Preparatory Study for the Synthesis of the Starfish Alkaloid Imbricatine. Syntheses of 5-Arylthio-3-methyl-L-histidines

Masashi Ohba, Takafumi Mukaihira, and Tozo Fujii*

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan. Received March 11, 1994; accepted April 21, 1994

Chiral syntheses of 3-methyl-5-(phenylthio)-L-histidine (8a) and 3-methyl-5-(1-naphthalenylthio)-L-histidine (8b), selected as models for the asteroid alkaloid imbricatine (7), have been accomplished through a 10-step route starting from 4(5)-bromoimidazole (9). The key steps involved were methylation of 9, hydroxymethylation of 4-bromo-1-methyl-1H-imidazole (11), replacement of the 4-bromo group by an arylthio group in the aldehyde 14, and introduction of a chiral α -amino acid moiety into the chlorides 17a and 17b by the "bis-lactim ether" method. The synthesis of the 4-(4-methoxybenzyl)thio analogue 17c, carried out in a similar manner, concluded formal syntheses of ovothiols A and C (1 and 3).

Keywords arylthio-L-histidine chiral synthesis; bis-lactim ether; arylmethylation; hydroxymethylation imidazole; bromoimidazole *N*-methylation; imidazolium salt thermal *N*-demethylation

Several marine invertebrate animals contain 5-mercapto-3-methyl-L-histidine derivatives. Typical examples include ovothiol A (1) (and the corresponding disulfide) from unfertilized eggs of the sea urchin Paracentrotus lividus, 1) from the ripe gonads of the starfish Evasterias troschelii, 2) and from the eggs of the sea urchin Arbacia lixula, 1b,c) of the holothurian Holothuria tubulosa, 1b,c) and of the asteroids Marthasterias glacialis 16,c) and Astropecten aurantiacus 1b,c); ovothiol B (2) from the ovarian tissue of the scallop Chlamys hastata²); and ovothiol C (3) (and the corresponding disulfide) from the eggs of sea urchins P. lividus, 1b,c) Sphaerechinus granularis, 1b,c) and Strongylocentrotus purpuratus.^{2,3)} Other examples include adenochromines A, B, and C (4, 5, and 6), structural units of adenochrome [an iron(III)-binding peptide pigment] from the branchial heart of Octopus vulgaris 1c,4); and imbricatine (7), a benzyltetrahydroisoquinoline alkaloid, from the starfish Dermasterias imbricata.5)

Among these sulfur-containing histidine derivatives, imbricatine (7) is unique in that it is capable of inducing sea anemone (*Stomphia coccinea*) "swimming" behavior

at very low concentrations⁵⁾; it exhibits significant activity in antineoplastic assays⁵⁾; and it is an aromatic thioether in which 3-methyl-L-histidine and a benzyltetrahydroiso-quinoline with an α-amino acid structure are linked together. A partial form of structure 7 would be 5-arylthio-3-methyl-L-histidine (8), and thus we investigated the chiral synthesis of the 5-phenylthio and 5-(1-naphthale-nylthio) analogues (8a and 8b) in the present study as a preliminary to a total synthesis of imbricatine (7). A brief account of a part of the results reported here has been published.⁶⁾

The starting point selected for the synthesis of the targets 8a and 8b was 4(5)-bromoimidazole $(9)^{7}$ (Chart 1). On methylation with an excess of MeI in EtOH at 65°C for 10h in the presence of 1 molar equivalent of NaOH, 9 afforded the 1,3-dimethylimidazolium derivative 10 in 86%yield. This one-step procedure for dimethylation represents an abbreviation of the two-step procedure of Balaban and Pyman,8) who prepared 10 by methylation (with MeI) of 5-bromo-1-methylimidazole (12) or 4-bromo-1-methylimidazole (11), obtainable from 9 by methylation with MeI or Me₂SO₄; the former isomer (12) was always the major product.8-10) Pyrolysis of the 1,3-dimethylimidazolium derivative 10 was then effected at 235-245 °C and 28 mmHg according to the literature,8) and purification of the distillate by flash chromatography¹¹⁾ gave 11 and 12 in 61% and 13% yields, respectively. It was possible to convert the undesired isomer 12 into the desired isomer 11 through methylation with MeI⁸⁾ (to furnish 10) and

© 1994 Pharmaceutical Society of Japan

September 1994 1785

Table I. Monomethylation of 4(5)-Bromoimidazole (9) at Room Temperature

Solvent	Reagent ^{a)}	Additive ^{a)}	Time (h)	$Yield^{b)}$ (%)	
				11	12
HCONMe ₂	MeI (4.0)	Nil	6	0	66
EtOH	MeI (2.1)	NaOH (1.4)	4	48	38
EtOH	MeI (2.0)	NaOH (1.4)	6	51	42
EtOH	MeI (3.0)	NaOH (1.3)	24	44	28°)
EtOH	Me_2SO_4 (1.1)	NaOH $(1.3)^{d}$	25	37	27

a) The figure in parentheses refers to the amount of a reagent or an additive in molar equivalent, relative to the amount of 9. b) Based on the amounts of products separated by flash chromatography. 11) c) 4-Bromo-1,3-dimethyl-1H-imidazolium iodide (10) was also isolated in 8% yield by filtration of the reaction mixture. d) Patterned after the literature procedure. 9)

subsequent pyrolysis (of the resulting 10), thus raising the total yield of 11.

An alternative synthetic approach to 11 would be regioselective monobromination of 1-methylimidazole or regioselective monomethylation of 4(5)-bromoimidazole (9). However, it has been reported that treatment of 1-methylimidazole with 2,4,4,6-tetrabromocyclohexa-2,5-dienone (1 molar eq) did not furnish 11 but the undesired isomer 12 in 66% yield. We therefore examined the monomethylation of 9 at room temperature under several reaction conditions. It may be seen from Table I that treatment of 9 with MeI in N,N-dimethylformamide (DMF) produced only the undesired isomer 12 in 66% yield, in general agreement with the previous results. $^{8-10}$ On the other hand, methylation of 9 in EtOH with MeI or Me₂SO₄ in the presence of NaOH gave an approxi-

mately 1.4:1 mixture of 11 and 12 in 64—93% yield. The observed preference for the formation of 11 over that of 12 under alkaline conditions was in general agreement with what Boulton and Coller⁹⁾ briefly mentioned in their paper, but it was still insufficient to make feasible the above direct monomethylation approach.

Yet another approach to 11 would be selective debromination of 2,4,5-tribromo-1-methylimidazole. Katritzky et al. 13) have found that treatment of the tribromide with ethylmagnesium bromide (2 molar eq) in boiling benzene and subsequent hydrolysis did not give the desired monobromide 11 but the 4,5-dibromo derivative. On the other hand, Stensiö et al. 14) obtained 4(5)-bromoimidazole (9) in 83% yield when N-unsubstituted 2,4,5-tribromo-imidazole was treated with n-BuLi in tetrahydrofuran (THF) at 0°C, followed by hydrolysis. Application of the latter procedure to 2,4,5-tribromo-1-methylimidazole in the present study, however, gave a complicated mixture of many products, from which we were unable to obtain the desired monobromide 11.

