:25:1). The first fraction afforded 4s, which was recrystallized from MeOH to give colorless prisms (2.4 g, 64%), mp > 243 °C (dec.). The second fraction afforded 4t, which was recrystallized from CH₂Cl₂-MeOH to afford colorless needles (0.26 g, 7%), mp > 270 °C (dec.).

d) (5R,8R,10R)-6-Propyl-8-(1,2,4-triazol-1-ylmethyl)ergoline (**8b**) and (5R,8R,10R)-6-Propyl-8-(1,2,4-triazol-4-ylmethyl)ergoline (**8c**): 1,2,4-Triazole (3.0 g, 43.4 mmol) was added in portions to a mixture of NaH (60% in oil, 1.5 g, 37.5 mmol) and DMF (50 ml) with stirring. After addition of **3e** (5.0 g, 11.4 mmol) the mixture was heated for 2 h at ca. 80 °C with stirring. The reaction mixture was cooled, diluted with H_2O , and extracted with AcOEt. The extract was washed with H_2O and dried over Mg_2SO_4 . After removal of the solvent, the residue was chromatographed on a silica gel column with AcOEt—EtOH (5:1). The first fraction gave **8b**, which was recrystallized from Me_2CO to afford colorless leaflets (3.2 g, 84%), mp 201—203 °C. The second fraction afforded **8c**, which was recrystallized from EtOH to yield colorless needles (0.23 g, 6%), mp > 235 °C (dec.).

The other compounds were prepared in the same manner as described for a—d). The ergoline **8b** was also prepared in the following manner.

e) (5R,8R,10R)-6-Propyl-8-(1,2,4-triazol-1-ylmethyl)ergoline (**8b**): A mixture of **10** (2.0 g, 6.82 mmol), PrI (1.25 g, 7.35 mmol), K₂CO₃ (5.0 g, 36.2 mmol), and DMF (30 ml) was heated for 1.5 h at *ca.* 90 °C. After being cooled, the reaction mixture was diluted with H₂O. The resulting precipitate was collected, washed with H₂O, dried, and recrystallized from Me₂CO to give colorless leaflets (2.0 g, 87%), mp 201—203 °C.

The ergoline 7 was also prepared in the same manner as described above.

(5R,8R,10R)-6-Cyano-8-(1,2,4-triazol-1-ylmethyl)ergoline (9) Cyano-

gen bromide (5.2 g, 49.1 mmol) was added in portions to a mixture of 4s (5.0 g, 16.3 mmol) and CHCl $_3$ (150 ml) with stirring. The mixture was stirred for 0.5 h and then refluxed for 5 h. After being cooled, the mixture was diluted with aqueous $\rm K_2CO_3$. The resulting crystals were collected, washed with $\rm H_2O$, and dried to give $\rm 9$ (4.8 g, 92%). An analytical sample was obtained by recrystallization from MeOH, mp 274—279 °C (dec.). IR (KBr): 2205 cm $^{-1}$. $^1\rm H-NMR$ (CDCl $_3$) δ : 1.30 (1H, q, J=12.0 Hz), 2.58—2.78 (2H, m), 2.93—3.18 [4H, m, 2.99 (1H, t, J=12.0 Hz), 3.09 (1H, s)], 3.34—3.70 [2H, m, 3.60 (1H, dq, J=12.7, 2.0 Hz)], 4.18 (1H, dd, J=14.0, 7.1 Hz), 4.23 (1H, dd, J=14.0, 5.8 Hz), 6.86 (1H, d, J=6.9 Hz), 6.96 (1H, s), 7.18 (1H, t, J=7.6 Hz), 7.23 (1H, d, J=7.6 Hz), 8.01 [2H, s, 8.01 (1H, br s)], 8.12 (1H, s). Anal. Calcd for $\rm C_{18}H_{18}N_6$: C, 67.90; H, 5.70; N, 26.40. Found: C, 67.68; H, 5.64; N, 26.36.

