THE ABSOLUTE STRUCTURES OF NEW 1β-HYDROXY-SACCULATANE-TYPE DITERPENOIDS WITH PISCICIDAL ACTIVITY FROM THE LIVERWORT PELLIA ENDIVIIFOLIA

Communications to the Editor

Toshihiro HASHIMOTO, Yoko OKUMURA, Kumiko SUZUKI, Shigeru TAKAOKA, Yukiko KAN, Motoo TORI and Yoshinori ASAKAWA*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro cho, Tokushima 770, Japan

Eight new sacculatane-type diterpenoids, named 12-deoxy-1 β , 11 α -dihydroxysacculatanolide (1), 11α -hydroxysacculatanolide (2), pellianolactones A, B (3, 4), 1 β , 11 α -dihydroxysacculatanolide (5), 1 β -hydroxysacculatal (6), 1 β -hydroxyisosacculatal (7), and 1β-hydroxysacculatanolide (8), have been isolated from the liverwort Pellia endiviifolia.

KEY WORDS liverwort; *Pellia endiviifolia*; sacculatane-type diterpenoid; piscicidal activity; X-ray crystallographic analysis

Previously, we reported the isolation and structure elucidation of a pungent diterpene dialdehyde, sacculatal (9), 10 together with a non-pungent isosacculatal (10) from the liverwort *Pellia endiviifolia* (male thallus). In pursuit of pharmacologically interesting substances found in liverworts, we have further investigated the chemical constituents of Et₂O extract of P. endiviifolia, and isolated eight new sacculatane-type diterpenoids $(1\sim8)$ as well as three known diterpenes, 9, 10, and sacculatanolide (11). Here we wish to report on the structure elucidation of $1\sim8$.

The molecular formula of 12-deoxy-1 β , 11 α -dihydroxysacculatanolide (1)²⁾ was determined to be $C_{20}H_{33}O_3$ by HRMS. Acetylation of 1 afforded diacetate (12) [H NMR (CDCl₃): δ 1.98, 2.04 (each s, 3H)], and the Jones oxidation of 1 gave a γ -lactone (13) (IR: 1775 and 1710 cm⁻¹) indicating the presence of secondary and hemiacetal hydroxyl groups [IR: 3385 cm $^{-1}$; ^{13}C NMR: δ_{C} 79.2 (d) and 98.8 (d)]. The relative structure of 1 was deduced from careful analysis of the 2D NMR spectra including DQF-COSY, HMQC, HMBC and NOESY, and finally established by Xray crystallographic analysis³⁾ as shown in Fig. 1. The CD spectra of p-bromodibenzoate (14) showed the negative first Cotton effect at 253 nm ($\Delta \varepsilon$ –47.3) and the positive second Cotton effect at 235 nm ($\Delta \varepsilon$ +20.4), indicating that the absolute configurations at C-1 and C-11 of 1 were represented as R, respectively.

The IR, and ¹H and ¹³C NMR spectra of 11α -hydroxysacculatanolide (2)⁴⁾ ($C_{20}H_{30}O_3$) indicated the presence of a lactol group [3385 and 1738 cm⁻¹; $\delta_{\rm H}$ 5.68 (d, J=5.9 Hz); $\delta_{\rm C}$ 99.4 (d) and 168.6 (s)]. Acetylation of 2 afforded monoacetate (15). The relative structure of 2 was established by X-ray crystallographic analysis. 5) The absolute structure of 2 was determined from the CD specta of 2 [λ_{max} 243 nm ($\Delta\epsilon$ +2.75)] and 15 [λ_{max} 239 nm ($\Delta\epsilon$ +1.53)], and the experimental result indicated that Jones oxidation (CrO₃-H₂SO₄/ acetone/ 0-5°) of sacculatal (9) afforded 2.

^{*} To whom correspondence should be addressed.

November 1995 2031

The IR, and ¹H and ¹³C NMR spectra of pellianolactone A (3)⁶⁾ ($C_{22}H_{32}O_6$) contained the absorption bands and the signals due to a secondary hydroxyl group [3375 cm⁻¹; δ_H 3.76 (dd, J= 10.3, 4.4 Hz)], a ketone group [1715 cm⁻¹; δ_C 214.2 (s)] and an acetoxyl group [1735 cm⁻¹; δ_H 2.06 (s)]. The relative structure of 3 was deduced from careful analysis of the 2D NMR spectra, and finally established by X-ray crystallographic analysis⁷⁾ as shown in Fig. 2. The absolute structure of 3 was determined by the negative single Cotton effect [λ_{max} 235 nm ($\Delta \varepsilon$ -5.03)] in its CD spectrum.