In reaching the aldehyde 14 from 11, we first tried to take advantage of a Vilsmeier reaction. However, treatment of 11 in DMF with POCl₃/DMF reagent (prepared at 0 °C) at room temperature for 2 h did not afford 14 and resulted in 88% recovery of 11. This failure led us to examine hydroxymethylation at C(5) instead of the Vilsmeier reaction. Although N(1)-substituted imidazoles usually undergo hydroxymethylation at C(2),¹⁵⁾ 1,4-dimethylimidazole is known to give the 5-hydroxymethyl derivative in 44% yield on treatment with 40% aqueous CH₂O in a sealed tube at 125 °C for 6 h.^{15a)} On the other hand, 4-chloro-1-methylimidazole, an analogue

1786 Vol. 42, No. 9

of 11, does not undergo hydroxymethylation under similar reaction conditions. 15a) We found that application of the hydroxymethylation conditions of Godefroi et al. 16) to 11 [35% aqueous CH₂O, AcOH-AcONa buffer (pH 4.6), reflux, 24h] furnished the 5-hydroxymethyl derivative 13 in 76% yield, together with the 2,5-bis(hydroxymethyl) derivative 23 in 7% yield. The correctness of the structure of 13 was supported by its hydrogenolytic debromination (10% Pd-C/H₂, MeOH, 1 atm, room temp., 30 min), which led to the formation of known 1-methyl-1H-imidazole-5methanol (24) in 69% yield. The occurrence of hydroxymethylation mainly at C(5) may be attributable to the electron-donating resonance effect $(+R \text{ effect})^{17}$ of the C(4)-Br group on the C(5) atom. Oxidation of the alcohol 13 was then effected with active MnO₂ in boiling CHCl₃ for 1 h, producing the corresponding aldehyde 14 in 96% yield. Alternatively, oxidation of 13 with pyridinium dichromate in CH₂Cl₂ at 26 °C for 5 h also gave 14, but in only 51% yield.

Separate treatments of 14 in DMF with thiophenol $(120\,^{\circ}\text{C}, 3\,\text{h})$, with 1-naphthalenethiol $(100\,^{\circ}\text{C}, 3\,\text{h})$, and with 4-methoxy- α -toluenethiol $(110\,^{\circ}\text{C}, 1\,\text{h})$ in the presence of NaH provided the corresponding thioethers 15a, 15b, and 15c in 73%, 83%, and 73% yields, respectively. The thioethereal aldehydes 15a—c were then converted into the alcohols 16a (97% yield), 16b (97%), and 16c (100%) by NaBH₄ reduction (MeOH, room temp., 20—30 min). Chlorinations of 16a—c with SOCl₂ (at 0 °C for 30 min, then at room temp. for 30 min) gave the chlorides 17a—c, which were isolated in the form of crude solid hydrochlorides (17a—c·HCl) in 97—98% yields. These salts were so unstable in H₂O, reverting to the alcohols 16a—c, that an attempt to obtain the free bases themselves was abandoned.

Coupling of $17a \cdot HCl$ with the organolithium reagent 18 generated in situ from (2R)-(-)-2,5-dihydro-3,6-dimethoxy-2-isopropylpyrazine and n-BuLi in THF/hexane at -78 °C, an application of the "bis-lactim ether" method of Schöllkopf, ¹⁸⁾ was carried out at -50 °C for 18 h, affording the trans isomer 19a and the cis isomer 20a in 70% and 5% yields, respectively. The stereochemical assignments to 19a and 20a were based on their ratio of formation $(19a : 20a = 14 : 1)^{18}$ and comparison of the chemical shifts of their C(2)-protons. In CDCl₃, the

 $\begin{array}{c} \text{conformation A} \\ \text{(for the } \textit{trans} \text{ isomer 19)} \end{array}$

C(2)-proton of **19a** resonated at δ 3.77 and that of **20a** at δ 3.90. Following Schöllkopf, ^{18a)} the *trans* and *cis* isomers of this heterocycle should have conformations A and B, respectively. It may be seen from conformation A that the C(2)-H is located within the shielding cone of the imidazole ring, causing its signal to appear at higher field than that of conformation B. This explains the upfield shift (0.13 ppm) observed for the C(2)-H signal of the *trans* isomer **19a**, relative to that of the *cis* isomer **20a**. A similar coupling reaction of **17b**·HCl with the organolithium reagent **18** furnished the *trans* isomer **19b** [¹H-NMR (CDCl₃) δ : 3.77 [C(2)-H]] in 88% yield, together with the *cis* isomer **20b** [¹H-NMR (CDCl₃) δ : 3.89 [C(2)-H]] in 5% yield.

The trans bis-lactim ethers 19a and 19b were then hydrolyzed in MeOH with 0.25 N aqueous HCl at room temperature for 1.5 h, producing the amino esters 21a and 21b in 98% and 84% yields, respectively. Both amino esters were shown to be of at least 98% enantiomeric purity, as determined by ¹H-NMR spectroscopy using a chiral shift reagent. Finally, separate hydrolyses of 21a and 21b with boiling 6 N aqueous HCl for 1 h gave the target compounds 8a and 8b in 83% and 86% yields, respectively. The structures, absolute configurations, and high optical purities of 8a and 8b were confirmed by desulfurization (Raney Ni, aqueous EtOH, reflux, 8h), which led in each case to the formation of known 3-methyl-L-histidine (22) in 83—87% yield.

In conclusion, the success in the above 10-step synthetic route to 5-arylthio-3-methyl-L-histidines (8a, b) from 4(5)-bromoimidazole (9) appears to open a way for a total synthesis of the structurally analogous starfish alkaloid, imbricatine (7). The first half of this route in series c (9 \rightarrow \rightarrow 17c·HCl) represents new syntheses of ovothiols A and C (1 and 3) in a formal sense, since the alcohol 16c obtained by a different multistep synthesis 19) has already been led to 1 and 3 through 17c·HCl via a similar "bislactim ether" route. 19b, c)

Experimental

General Notes All melting points were determined by using a Yamato MP-1 capillary melting point apparatus and are corrected. TLC was run on Merck silica gel 60 F_{254} plates (0.25-mm thickness) or Merck aluminum oxide F_{254} (type E) plates (0.25 mm), and spots were detected by means of UV absorbance measurement (at 254 nm) and/or spraying with the standard KMnO₄ or I_2 –KI reagent. Flash chromatography¹¹⁾ was carried out by using Merck silica gel 60 (No. 9385). Spectra reported herein were recorded on a Hitachi 320 UV spectrophotometer; a JASCO A-202 IR spectrophotometer; a Hitachi M-80 mass spectrometer; or a JEOL JNM-FX-100 NMR spectrometer (1 H 100 MHz and 13 C 25.0 MHz), equipped with a 13 C Fourier-transform NMR system, at 25 °C. The 1 H-NMR spectra of the arylthiohistidine derivatives 8a and 8b were

conformation B (for the cis isomer 20)

September 1994 1787

recorded on a JEOL JNM-GSX-500 (1 H 500 MHz) instrument. Unless otherwise noted, chemical shifts are reported in ppm downfield from internal Me₄Si. Optical rotations were measured with a JASCO DIP-181 polarimeter using a 1-dm sample tube. Elemental analyses and MS measurements were performed by Mr. Y. Itatani and his associates at Kanazawa University. The following abbreviations are used: br = broad, d=doublet, dd=doublet-of-doublets, m=multiplet, q=quartet, s= singlet, sh=shoulder, t=triplet.

4-Bromo-1,3-dimethyl-1*H***-imidazolium Iodide (10)** i) From **9**: A stirred mixture of 4(5)-bromoimidazole (**9**)⁷⁾ (76.41 g, 0.520 mol), MeI (443.4 g, 3.124 mol), and NaOH (of 95% purity) (26.28 g, 0.624 mol) in abs. EtOH (1000 ml) was heated in an oil bath kept at 65 °C for 10 h. After cooling, the reaction mixture was kept in a refrigerator overnight, and the precipitate that deposited was filtered off, washed with cold abs. EtOH, and dried to give a first crop (131.7 g, 84%) of **10** as colorless needles, mp 197—199.5 °C (dec.) [lit.⁸⁾ mp 202—204 °C (dec.)]. The filtrate and washings were combined, concentrated to a volume of *ca*. 200 ml, and then kept in a refrigerator. The colorless solid (5.93 g) that deposited was filtered off and recrystallized from abs. EtOH (40 ml) to yield a second crop (3.82 g, 2%) of **10** as colorless needles, mp 195—200 °C (dec.). The total yield of **10** was 135.5 g (86%). Both samples thus obtained were identical (by comparison of the IR spectrum) with the one prepared by method (ii).

ii) From 12: A solution of 5-bromo-1-methyl-1*H*-imidazole (12) (*vide infra*) (2.68 g, 16.6 mmol) in MeI (20 ml) was heated under reflux for 2.5 h.⁸⁾ The reaction mixture was concentrated *in vacuo* to leave a slightly yellowish solid (4.94 g). Recrystallization of the solid from EtOH (40 ml) afforded 10 (4.83 g, 96%) as colorless needles, mp 199.5—200.5 °C (dec.) [lit.⁸⁾ mp 202—204 °C (dec.)].