(5R,8R,10R)-8-(1,2,4-Triazol-1-ylmethyl)ergoline (10) The cyanide 9 (3.0 g, 9.42 mmol) was added in portions to a suspension of LiAlH₄ (3.0 g, 79.0 mmol) in THF with stirring at room temperature. Stirring was continued for 1 h. The reaction mixture was poured into aqueous KOH. The resulting precipitate was collected, washed with H₂O, dried, and chromatographed on a silica gel column with AcOEt–MeOH (3:1) to give colorless needles (1.8 g, 65%), mp 225—227 °C (dec.). ¹H-NMR (CDCl₃) δ : 1.27 (1H, q, J=11.9 Hz), 2.34—2.88 [6H, m, 2.54 (1H, J=11.2 Hz)], 2.94—3.20 (2H, m), 4.14 (1H, dd, J=13.9, 6.9 Hz), 4.16 (1H, dd, J=13.9, 6.5 Hz), 6.81—6.94 (2H, m), 7.15 (1H, t, J=8.3 Hz), 7.18 (1H, d, J=8.3 Hz), 7.99 (1H, s), 7.99 (1H, br s), 8.10 (1H, s). *Anal.* Calcd for C₁₇H₁₉N₅: C, 69.60; H, 6.53; N, 23.87. Found: C, 69.36; H, 6.47: N, 23.66.

Ethyl 1-Methyl-4-imidazolecarboxylates (12) and Ethyl 1-Methyl-5-imidazolecarboxylates (13) Ethyl 1-methyl-4-imidazolecarboxylate (12a) and Ethyl 1-methyl-5-imidazolecarboxylate (13a)^{15a)}: Ethyl imidazolecarboxylate (11a, 3.0 g, 21.4 mmol) was added in portions to a mixture of NaH (60% in oil, 1.0 g, 25.0 mmol) and DMF (30 ml) with stirring at room temperature. After addition of MeI (3.6 g, 25.4 mmol) the mixture was stirred for 0.5 h, then diluted with H_2O_x and extracted with AcOEt. The extract was dried over MgSO₄. After removal of the solvent, the residual oil was chromatographed on a silica gel column with AcOEt–EtOH (100:1). The first fraction gave 13a, 15a0 colorless oil (1.2 g, 36%). 14-NMR (CDCl₃) δ : 1.37 (3H, t, J=7.1 Hz), 3.92 (3H, s), 4.33 (2H, q, J=7.1 Hz), 7.53 (1H, br s), 7.73 (1H, d, J=0.8 Hz).

4.33 (2H, q, J=7.1 Hz), 7.53 (1H, br s), 7.73 (1H, d, J=0.8 Hz). The second fraction afforded **12a**, ^{15a)} colorless oil (0.8 g, 24%). ¹H-NMR (CDCl₃) δ : 1.36 (3H, t, J=7.2 Hz), 3.74 (3H, s), 4.35 (2H, q, J=7.2 Hz), 7.46 (1H, br s), 7.59 (1H, d, J=1.4 Hz).

The imidazoles 12b and 13b were prepared from 11b in the same manner as described above.

12b^{15b}: Colorless oil, 26% yield. ¹H-NMR (CDCl₃) δ : 1.37 (3H, t, J=7.1 Hz), 2.52 (3H, s), 3.57 (3H, s), 4.36 (2H, q, J=7.1 Hz), 7.38 (1H, s).

13b^{15b-d}): Colorless oil, 26% yield. ¹H-NMR (CDCl₃) δ : 1.38 (3H, t, J=7.2 Hz), 2.48 (3H, s), 3.84 (3H, s), 4.34 (2H, q, J=7.2 Hz), 7.40 (1H, s).

References and Notes

- A part of this work was presented previously: S. Ohno, Y. Adachi, M. Koumori, K. Mizukoshi, M. Nagasaka, K. Ichihara, E. Kato, Abstracts of Papers, 14th Symposium on Medicinal Chemistry, Shizuoka, Dec. 1993, p. 17.
- For example, R. Wilbrandt, Angiology, 4, 183 (1953); A. Pöldre, Acta Med. Scand., 155, 437 (1956).
- 8) E. Flueckiger, F. Troxler, A. Hofmann, Ger. Offen., 1926045 (1969) [Chem. Abstr., 72, 43969b (1970)].