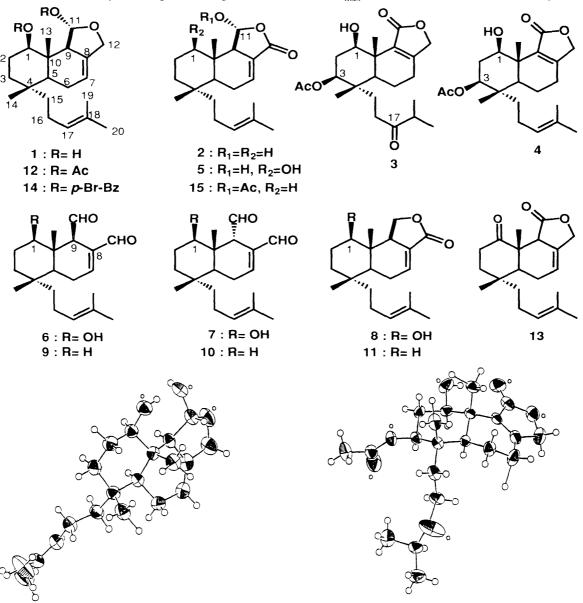


Fig. 1. ORTEP Drawing of 1

Fig. 2. ORTEP Drawing of 3

In the 13 C NMR spectra of $5\sim8$, the signals for C-1, C-2 and C-10 appeared $10\sim40$ ppm downfield compared with the corresponding resonances in 2 and $9\sim11$, and NOEs between H-1 and H-5, and H-1 and H-9 of $5\sim8$ were observed. The relative and absolute structures of diterpenes 4^{8} , 5^{9} , 6^{10} , 7^{11} and 8^{12} were determined as 1β -hydroxylated compounds from the careful analysis of 2D NMR spectra, and CD spectra.

Compounds 1 and 3~8 were the first naturally occurring sacculatane-type diterpenoids bearing 1β-hydroxyl group. Piscicidal activity of compounds 1~11 was tested. Pungent-tasting 1β-

hydroxysacculatal (6) and sacculatal (9) possess potent piscicidal activity against killie-fish, which died within 20 min at a concentration of 1 ppm, indicating that both 8- and 9 β -diformyl groups were essential to the activity.¹⁾