Pyrolysis of 10 Leading to 4-Bromo-1-methyl-1*H*-imidazole (11) and 5-Bromo-1-methyl-1*H*-imidazole (12) The iodide salt 10 (16.76 g, 55.3 mmol) was placed in a Claisen-type distilling flask and heated in an atmosphere of N₂ at 28 mmHg in an oil bath kept at 235—245 °C,8) yielding a brown oily distillate (7.13 g), bp 135—145 °C (28 mmHg). The distillate was then purified by means of flash chromatography¹¹ (silica gel, AcOEt). Earlier fractions gave 11 (5.41 g, 61%) as an orange oil, 1 H-NMR (CDCl₃) δ : 3.68 [3H, s, N(1)-Me], 6.86 [1H, d, J=1.7 Hz, C(5)-H], 7.31 [1H, br, C(2)-H] (lit.9) δ : 3.70, 6.87, 7.32); 1 H-NMR (Me₂SO- d_6) δ : 3.63 [3H, s, N(1)-Me], 7.25 [1H, d, J=1.6 Hz, C(5)-H], 7.57 [1H, br, C(2)-H] (lit.20) δ : 3.65, 7.27, 7.58).

Later fractions from the above chromatography furnished **12** (1.16 g, 13%) as an orange oil, ¹H-NMR (CDCl₃) δ : 3.63 [3H, d, J=0.4 Hz, N(1)-Me], 7.02 [1H, d, J=1.0 Hz, C(4)-H], 7.56 [1H, br, C(2)-H] (lit.¹⁰) δ : 3.65, 6.99, 7.50); ¹H-NMR (Me₂SO- d_6) δ : 3.58 [3H, d, J=0.4 Hz, N(1)-Me], 6.98 [1H, d, J=1.1 Hz, C(4)-H], 7.78 [1H, br, C(2)-H] (lit.²⁰) δ : 3.60, 7.00, 7.81).

Monomethylation of 4(5)-Bromoimidazole (9) Methylations of 9 with MeI in DMF (5 ml/3.01 mmol 9), with MeI in EtOH (1.2—2.5 ml/1 mmol 9) in the presence of NaOH, and with Me₂SO₄ in EtOH (1.5 ml/1 mmol 9) in the presence of NaOH were effected at room temperature under the conditions specified in Table I. Each reaction mixture was then concentrated *in vacuo*. In the case of the methylation with Me₂SO₄, however, the reaction mixture had been treated with 10% aqueous NH₃ before concentration in order to destroy the excess Me₂SO₄. The resulting residue was partitioned between CHCl₃ and H₂O or 10% aqueous K₂CO₃ (in the case of the methylation with MeI/DMF without added base), and the CHCl₃ extracts were combined, dried over anhydrous MgSO₄, and concentrated *in vacuo*. The residue was then purified by flash chromatography¹¹⁾ (silica gel, AcOEt), giving 11 from earlier fractions and 12 from later fractions. The results are summarized in Table I.

Hydroxymethylation of 11 Leading to 4-Bromo-1-methyl-1*H*-imidazole-5-methanol (13) and 4-Bromo-1-methyl-1*H*-imidazole-2,5-dimethanol (23) A stirred mixture of 11 (804 mg, 4.99 mmol), 35% (w/w) aqueous CH₂O (8 ml), AcOH (0.67 ml), and AcONa·3H₂O (1.36 g, 10 mmol) was heated under reflux for 24 h. The reaction mixture was concentrated *in vacuo*, and the residue was co-evaporated with two 3.5-ml portions of H₂O *in vacuo* to leave a slightly yellow syrup, which was mixed with H₂O (3.5 ml). The aqueous mixture was brought to pH 10 with 4 N aqueous KOH, saturated with NaCl, and then extracted with CHCl₃ by using a continuous extractor for 20 h. The CHCl₃ extracts were combined, dried over anhydrous MgSO₄, and concentrated *in vacuo* to leave a slightly yellow oil (1.60 g), which was subjected to flash chromatography¹¹ [silica gel, CHCl₃–MeOH (10:1, v/v)]. Earlier fractions provided 13 (728 mg,

76%) as a colorless solid, mp 112—121.5 °C. Recrystallization of the solid from benzene afforded an analytical sample of **13** as colorless needles, mp 124—125 °C; MS m/z: 192, 190 (M⁺); UV $\lambda_{\rm max}^{\rm MeOH}$ 222.5 nm (ε 5460); IR $\nu_{\rm max}^{\rm Nujol}$ 3200 cm⁻¹ (OH); ¹H-NMR (Me₂SO- $d_{\rm e}$) δ : 3.65 [3H, d, J=0.5 Hz, N(1)-Me], 4.39 (2H, d, J=5 Hz, CH₂OH), 5.14 (1H, t, J=5 Hz, CH₂OH), 7.60 [1H, dull s, C(2)-H]. *Anal.* Calcd for C₅H₇BrN₂O: C, 31.44; H, 3.69; N, 14.67. Found: C, 31.33; H, 3.84; N, 14.65.

Later fractions of the above chromatography gave the 2,5-bis(hydroxymethyl) derivative **23** (82 mg, 7%) as a colorless solid, mp 138—142 °C. Recrystallization from AcOEt furnished an analytical sample of **23** as colorless prisms, mp 151—152 °C; MS m/z: 222, 220 (M⁺); UV $\lambda_{\rm max}^{\rm MeOH}$ 229.5 nm (ϵ 6940); IR $\nu_{\rm max}^{\rm Nujol}$ 3330 cm⁻¹ (OH); ¹H-NMR (Me₂SO- d_6) δ : 3.63 [3H, s, N(1)-Me], 4.39 and 4.42 (2H each, d, J=5 Hz each, two CH₂OH's), 5.15 and 5.34 (1H each, t, J=5 Hz each, two CH₂OH's). *Anal.* Calcd for C₆H₉BrN₂O₂: C, 32.60; H, 4.10; N, 12.67. Found: C, 32.56; H, 4.10; N, 12.69.

Conversion of 13 into 1-Methyl-1H-imidazole-5-methanol (24) A solution of 13 (96 mg, 0.50 mmol) in MeOH (5 ml) was hydrogenated over 10% Pd-C (100 mg) at atmospheric pressure and room temperature for 30 min. The catalyst was removed by filtration and washed with MeOH (10 ml). The filtrate and washings were combined and concentrated in vacuo to leave a colorless oil, which was dissolved in H2O (5 ml). The aqueous solution was made alkaline with 10% aqueous NaOH and extracted with CHCl₃ by using a continuous extractor for 20 h. The CHCl₃ extracts were combined, dried over anhydrous MgSO₄, and concentrated in vacuo to leave the debrominated derivative 24 (39 mg, 69%) as a colorless solid, mp 109-110.5 °C. Recrystallization from benzene gave a pure sample (32 mg, 57%) as colorless prisms, mp 114—115.5°C (lit.21) mp 113—114°C); IR ν_{max}^{Nujol} 3200 cm⁻¹ (OH); ¹H-NMR (Me₂SO- d_6) δ : 3.60 [3H, d, J=0.5 Hz, N(1)-Me], 4.42 (2H, dull s, CH_2OH), 6.77 [1H, dull s, C(4)-H], 7.53 [1H, dull s, C(2)-H].