- E. C. Kornfeld, N. J. Bach, Eur. Patent Appl., 3667 (1979) [Chem. Abstr., 92, 181450q (1979)].
- 5) For example, K. O. Stumpe, R. Kolloch, M. Higuchi, F. Krück, H. Vetter, Lancet, 1977, 211; T. T. Yen, N. B. Stamm, J. A. Clemens, Life Sci., 25, 209 (1979); K. J. De Meirleir, F. Gerlo, W. Hollmann, L. Vanhaelst, Br. J. Clin. Pharmacol., 23, 633P (1987).
- L. Bernardi, G. Bosisio, S. Mantegani, O. Sapini, A. Temperilli,
 P. Salvati, E. di Salle, G. Arcari, G. Bianchi, Arzneim.-Forsch.,
 33, 1094 (1983);
 P. Salvati, A. M. Caravaggi, E. Lamberti, M. Monteggia, G. Bianchi, ibid.,
 33, 1098 (1983).
- L. Bernardi, L. Chiodini, S. Mantegani, D. Ruggieri, A. Temperilli,
 P. Salvati, Eur. Patent Appl., 126968 (1984) [Chem. Abstr., 102,
 149582y (1984)];
 P. Salvati, G. P. Bondiolotti, C. Caccia, F. Vaghi,
 G. Bianchi, Pharmacology, 38, 78 (1989).
- 8) For example, K. Kurachi, T. Aono, K. Koike, M. Suzuki, K. Momono, T. Tamada, T. Tamura, M. Igarashi, R. Ibuki, S. Sakamoto, H. Mizuguchi, R. Iizuka, Y. Nakamura, K. Katoh, K. Seki, Y. Tomota, O. Narita, T. Nishimura, T. Asoh, S. Tojoh, K. Katayama, M. Kusuda, Y. Nagata, Sanka To Rinsho, 48, 117 (1981); R. L. Perryman, A. D. Rogol, D. L. Kaiser, R. M. MacLeod, M. O. Thorner, J. Clin. Endoclinol. Metab., 53, 772 (1981); A. Grossman, P.-M. G. Bouloux, T. Lonergan, L. H. Rees, J. A. H. Wass, G. M. Besser, Clin. Endoclinol., 22, 611 (1985); G. Bise, C. Foletti, C. Beretta-Piccoli, P. Weidmann, W. H. Ziegler, R. Mordasini, C. Bachmann, Eur. J. Clin. Pharmacol., 29, 25 (1985).
- 9) The carboxylates $1a,^{10a)}$ $1b,^{10b)}$ $1c,^{10c)}$ $1d,^{10c-e)}$ and $1e^{10d-f)}$ were prepared from 14 by the known methods or our modifications thereof.

- a) A. Stoll, A. Hofmann, Helv. Chim. Acta, 29, 635 (1946); b) F. Troxler, A. Hofmann, ibid., 40, 2160 (1957); c) T. Fehr, P. A. Stadler, A. H. Hofmann, ibid., 53, 2197 (1970); d) A. M. Crider, R. Grubb, K. A. Bachmann, A. K. Rawat, J. Pharm. Sci., 70, 1319 (1981); e) J. Beneš, A. Černý, V. Miller, S. Kudrnáč, Collect. Czech. Chem. Commun., 48, 1333 (1983); f) J. Křepelka, A. Černý, R. Kotva, M. Semonský, ibid., 42, 1209 (1977).
- 11) The methanols 2a, 12) 2d, 10f) and $2e^{10f}$) are known compounds.
- A. Stoll, A. Hofmann, W. Schlientz, Helv. Chim. Acta, 32, 1947 (1949).
- 13) The tosylates $3a^{14a}$ and $3e^{14b}$ are known compounds.
- a) E. Schreier, Helv. Chim. Acta, 41, 1984 (1958); b) S. Mantegani,
 G. Arcari, A. M. Caravaggi, G. Bosisio, U. S. Patent 4321381 (1982) [Chem. Abstr., 97, 110254w (1982)].
- a) Y. Takeuchi, K. L. Kilk, L. A. Cohen, J. Org. Chem., 43, 3570 (1978);
 b) H. A. Staab, G. A. Schwalbach, Justus Liebigs Ann. Chem., 715, 128 (1968);
 c) P. Haake, L. P. Bausher, J. P. McNeal, J. Am. Chem. Soc., 93, 7045 (1971);
 d) B. L. Ram, G. R. Wellman, C. S. Labaw, J. Org. Chem., 47, 144 (1982).
- E. Belgodere, R. Bossio, V. Parrini, R. Pepino, *Arzneim.-Forsch.*, 30, 1051 (1980).
- 17) The signal of the 5-proton of 1-alkyltetrazole appears at a higher field than that of 2-alkyltetrazole. ^{18,19} The 5-proton signals of (5R,8S,10R)-6-methyl-8-(1-tetrazolylmethyl)ergoline¹⁹ and (5R,8S,10R)-6-methyl-8-(2-tetrazolylmethyl)ergoline¹⁹ appear at δ 8.46 and 8.69, respectively. That of **4u** appears at δ 8.46.
- 18) R. Raap, J. Howard, Can. J. Chem., 47, 813 (1969).
- 19) Details will be reported soon.