Purealidins J—R, New Bromotyrosine Alkaloids from the Okinawan Marine Sponge *Psammaplysilla purea*

Jun'ichi Kobayashi,*,a Kaori Honma,a Takuma Sasaki,b and Masashi Tsuda

Faculty of Pharmaceutical Sciences, Hokkaido University,^a Kita-ku, Sapporo 060, Japan and Cancer Research Institute, Kanazawa University,^b Takara-machi, Kanazawa 920, Japan.
Received October 11, 1994; accepted November 21, 1994

Nine new bromotyrosine alkaloids, purealidins J—R (1—9), have been isolated from the Okinawan marine sponge *Psammaplysilla purea* and the structures were elucidated on the basis of spectroscopic data. A hydroxy group at C-1 of purealidins M—O (4—6) may be biosynthetically derived from ring-opening of a spirocyclohexadienylisoxazole unit of purealidin J (1), aerophobin-1 (10), and purealidin L (3), respectively. Purealidins N (5), P (7), and Q (8) were cytotoxic to tumor cell lines, while purealidins J (1), K (2), P (7), and Q (8) showed moderate inhibitory activity against epidermal growth factor (EGF) receptor kinase.

Key words sponge; *Psammaplysilla purea*; bromotyrosine alkaloid; purealidin; cytotoxic; epidermal growth factor receptor kinase

Marine sponges of the order Verongidae have been found to contain a number of bromotyrosine alkaloids¹⁾ such as aeroplysinin 1,²⁾ fistularin 3,³⁾ and bastadin 1.⁴⁾ In our search for bioactive substances from marine organisms,⁵⁾ a series of bromotyrosine alkaloids have been isolated from a Verongid marine sponge *Psammaplysilla purea*.⁶⁾ Further examination of the extract of *P. purea* resulted in isolation of nine new bromotyrosine-derived alkaloids, purealidins J—R (1—9), which might be closely related to one another on biogenesis of them. This paper describes the isolation and structure elucidation of 1—9.

EtOAc-soluble material of the methanolic extract of the sponge P. purea collected off Ishigaki island, Okinawa, was separated on silica gel and C_{18} columns, and C_{18} HPLC to yield purealidins J (1, 0.004% wet weight), K (2, 0.002%), L (3, 0.0002%), M (4, 0.002%), N (5, 0.0003%), O (6, 0.0001%), P (7, 0.0008%), Q (8, 0.0004%), and R (9, 0.0004%), which were obtained as the trifluoroacetic acid (TFA) salts, except for 5 and 9, together with known related compounds, aerophobin-1⁷⁾ (10, 0.005%), purealin^{6a)} (11), and purealidin B.^{6d)}

Purealidins J—L (1—3) revealed pseudomolecular ions in the ratio of 1:2:1 at m/z 490, 492, and 494 (1), at

m/z 506, 508, and 510 (2), and at m/z 494, 496, and 498 (3), respectively, in the FAB-MS spectra, indicating the presence of two bromine atoms in each molecule. HR-FAB-MS data of 1—3 revealed the molecular formulae, $C_{15}H_{17}Br_2N_5O_4$ (m/z 491.9682, M^++2+H , $\Delta-2.3$ mmu), $C_{15}H_{17}Br_2N_5O_5$ (m/z 507.9672, M^++2+H , $\Delta+1.8$ mmu), and $C_{15}H_{21}Br_2N_5O_4$ (m/z 496.0035, M^++2+H , $\Delta+1.7$ mmu), respectively. IR absorptions at 3400 and 1680—1660 cm⁻¹ in 1—3 were attributed to NH/OH and amide carbonyl groups, respectively. Comparison of the 1H - and ^{13}C -NMR data (Table I) of 1—3 with those of aerophobin-1 (10) indicated that 1—3 possessed a common spirocyclohexadienylisoxazole unit with different structures for each C-10—C-14 segment.