4-Bromo-1-methyl-1*H***-imidazole-5-carbaldehyde (14)** i) Oxidation of **13** with Active MnO₂: A stirred mixture of **13** (5.74 g, 30.0 mmol) and active γ-MnO₂²² (dried at 100 °C for 10 h before use) (26.08 g, 0.30 mol) in CHCl₃ (100 ml) was heated under reflux for 1 h. After cooling, the insoluble solid was removed by filtration and washed with CHCl₃ (500 ml). The filtrate and washings were combined and concentrated *in vacuo* to leave **14** (5.47 g, 96%) as a colorless solid, mp 88—89 °C. Recrystallization from hexane yielded an analytical sample as colorless prisms, mp 89.5—90.5 °C; MS m/z: 190, 188 (M⁺); UV λ_{max}^{MeOH} 232 nm (sh) (ε 2960), 272 (12000); IR ν_{max}^{Nojol} 1664 cm⁻¹ (ArCHO); ¹H-NMR (CDCl₃) δ: 3.93 [3H, d, J=0.7Hz, N(1)-Me], 7.51 [1H, dull s, C(2)-H], 9.78 (1H, d, J=1.0 Hz, CHO). *Anal.* Calcd for C₅H₅BrN₂O: C, 31.77; H, 2.67; N, 14.82. Found: C, 31.75; H, 2.71; N, 14.90.

ii) Oxidation of 13 with Pyridinium Dichromate (PDC): A mixture of 13 (191 mg, 1.00 mmol) and PDC (of 98% purity) (576 mg, 1.5 mmol) in dry $\mathrm{CH_2Cl_2}$ (2 ml) was stirred at 26 °C for 5 h. ²³⁾ The reaction mixture was combined with ether (5 ml), and the insoluble material was removed by filtration and washed with ether (10 ml). The filtrate and washings were combined and concentrated *in vacuo* to leave a slightly yellow solid (127 mg). Recrystallization of the solid from hexane (15 ml) afforded 14 (96 mg, 51%) as colorless prisms, mp 89.5—90 °C. This sample was identical (by comparison of the IR spectrum and TLC mobility) with the one obtained by method (i).

1-Methyl-4-(phenylthio)-1H-imidazole-5-carbaldehyde (15a) A solution of 14 (2.84 g, 15.0 mmol) in dry DMF (50 ml) was added dropwise to a stirred solution of thiophenol (1.83 g, 16.6 mmol) and an oil dispersion (781 mg) containing 60% NaH (19.5 mmol) in dry DMF (50 ml). The resulting mixture was heated at 120 °C in an atmosphere of N₂ for 3 h. After cooling, the reaction mixture was concentrated in vacuo to leave a brown oil, which was partitioned between H₂O and CH₂Cl₂. The CH₂Cl₂ extracts were combined, washed with saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated in vacuo to leave a brown oil. Purification of the oil by means of flash chromatography¹¹⁾ [silica gel, AcOEt–CH $_2$ Cl $_2$ (1:4, v/v)] furnished 15a (2.38 g, 73%) as a yellowish solid, mp 69.5-71 °C. Recrystallization from hexane-AcOEt (6:1, v/v) yielded an analytical sample as colorless prisms, mp 70—71.5 °C; MS m/z: 218 (M⁺); UV $\lambda_{\text{max}}^{\text{MeOH}}$ 246 nm (ϵ 12500), 298 (4050); IR $\nu_{\text{max}}^{\text{Nujol}}$ 1645 cm⁻¹ (ArCHO); ¹H-NMR (CDCl₃) δ : 3.94 [3H, d, J=0.5 Hz, N(1)-Me], 7.2—7.5 (5H, m, SPh), 7.60 [1H, dull s, C(2)-H], 10.00 (1H, d, J = 1.0 Hz, CHO). Anal. Calcd for $C_{11}H_{10}N_2OS$: C, 60.53; H, 4.62; N, 12.83. Found: C, 60.59; H, 4.59; N, 12.91.

1-Methyl-4-(1-naphthalenylthio)-1*H*-imidazole-5-carbaldehyde (15b) A solution of 14 (284 mg, 1.50 mmol) in dry DMF (5 ml) was added to a stirred mixture of 1-naphthalenethiol²⁴ [bp 88—92 °C (1 mmHg) [lit.²⁵) bp 85—88 °C (0.27 mmHg)]; n_D^{20} 1.6803] (269 mg, 1.68 mmol) and an oil dispersion (73 mg) containing 60% NaH (1.83 mmol) in dry DMF (5 ml). The resulting mixture was heated at 100 °C in an atmosphere of N₂ for 3 h. The reaction mixture was worked up in a manner similar to that described above for 15a, and the crude oily product was purified by flash chromatography¹¹ (silica gel, AcOEt–CH₂Cl₂ (1:4, v/v)] to yield 15b (334 mg, 83%) as a yellowish syrup, MS m/z: 268 (M⁺); IR $v_{\rm mix}^{\rm CHCl_3}$ 1668 cm⁻¹ (ArCHO); ¹H-NMR (CDCl₃) δ : 3.90 [3H, d, J=0.5 Hz, N(1)-Me], 7.3—7.9 [7H, m, C(2′—7′)-H's and C(2)-H], 8.3—8.5 [1H, m, C(8′)-H], 10.07 (1H, d, J=1.0 Hz, CHO). ²⁶

4-[[(4-Methoxyphenyl)methyl]thio]-1-methyl-1H-imidazole-5-carbaldehyde (15c) A solution of 14 (3.78 g, 20.0 mmol) in dry DMF (50 ml) was added dropwise to a stirred solution of 4-methoxy-α-toluenethiol (3.70 g, 24.0 mmol) and an oil dispersion (960 mg) containing 60% NaH (24.0 mmol) in dry DMF (50 ml). The resulting mixture was heated at 110 °C in an atmosphere of N₂ for 1 h. The reaction mixture was worked up as described above for 15a, and the crude oily product was purified by flash chromatography¹¹⁾ [silica gel, hexane-AcOEt (2:5, v/v)] to give 15c (3.82 g, 73%) as a yellow solid, mp 79.5—80.5 °C. Recrystallization of the solid from hexane yielded an analytical sample as slightly yellowish needles, mp 80—81.5 °C; MS m/z: 262 (M⁺); UV λ_{max}^{MeOH} 230.5 nm (ϵ 15800), 255 (sh) (8830), 277 (sh) (6200), 285 (5840), 300 (5320); IR $v_{\text{max}}^{\text{Nujol}}$ 1650 cm⁻¹ (ArCHO); 1 H-NMR (CDCl₃) δ : 3.77 [3H, s, C(4')-OMe], 3.87 [3H, d, J = 0.5 Hz, N(1)-Me], 4.25 [2H, s, C(4)-SC \underline{H}_2 Ar], 6.79 [2H, d, J=9 Hz, C(3')-H and C(5')-H], 7.18 [2H, d, J=9 Hz, C(2')-H and C(6')-H], 7.55 [1H, dull s, C(2)-H], 9.64 [1H, d, J=0.7Hz, C(5)-CHO].²⁶⁾ Anal. Calcd for C₁₃H₁₄N₂O₂S: C, 59.52; H, 5.38; N, 10.68. Found: C, 59.57; H, 5.40; N, 10.52.