REFERENCES AND NOTES

- 1) Asakawa Y., in *Studies in Natural Products Chemistry* Vol. 2 (Atta-ur-Rahman, ed.), p. 277, Elsevier (1988).
- 2) **1**: mp 111-112°; $[\alpha]_D^{24}$ +13.8° (c 0.80, CHCl₃); HR-MS: m/z 320.2299, $C_{20}H_{32}O_3$ requires 320.2351; EI-MS: m/z 320 (M⁺), 302, 287, 69 (100%); FT-IR (KBr) cm⁻¹: 3385 (OH), 2926, 1638 (C=C); ¹H NMR (CDCl₃): δ 3.46 (1H, dd, J=2.2, 6.8 Hz, H-1), 5.26 (1H, d, J=6.8 Hz, H-11).
- 3) The crystal data for **1**: orthorhombic; space group $P2_12_12_1$ with a=7.839 (2), b=35.506 (8), c=6.648 (2) Å, V=1850.1 (8) Å³, Z=4, and μ (Cu K- α)=5.17 cm⁻¹. Final R value was 0.052 for 1551 reflections.
- 4) **2**: mp 155-156°; $[\alpha]_D^{25}$ -49.3° (c 0.51, CHCl₃); HR-MS: m/z 318.2202, $C_{20}H_{30}O_3$ requires 318.2215; EI-MS: m/z 318 (M[†]), 300, 275, 257, 69 (100%); FT-IR (KBr) cm⁻¹: 3385 (OH), 1738 (CO), 1201; CD (EtOH) λ_{max} nm ($\Delta\epsilon$): 245 (+1.61), 198 (-4.33); UV (EtOH) λ_{max} nm (log ϵ): 205 (4.04), 220 (3.85); ¹H NMR (CDCl₃): δ 5.68 (1H, d, J=5.9 Hz, H-11), ¹³C NMR (CDCl₃): δ 99.4 (d, C-11).
- 5) The crystal data for **2**: monoclinic; space group P2₁ with a=12.062 (3), b=9.234 (2), c=8.506 (3) Å, V= 942.2 (4) Å³, Z=2, and μ (Cu K- α)=5.479 cm⁻¹. Final R value was 0.083 for 1439 reflections.
- 6) **3**: mp 145-146°; $[\alpha]_D^{21}$ -1.7° (c 0.64, CHCl₃); HR-MS: m/z 392.2217, $C_{22}H_{32}O_6$ requires 392.2199; EI-MS: m/z 392 (M[†]), 332, 307, 289, 234, 151, 121, 71 (100%); FT-IR (KBr) cm⁻¹: 3375 (OH), 1715 (CO), 1655, 1240; CD (EtOH) λ_{max} nm ($\Delta\epsilon$): 235 (-5.03); UV (EtOH) λ_{max} nm ($\log\epsilon$): 218 (3.94); ¹H NMR (CDCl₃): δ 2.06 (3H, s, -OAc), 3.76 (1H, dd, J=4.6, 12.4 Hz, H-1), 4.82 (1H, dd, J=4.6, 12.2 Hz, H-3), ¹³C NMR (CDCl₃): δ 214.2 (s, C-17).
- 7) The crystal data for **3**: orthorhombic; space group $P2_12_12_1$ with a=10.539 (9), b=24.71 (2), c=8.155 (9) Å, V=942.2 (4) Å³, Z=2 and μ (Cu K- α)=6.37 cm⁻¹. Final R value was 0.063 for 1973 reflections.
- 8) **4**: $[\alpha]_D^{20} + 14.1^\circ$ (*c* 0.39, CHCl₃); HR-MS: m/z 376.2251, $C_{22}H_{32}O_5$ requires 376.2250; EI-MS: m/z 376 (M⁺), 316, 235, 217, 151; 109 (100%); FT-IR (KBr) cm⁻¹: 3364 (OH), 1723 (CO), 1655, 1242, 1028; CD (EtOH): λ_{max} nm ($\Delta \epsilon$): 236 (-5.97). UV (EtOH) λ_{max} nm ($\log \epsilon$): 219 (3.85); ¹H NMR (CDCl₃): δ 2.06 (3H, s, -OAc), 5.01 (1H,br. t, J=5.9 Hz, H-17), ¹³C NMR (CDCl₃): δ 123.7 (d, C-17).
- 9) **5** : [α]_D²¹ -12.5° (c 0.91, CHCl₃); HR-MS: m/z 334.2145, C₂₄H₃₈O₇ requires 334.2144; EI-MS: m/z 334 (M⁺), 316, 301, 288, 273; 203, 69 (100%); FT-IR (KBr) cm⁻¹: 3289 (OH), 1744 (CO); CD (EtOH): λ_{max} nm ($\Delta \epsilon$): 245 (+0.46), 194 (-1.10). UV (EtOH) λ_{max} nm (log ϵ): 205 (3.88), 220 (3.83); ¹H NMR(CDCl₃): δ 3.50 (1H, dd, J=4.3, 10.9 Hz, H-1), 5.72 (1H, d, J=6.3 Hz, H-11).
- 10) **6**: mp 104-105°; $[\alpha]_D^{24}$ +49.9° (c 0.76, CHCl₃); HRMS: m/z 318.2213, $C_{20}H_{30}O_3$ requires 318.2195; EI-MS: m/z 318 (M⁺), 300, 290, 272,, 69 (100%); FT-IR (KBr) cm⁻¹: 3420 (OH), 1701, 1686 (C=O); ¹H NMR (CDCl₃): δ 3.62 (1H, dd, J=4.6, 11.2 Hz, H-1), 9.39 (1H, s, H-12), 9.84 (1H, d, J=3.2 Hz, H-11).
- 11) **7**: $[\alpha]_D^{24}$ -71.1°(c 0.51, CHCl₃); HRMS: m/z 318.2208, $C_{20}H_{30}O_3$ requires 318.2195; EI-MS: m/z 318 (M⁺), 300, 290, 272, 257, 218, 187 (100%); FT-IR (KBr) cm⁻¹: 3457 (OH), 1717, 1680 (C=O), 1028; ¹H NMR (CDCl₃): δ 3.50 (1H, dd, J=4.3, 10.9 Hz, H-1), 9.44 (1H, s, H-12), 9.88 (1H, br. s, H-11).
- 12) **8** : $[\alpha]_D^{24}$ -20.3° (c 0.34, CHCl₃); HRMS: m/z 318.2198, $C_{20}H_{30}O_3$ requires 318.2195; EI-MS: m/z 318 (M⁺), 234, 125 (100%); FT-IR (KBr) m⁻¹: 3476 (OH), 1744 (C=O), 1231; ¹H NMR (CDCl₃): δ 3.38 (1H, dd, J=4.3, 10.9 Hz, H-1), 4.19 (1H, dd, J=9.5, 9.5 Hz, H-11 β), 4.53 (1H, dd, J=9.5, 9.5 Hz, H-11 α).

(Received August 28, 1995; accepted October 2, 1995)