1-Methyl-4-(phenylthio)-1H-imidazole-5-methanol (16a) A solution of 15a (2.35 g, 10.8 mmol) in MeOH (50 ml) was stirred at room temperature, and NaBH₄ (408 mg, 10.8 mmol) was added in portions. After the mixture had been stirred at room temperature for 30 min, acetone (5 ml) was added. Concentration of the resulting mixture under vacuum left a slightly yellowish solid, which was partitioned by extraction with a mixture of H₂O and CH₂Cl₂. The CH₂Cl₂ extracts were combined, dried over anhydrous MgSO₄, and concentrated in vacuo to leave 16a $(2.30\,\mathrm{g}, 97\%)$ as a colorless solid, mp 128—131 °C. Recrystallization from benzene furnished an analytical sample as colorless needles, mp 130.5-131.5 °C; MS m/z: 220 (M⁺); UV $\lambda_{\text{max}}^{\text{MeOH}}$ 240 nm (ε 12600), 245 (sh) (11800); IR $v_{\text{max}}^{\text{Nujol}}$ 3150 cm⁻¹ (OH); ¹H-NMR (Me₂SO-d₆) δ : 3.70 [3H, s, N(1)-Me], 4.52 (2H, d, J=5 Hz, CH₂OH), 5.17 (1H, t, J=5 Hz, CH₂OH), 6.9—7.3 (5H, m, SPh), 7.75 [1H, s, C(2)-H]. Anal. Calcd for C₁₁H₁₂N₂OS: C, 59.98; H, 5.49; N, 12.72. Found: C, 60.16; H, 5.48; N. 12.76.

1-Methyl-4-(1-naphthalenylthio)-1*H*-imidazole-5-methanol (16b) A solution of 15b (304 mg, 1.13 mmol) in MeOH (10 ml) was stirred at room temperature, and NaBH₄ (43 mg, 1.14 mmol) was added portionwise. After the mixture had been stirred at room temperature for 20 min, acetone (1 ml) was added. The resulting mixture was concentrated *in vacuo*, and the residual solid was partitioned between H₂O and AcOEt. The AcOEt extracts were combined, dried over anhydrous MgSO₄, and concentrated *in vacuo* to leave 16b (296 mg, 97%) as a colorless solid, mp 168—169 °C. Recrystallization of the solid from benzene gave an analytical sample as colorless needles, mp 169—170 °C; MS m/z: 270 (M⁺); UV $\lambda_{\max}^{\text{MeoPl}}$ 220 nm (ε 55400), 233 (sh) (24600), 301 (8600), 317 (sh) (5790); IR $\nu_{\max}^{\text{Nujoi}}$ 3145 cm⁻¹ (OH); ¹H-NMR (Me₂SO- d_6) δ: 3.72 [3H, s, N(1)-Me], 4.55 (2H, d, J=5 Hz, CH₂OH), 5.19 (1H, t, J=5 Hz, CH₂OH), 7.0—8.0 [7H, m, C(2'—7')-H's and C(2)-H], 8.2—8.4 [1H, m, C(8')-H]. ²⁶⁾ Anal. Calcd for C₁₅H₁₄N₂OS: C, 66.64; H, 5.22; N, 10.36. Found: C, 66.88; H, 5.16; N, 10.29.

4-[[(4-Methoxyphenyl)methyl]thio]-1-methyl-1*H*-imidazole-5-methanol (16c) Reduction of 15c (1.32 g, 5.03 mmol) with NaBH₄ (191 mg, 5.05 mmol) in MeOH (50 ml) and work-up of the reaction mixture were effected in a manner similar to that described above for 16a, yielding 16c (1.33 g, 100%) as a slightly yellowish solid, mp 102—112.5 °C. Recrystallization of the solid from benzene gave an analytical sample 16c as colorless scales, mp 113.5—115 °C (lit. mp 113—114 °C^{19b}); mp 103—104 °C^{19c}); MS m/z: 264 (M⁺); UV $\lambda_{\text{max}}^{\text{MoOH}}$ 229 nm (ε 17000), 275 (sh) (1980), 284 (sh) (1440); IR $\nu_{\text{max}}^{\text{Nijol}}$ 3125 cm⁻¹ (OH); $\nu_{\text{cHCl}3}^{\text{CHCl}3}$ 3570 cm⁻¹ (OH); ¹H-NMR (CDCl₃) δ: 0.8—1.2 (1H, br, CH₂OM), 3.61 [3H, s, N(1)-Me], 3.76 [3H, s, C(4')-OMe], 3.84 [2H, s, C(4)-SCH₂Ar], 4.24

(2H, dull s, CH₂OH), 6.77 [2H, d, J=9 Hz, C(3')-H and C(5')-H], 6.97 [2H, d, J=9 Hz, C(2')-H and C(6')-H], 7.45 [1H, s, C(2)-H]²⁶); 13 C-NMR (CDCl₃) δ : 32.2 (q, NMe), 39.6 (t, SCH₂), 53.1 (t, CH₂OH), 55.2 (q, OMe), 113.5 [d, C(3') and C(5')], 130.0 [d, C(2') and C(6')], 131.0 [s, C(4) and C(5)], 135.5 [s, C(1')], 138.7 [d, C(2)], 158.5 [s, C(4')]. 26 Anal. Calcd for C₁₃H₁₆N₂O₂S: C, 59.07; H, 6.10; N, 10.60. Found: C, 59.02; H, 6.16; N, 10.58. The 1 H- and 13 C-NMR spectral data matched those reported^{19c}) for authentic **16c**.

5-(Chloromethyl)-1-methyl-4-(phenylthio)-1*H*-imidazole Hydrochloride (17a·HCl) The alcohol 16a (1.43 g, 6.49 mmol) was added in portions to SOCl₂ (20 ml) at 0 °C with stirring. After having been stirred at 0 °C for 30 min and then at room temperature for a further 30 min, the reaction mixture was concentrated *in vacuo* to leave a yellow syrup. The syrup was co-evaporated with three 20-ml portions of dry THF, and the residue was triturated with dry THF (10 ml). The insoluble solid that resulted was collected by filtration, washed with dry THF (5 ml), and dried to give 17a·HCl (1.74 g, 97%) as a colorless solid. This sample was directly used in the next arylmethylation step without further purification.

5-(Chloromethyl)-1-methyl-4-(1-naphthalenylthio)-1*H*-imidazole Hydrochloride (17b·HCl) Chlorination of 16b (946 mg, 3.50 mmol) with SOCl₂ (10 ml) and work-up of the reaction mixture were carried out in a manner similar to that described above for 17a·HCl, providing 17b·HCl (1.11 g, 98%) as a colorless solid. This sample was directly used in the next arylmethylation step without further purification.

5-(Chloromethyl)-4-[[(4-methoxyphenyl)methyl]thio]-1-methyl-1*H*-imidazole Hydrochloride (17c·HCl) Chlorination of 16c (1.40 g, 5.30 mmol) with SOCl₂ (20 ml) and work-up of the reaction mixture were conducted in a manner similar to that described above for 17a·HCl, giving 17c·HCl (1.66 g, 98%) as a slightly yellowish solid.

(2R-trans)-2,5-Dihydro-3,6-dimethoxy-2-(1-methylethyl)-5-[[1-methyl-4-(phenylthio)-1H-imidazol-5-yl]methyl]pyrazine (19a) and (2R-cis)-2,5-Dihydro-3,6-dimethoxy-2-(1-methylethyl)-5-[[1-methyl-4-(phenylthio)-1*H*-imidazol-5-yl]methyl]pyrazine (20a) A stirred solution of (2R)-(-)-2,5-dihydro-3,6-dimethoxy-2-isopropylpyrazine²⁷⁾ (369 mg, 2.00 mmol) in dry THF (7 ml) was cooled to -78 °C in an atmosphere of N_2 , and a 1.05 M solution (1.90 ml, 2.00 mmol) of butyllithium in hexane was added dropwise over 10 min. After the mixture had been stirred at -78 °C for 15 min, 17a HCl (220 mg, 0.80 mmol) was added in portions, and the resulting mixture was stirred first at -78°C for 1 h and then at -50 °C for 18 h. The reaction was then quenched by adding saturated aqueous NH₄Cl (3 ml) at -50 °C. After having been warmed to room temperature, the aqueous layer was separated from the organic layer and extracted with ether $(2 \times 3 \text{ ml})$. The ethereal extracts and the above organic layer were combined, washed with saturated aqueous NaCl (3 ml), dried over anhydrous Na₂SO₄, and concentrated in vacuo to leave a yellow oil (492 mg), which was subjected to flash chromatography¹¹⁾ [silica gel, CH₂Cl₂-MeOH (29:1, v/v)]. Earlier fractions furnished a colorless solid (243 mg), which was purified by flash chromatography¹¹⁾ [silica gel, acetone-hexane (1:2, v/v)] to give 19a (215 mg, 70%) as a colorless solid, mp 114-116°C. Recrystallization from hexane-AcOEt (12:1, v/v) yielded an analytical sample of 19a as colorless prisms, mp 117.5—118.5 °C; $[\alpha]_D^{20}$ -5.80° (c=0.50, CHCl₃); MS m/z: 386 (M⁺); UV $\lambda_{\text{max}}^{\text{MeOH}}$ 240 nm (ϵ 13200), 247 (sh) (12100); IR $\nu_{\text{max}}^{\text{Nujol}}$ 1690 cm⁻¹ (C=N); ¹H-NMR (CDCl₃) δ : 0.61 and 0.96 (3H each, d, J = 6.5 Hz, CHMe₂), 1.95—2.3 (1H, m, CHMe₂), 2.84 (1H, dd, J = 14.5 and 8.5 Hz) and 3.41 (1H, dd, J = 14.5 and 5 Hz) [C(5')-CH₂], 3.61, 3.67, and 3.71 [3H each, s, N(1')-Me and two OMe's], 3.77 [1H, dd, J = 3.5 Hz each, C(2)-H], 4.0—4.2 [1H, m, C(5)-H], 6.95—7.2 (5H, m, SPh), 7.50 [1H, s, C(2')-H].²⁸⁾ Anal. Calcd for $C_{20}H_{26}N_4O_2S$: C, 62.15; H, 6.78; N, 14.50. Found: C, 62.04; H, 6.95; N, 14.49.

Later fractions in the above first chromatography provided a yellow syrup (56 mg), which was purified by two successive flash chromatographies 11 [silical gel, acetone–hexane (1:2, v/v); silica gel, CH₂Cl₂–EtOH (29:1, v/v)] to give **20a** (16 mg; 5%) as a slightly yellowish oil, [α] $_{\rm D}^{20}$ – 68.9° (c=0.50, CHCl₃); MS m/z: 386 (M⁺); ¹H-NMR (CDCl₃) δ : 0.71 and 1.05 (3H each, d, J=6.5 Hz, CHMe₂), 1.95—2.3 (1H, m, CHMe₂), 2.84 (1H, dd, J=14.5 and 9 Hz) and 3.35 (1H, dd, J=14.5 and 5 Hz) [C(5')-CH₂], 3.60, 3.66, and 3.68 [3H each, s, N(1')-Me and two OMe's], 3.90 [1H, dd, J=4.5 Hz each, C(2)-H], 4.05—4.25 [1H, m, C(5)-H], 6.95—7.2 (5H, m, SPh), 7.50 [1H, s, C(2')-H]. ²⁸⁾

(2*R-trans*)-2,5-Dihydro-3,6-dimethoxy-2-(1-methylethyl)-5-[[1-methyl-4-(1-naphthalenylthio)-1*H*-imidazol-5-yl]methyl]pyrazine (19b) and (2*R-cis*)-2,5-Dihydro-3,6-dimethoxy-2-(1-methylethyl)-5-[[1-methyl-

September 1994 1789

4-(1-naphthalenylthio)-1H-imidazol-5-yl]methyl]pyrazine (20b) A stirred solution of (2R)-(-)-2,5-dihydro-3,6-dimethoxy-2-isopropylpyrazine²⁷⁾ (1.57 g, 8.52 mmol) in dry THF (30 ml) was cooled to -78 °C in an atmosphere of N₂, and a 1.47 M solution (5.80 ml, 8.53 mmol) of butyllithium in hexane was added dropwise over 10 min. After the mixture had been stirred at -78 °C for $10 \,\mathrm{min}$, $17b \cdot \mathrm{HCl}$ (1.10 g, 3.38 mmol) was added portionwise, and the resulting mixture was stirred first at -78° C for 1 h and then at $-50\,^{\circ}\text{C}$ for 20 h. The reaction mixture was worked up in a manner similar to that described above for 19a and 20a, and the crude products were separated by flash chromatography111 [silica gel, CH₂Cl₂-MeOH (24:1, v/v)]. Earlier fractions gave **19b** (1.30 g, 88%) as a slightly yellowish syrup, $[\alpha]_{\rm D}^{21}-28.6^{\circ}$ ($c\!=\!0.50$, CHCl₃); MS m/z: 436 (M⁺); IR $\nu_{\rm max}^{\rm CHCl_3}$ 1693 cm⁻¹ (C=N); ¹H-NMR (CDCl₃) δ : 0.58 and 0.93 (3H each, d, J = 6.5 Hz, CH $\underline{\text{Me}}_2$), 1.95—2.3 (1H, m, C $\underline{\text{H}}$ Me₂), 2.84 (1H, dd, J=14.5 and 8.5 Hz) and 3.44 (1H, dd, J=14.5 and 4.5 Hz) [C(5')-CH₂], 3.62, 3.66, and 3.68 [3H each, s, N(1')-Me and two OMe's], 3.77 [1H, dd, J=3.5 Hz each, C(2)-H], 4.0—4.2 [1H, m, C(5)-H], 7.1—7.9 [7H, m, C(2''-7'')-H's and C(2')-H], 8.35—8.5 [1H, m, C(8'')-H]. 28,29

Later fractions from the above chromatography afforded a yellowish syrup, which was purified by flash chromatography 11 [silica gel, AcOEt–EtOH (14:1, v/v)] to give **20b** (77 mg, 5%) as a colorless syrup, $[\alpha]_D^{21}$ – 48.6° (c=0.50, CHCl₃); MS m/z: 436 (M $^+$); IR $v_{\rm max}^{\rm CHCl_3}$ 1695 cm $^{-1}$ (C=N); 1 H-NMR (CDCl₃) δ : 0.70 and 1.04 (3H each, d, J=6.5 Hz, CHMe₂), 1.95—2.3 (1H, m, CHMe₂), 2.7—3.0 (1H, m) and 3.38 (1H, dd, J=14.5 and 5 Hz) [C(5')-CH₂], 3.62, 3.65, and 3.68 [3H each, s, N(1')-Me and two OMe's], 3.89 [1H, dd, J=4.5 Hz each, C(2)-H], 4.05—4.25 [1H, m, C(5)-H], 7.2—7.9 [7H, m, C(2"—7")-H's and C(2')-H], 8.35—8.5 [1H, m, C(8")-H]. 28,29

3-Methyl-5-(phenylthio)-L-histidine Methyl Ester (21a) A mixture of 19a (2.05 g, 5.30 mmol) and 0.25 N aqueous HCl (64 ml) in MeOH (32 ml) was stirred at room temperature for 1.5 h. The reaction mixture was concentrated in vacuo to a volume of ca. 40 ml, brought to pH ca. 8 by addition of 10% aqueous NH₃, and extracted with CH₂Cl₂ (4×40 ml). The CH₂Cl₂ extracts were combined, washed with saturated aqueous NaCl (100 ml), dried over anhydrous MgSO₄, and concentrated in vacuo to leave a yellow oil. Purification of the oil by flash chromatography¹¹⁾ [silica gel, CH_2Cl_2 -MeOH (14:1, v/v)] gave **21a** (1.51 g, 98%) as a slightly yellowish syrup, $[\alpha]_D^{21} + 24.8^\circ$ (c=0.50, MeOH); MS m/z: 291 (M^+) ; IR $v_{max}^{CHCl_3}$ cm⁻¹: 3390 and 3320 (NH₂), 1738 (ester CO); ¹H-NMR $(CDCl_3)$ δ : 1.60 (2H, s, NH₂), 2.88 (1H, dd, J = 14.5 and 8.5 Hz) and 3.17 (1H, dd, J = 14.5 and 5.5 Hz) [C(4)-CH₂], 3.67 [1H, dd, J = 8.5 and 5.5 Hz, C(4)-CH₂CH₁, 3.68 and 3.69 [3H each, s, N(3)-Me and CO₂Me], 7.0—7.2 (5H, m, SPh), 7.52 [1H, s, $\overline{C}(2)$ -H]. The enantiomeric purity³⁰) of this sample was shown to be at least 98% by means of ¹H-NMR spectroscopy using the chiral shift reagent tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium(III) [Eu(hfc)₃] in CDCl₃.

3-Methyl-5-(1-naphthalenylthio)-L-histidine Methyl Ester (21b) Hydrolysis of 19b (1.27 g, 2.91 mmol) in MeOH (20 ml) with 0.25 N aqueous HCl (35 ml) and work-up of the reaction mixture were effected in a manner similar to that described above for 21a. Purification of the crude oily product by flash chromatography¹¹⁾ [silica gel, CH₂Cl₂–EtOH (9:1, v/v)] yielded 21b (838 mg, 84%) as a yellowish syrup, $[\alpha]_D^{21} + 25.5^{\circ}$ (c=0.51, MeOH); MS m/z: 341 (M⁺); IR $\nu_{\max}^{\text{CHCl}_3}$ cm⁻¹: 3390 and 3320 (NH₂), 1737 (ester CO); ¹H-NMR (CDCl₃) δ : 1.55 (2H, s, NH₂), 2.87 (1H, dd, J=14.5 and 9 Hz) and 3.18 (1H, dd, J=14.5 and 5.5 Hz, $[C(4)\text{-CH}_2]$, 3.65 and 3.69 [3H each, s, N(3)-Me and CO₂Me], 3.67 [1H, dd, J=9 and 5.5 Hz, C(4)-CH₂CH], 7.1—7.9 [7H, m, C(2'—7')-H's and C(2)-H], 8.3—8.5 [1H, m, C(8')-H].²⁶⁾ The enantiomeric purity of this sample was determined, as in the case of 21a, to be at least 98%.

3-Methyl-5-(phenylthio)-L-histidine (8a) A solution of 21a (1.49 g, 5.11 mmol) in 6 N aqueous HCl (50 ml) was heated under reflux for 1 h. The reaction mixture was concentrated *in vacuo*, and the residue was co-evaporated *in vacuo* with two 30-ml portions of H_2O and then with EtOH (30 ml) to leave a colorless syrup, which was dissolved in H_2O (10 ml). The aqueous solution was brought to pH ca. 8 by addition of 10% aqueous NH₃, and the colorless solid that resulted was filtered off, washed with cold H_2O (10 ml), and recrystallized from MeOH-H₂O (4:1, v/v) to give $8a \cdot H_2O$ (1.25 g, 83%) as colorless needles, mp 193.5—194.5 °C (dec.). Further recrystallization from the same solvent system and drying over P_2O_5 at 2 mmHg and 60 °C for 10 h provided an analytical sample of $8a \cdot H_2O$ as colorless fine needles, mp 193.5—194.5 °C (dec.); $[\alpha]_D^{19} + 29.8^\circ$ (c = 0.50, 0.1 N aqueous HCl); MS m/z: 277 (M⁺); UV $\lambda_{\rm Ma}^{\rm max}$ 238 nm (ϵ 12500); IR $v_{\rm Nujol}^{\rm max}$ 1595 cm⁻¹ (CO₂); ¹H-

NMR (500 MHz) (Me₂SO- d_6) δ : 2.86 (1H, dd, J=15 and 8 Hz) and 3.12 (1H, dd, J=15 and 7 Hz) [C(4)-CH₂], 3.1—3.5 (5H, br, NH₃⁺ and H₂O), 3.27 [1H, dd, J=8 and 7 Hz, C(4)-CH₂CH_], 3.62 [3H, s, N(3)-Me], 7.0—7.25 (5H, m, SPh), 7.69 [1H, s, C(2)-H]. *Anal.* Calcd for C₁₃H₁₅N₃O₂S·H₂O: C, 52.87; H, 5.80; N, 14.23. Found: C, 52.75; H, 5.84; N, 13.96.

3-Methyl-5-(1-naphthalenylthio)-L-**histidine (8b)** A solution of **21b** (787 mg, 2.30 mmol) in 6 N aqueous HCl (20 ml) was heated under reflux for 1 h. The reaction mixture was worked up in a manner similar to that described above for **8a**, and the crude product was recrystallized from MeOH to give **8b**·1/2H₂O (663 mg, 86%) as colorless fine needles, mp 213—214 °C (dec.). Further recrystallization from MeOH and drying over P₂O₅ at 2 mmHg and 70 °C for 10 h furnished an analytical sample of **8b**·1/2H₂O as colorless fine needles, mp 212.5—213.5 °C (dec.); [α]_D²³ +29.4° (c=0.50, 0.1 N aqueous HCl); MS m/z: 327 (M⁺); UV λ ^{H₂O₂ 221 nm (ε 54200), 300 (8130); IR ν ^{Nujol} 1613 cm⁻¹ (CO₂); ¹H-NMR (500 MHz) (Me₂SO- d_6) δ: 2.90 (1H, dd, J=15 and 8 Hz) and 3.16 (1H, dd, J=15 and 7 Hz) [C(4)-CH₂], 3.1—3.5 (4H, br, NH₃⁺ and 1/2H₂O), 3.31 [1H, dd, J=8 and 7 Hz, C(4)-CH₂C<u>H</u>], 3.64 [3H, s, N(3)-Me], 7.05—7.95 [6H, m, C(2'—7')-H's], 7.75 [1H, s, C(2)-H], 8.29 [1H, d, J=8 Hz, C(8')-H]. *26' Anal. Calcd for C₁₇H₁₇N₃O₂S·1/2H₂O: C, 60.70; H, 5.39; N, 12.49. Found: C, 60.96; H, 5.14; N, 12.65.}

3-Methyl-L-histidine (22) i) From 8a: A mixture of 8a · H₂O (118 mg, 0.40 mmol), EtOH (2 ml), H₂O (8 ml), and Raney Ni catalyst³¹⁾ (1.5 ml) was heated under reflux for 8 h, and 6 N aqueous HCl (4 ml) was then added to the reaction mixture while it was hot. The insoluble material was removed by filtration and washed with H₂O (20 ml). The filtrate and washings were combined and concentrated in vacuo to leave a yellowish green solid, which was dissolved in H₂O (3 ml). The aqueous solution was applied to a column of Dowex 50W-X2 (H+ form in 1 N aqueous HCl) $(1.5 \times 18 \text{ cm})$, and the column was eluted with 1 N aqueous HCl. The first 40 ml contained Ni2+, and later fractions showing a positive reaction to the ninhydrin test were combined and concentrated in vacuo, leaving a bluish green solid. The solid was dissolved in H2O (1 ml) and applied to a column of Dowex 50W-X8 (H⁺ form in H₂O) (4 ml). The column was first eluted with H₂O (ca. 40 ml) until the eluate became neutral, and then with 2% aqueous NH₃ (70 ml). The ammoniacal eluates were combined and concentrated in vacuo to leave a colorless solid. The solid was triturated with H₂O (5 ml), and the insoluble material was removed by filtration and washed with H₂O (5 ml). The filtrate and washings were combined and concentrated in vacuo to dryness to leave $22 \cdot H_2O$ (65 mg, 87%) as a colorless solid, mp 224—227 °C (dec.). The solid was recrystallized by dissolving it in a small amount of hot H₂O and adding EtOH to afford an analytical sample of 22 · H₂O (dried over P_2O_5 at $2\,mmHg$ and $80\,^{\circ}C$ for $8\,h$ and then kept in a closed vessel saturated with H₂O at room temp. for 6 h) as colorless fine needles, mp 231—233 °C (dec.); $[\alpha]_D^{26} + 13.2^\circ$ (c = 0.30, 0.1 N aqueous HCl); MS m/z: 169 (M⁺). Anal. Calcd for C₇H₁₁N₃O₂·H₂O: C, 44.91; H, 7.00; N, 22.45. Found: C, 44.92; H, 7.21; N, 22.43. The IR spectrum of this sample was superimposable on that of a commercial sample of 22 · H₂O [mp 225—228 °C (dec.); $[\alpha]_D^{23} + 10.8^\circ$ (c = 0.30, 0.1 N aqueous HCl)].

ii) From **8b**: Reductive desulfurization of **8b**·1/2 H_2O (135 mg, 0.40 mmol) with Raney Ni catalyst³¹⁾ (1.5 ml) in a mixture of EtOH (2 ml) and H_2O (8 ml) and work-up of the reaction mixture were conducted in a manner similar to that described above under item (i), giving **22**· H_2O (62 mg, 83%) as a colorless solid, mp 220—221.5 °C (dec.). For analysis, the solid was recrystallized and dried as described above under item (i) to yield colorless fine needles, mp 232.5—234 °C (dec.); $[\alpha]_D^{26} + 12.7^{\circ}$ (c = 0.30, 0.1 N aqueous HCl); MS m/z: 169 (M⁺). Anal. Calcd for $C_7H_{11}N_3O_2 \cdot H_2O$: C, 44.91; H, 7.00; N, 22.45. Found: C, 44.71; H, 7.19; N, 22.30. This sample was identical (by comparison of the IR spectrum) with the one obtained by method (i).

Acknowledgment The authors are grateful to Emeritus Professor Dr. Shun-ichi Yamada (University of Tokyo) for financial assistance in the form of a grant from the Japan Research Foundation for Optically Active Compounds.

References and Notes

a) A. Palumbo, M. d'Ischia, G. Misuraca, G. Prota, Tetrahedron Lett., 23, 3207 (1982); b) A. Palumbo, G. Misuraca, M. d'Ischia, F. Donaudy, G. Prota, Comp. Biochem. Physiol., 78B, 81 (1984); c) For the correction of an error in the assignment of the position of the ring methyl group due to confusion arising from conflicting

- systems of nomenclature for the imidazole ring of substituted histidines, see refs. 2 (Appendix, p. 4035 therein), 5b, 19b, and 19c.
- E. Turner, R. Klevit, L. J. Hager, B. M. Shapiro, *Biochemistry*, 26, 4028 (1987).
- E. Turner, R. Klevit, P. B. Hopkins, B. M. Shapiro, J. Biol. Chem., 261, 13056 (1986).
- a) S. Ito, G. Nardi, G. Prota, J. Chem. Soc., Chem. Commun., 1976, 1042; b) S. Ito, G. Nardi, A. Palumbo, G. Prota, J. Chem. Soc., Perkin Trans. 1, 1979, 2617.
- a) C. Pathirana, R. J. Andersen, J. Am. Chem. Soc., 108, 8288 (1986);
 b) D. L. Burgoyne, S. Miao, C. Pathirana, R. J. Andersen, W. A. Ayer, P. P. Singer, W. C. M. C. Kokke, D. M. Ross, Can. J. Chem., 69, 20 (1991).
- 6) M. Ohba, T. Mukaihira, T. Fujii, Heterocycles, 33, 21 (1992).
- 7) I. E. Balaban, F. L. Pyman, J. Chem. Soc., 121, 947 (1922).
- 8) I. E. Balaban, F. L. Pyman, J. Chem. Soc., 125, 1564 (1924).
- 9) B. E. Boulton, B. A. W. Coller, Aust. J. Chem., 27, 2331 (1974).
- 10) B. Iddon, B. L. Lim, J. Chem. Soc., Perkin Trans. 1, 1983, 735.
- 11) W. C. Still, M. Kahn, A. Mitra, J. Org. Chem., 43, 2923 (1978).
- 12) V. Caló, F. Ciminale, L. Lopez, F. Naso, P. E. Todesco, J. Chem. Soc., Perkin Trans. 1, 1972, 2567.
- 13) A. R. Katritzky, J. J. Slawinski, F. Brunner, S. Gorun, J. Chem. Soc., Perkin Trans. 1, 1989, 1139.
- 14) K.-E. Stensiö, K. Wahlberg, R. Wahren, Acta Chem. Scand., 27, 2179 (1973).
- a) R. Grindley, F. L. Pyman, J. Chem. Soc., 1927, 3128; b) R. G. Jones, J. Am. Chem. Soc., 71, 383 (1949); c) G. Stefancich, M. Artico, S. Massa, F. Corelli, Synthesis, 1981, 321; d) H. Galons, I. Bergerat, C. C. Farnoux, M. Miocque, ibid., 1982, 1103; e) K. Ogino, K. Shindo, T. Minami, W. Tagaki, T. Eiki, Bull. Chem. Soc. Jpn., 56, 1101 (1983); f) S. C. Zimmerman, K. D. Cramer, A. A. Galan, J. Org. Chem., 54, 1256 (1989).
- a) E. F. Godefroi, H. J. J. Loozen, J. Th. Luderer-Platje, Recl. Trav. Chim. Pays-Bas, 91, 1383 (1972); b) M. Masui, K. Suda, M. Inoue, K. Izukura, M. Yamauchi, Chem. Pharm. Bull., 22, 2359 (1974); c) B. Iddon, B. L. Lim, J. Chem. Soc., Perkin Trans. 1,

- 1983, 271.
- 17) a) E. S. Gould, "Mechanism and Structure in Organic Chemistry," Henry Holt and Co., New York, 1959, Chapter 7; b) N. S. Isaacs, "Physical Organic Chemistry," Longman Scientific & Technical, Harlow, 1987, Chapter 4.
- 18) a) U. Schöllkopf, Top. Curr. Chem., 109, 65 (1983); b) Idem, Pure Appl. Chem., 55, 1799 (1983).
- a) A. Spaltenstein, T. P. Holler, P. B. Hopkins, J. Org. Chem., 52, 2977 (1987);
 b) T. P. Holler, A. Spaltenstein, E. Turner, R. E. Klevit, B. M. Shapiro, P. B. Hopkins, ibid., 52, 4420 (1987);
 c) T. P. Holler, F. Ruan, A. Spaltenstein, P. B. Hopkins, ibid., 54, 4570 (1989).
- B. S. Huang, M. J. Lauzon, J. C. Parham, J. Heterocycl. Chem., 16, 811 (1979).
- 21) R. G. Jones, K. C. McLaughlin, J. Am. Chem. Soc., 71, 2444 (1949).
- 22) A. J. Fatiadi, Synthesis, 1976, 65.
- For a similar oxidation of benzyl alcohol to benzaldehyde, see E.
 J. Corey, G. Schmidt, *Tetrahedron Lett.*, 1979, 399.
- 24) a) E. Bourgeois, Recl. Trav. Chim. Pays-Bas, 18, 441 (1899); b) R. Adams, C. S. Marvel, "Organic Syntheses," Coll. Vol. I, ed. by H. Gilman and A. H. Blatt, John Wiley & Sons, New York, 1941, p. 504.
- 25) H. C. Godt, Jr., R. E. Wann, J. Org. Chem., 26, 4047 (1961).
- 26) For convenience, each carbon of the carbocyclic moiety is indicated by a primed number.
- 27) A Merck-Schuchardt product was purchased through Kanto Chemical Co. (Japan) and freshly distilled under reduced pressure [bp 97—98 °C (15 mmHg); $[\alpha]_D^{23}$ 107.6° (c=1.00, EtOH)] before use.
- 28) For convenience, each skeletal atom of the imidazole moiety is indicated by a primed number.
- 29) For convenience, each carbon of the naphthyl moiety is indicated by a doubly primed number.
- C. Kutal, "Nuclear Magnetic Resonance Shift Reagents," ed. by
 R. E. Sievers, Academic Press, New York, 1973, pp. 87—98.
- 31) T. Fujii, S. Yoshifuji, Tetrahedron, 26, 5953 (1970).