Observation that purealidin J (1, $[\alpha]_D^{21} + 24^\circ$ (c = 0.98, MeOH)) was positive to Sakaguchi test suggested the presence of guanidine group(s). The ¹H-NMR spectrum of 1 containing an NH₂ (δ_H 7.40, 2H) and an olefin proton (δ_H 6.62) signals was similar to that of the 2-aminohistamine unit in purealin (11) or purealidin A.^{6c)} The carbon chemical shifts (Table I) of C-12, C-13, and C-14 of 1 were coincident with those (δ_C 124.11, 109.00, and 146.74, respectively) of the corresponding 2-

TABLE I. 13C-NMR Data for Purealidins J—O and R (1—6 and 9) and Aerophobin-1 (10)

Positn.	1 a)	2 ^{a)}	3 ^{b)}	4 ^{c)}	5 ^{b)}	6 ^{b)}	9 ^{b)}	10 ^{a)}
1	73.6	73.6	76.3	152.8	155.0	155.2	75.5	73.5
2	113.0	113.1	114.9	107.6	108.8	108.2	114.2	113.1
3	147.1	147.2	150.1	152.7	154.3	153.6	149.3	147.1
4	120.8	120.9	123.5	105.5	107.4	108.2	122.7	120.9
5	131.2	131.3	133.0	132.2	134.6	135.4	132.3	131.2
6	90.2	90.4	93.2	122.0	122.7	123.7	92.6	90.3
7	39.2^{d}	39.5^{d}	40.1^{d}	27.0	25.5	26.4	40.0	39.4
8	154.3	154.3	159.5	150.3	151.5	152.6	155.2	154.4
9	158.9	157.9	162.5	164.7	167.3	167.8	163.6	159.1
10	37.3	35.0	40.5	37.6	39.2	40.7		37.7
11	24.2	30.2	28.3	24.7	25.8	29.0		24.1
12	124.1	56.9	28.0	124.2	132.2	28.4		130.8
13	109.4	174.8	42.9	109.3	117.7	42.9		161.1
14	146.9	159.2	156.1	146.7	134.9	156.4	4	133.6
3-OCH ₃	59.6	59.7	61.2	60.0	60.8	61.7	60.4	59.6

a) In DMSO- d_6 . b) In MeOH- d_4 . c) In DMSO- d_6 with a drop of 1 N HCl. d) This carbon signal overlapped the DMSO signal.

^{*} To whom correspondence should be addressed.

^{© 1995} Pharmaceutical Society of Japan

404 Vol. 43, No. 3

Х Ö 13 N OH Ü

purealidin M (4) : $R = NH_2$, X = OHpurealidin N (5) : R = H, X = OH

ianthelline (13) : $R = NH_2$, X = H

CH₃O HO N H NH₂

purealidin O (6)

Fig. 1

Br
$$OCH_3$$
 Br OCH_3 OCH_3

Fig. 2

aminoimidazole ring in 11. Thus the structure of purealidin J was elucidated to be 1.

The molecular weight of purealidin K (2, $[\alpha]_D^{24} + 26^\circ$ (c = 0.38, MeOH)) was larger than that of 1 by 16 Da. The signals due to NH (δ_H 9.64) and a carbonyl carbon (δ_C 174.8) observed in the ¹H- and ¹³C-NMR spectra, respectively, were indicative of the presence of an additional amide carbonyl group. The position of the amide carbonyl (C-13) was assigned by HMBC correlations for H-11/C-12,

H-11/C-13 and 13-NH/C-13. The chemical shifts at C-12, C-13, and C-14 in **2** were close to those ($\delta_{\rm C}$ 61.7, 174.1, and 160.5, respectively) of the aminoimidazolone ring in oxysceptrin⁸⁾ (12). Thus the structure of purealidin K was assigned to be **2**. Purealidin K (**2**) was subjected to ozonolysis followed by oxidation with H₂O₂ and subsequently acid hydrolysis. Standard amino acid analysis and chiral HPLC analyses of the hydrolysate revealed D- and L-2,4-diaminobutyric acid in the ratio of 1:1, so

that C-12 in 2 was racemic.

The 13 C-NMR data (Table I) of purealidin L (3, $[\alpha]_D^{24} + 27^\circ$ (c = 0.18, MeOH)) showed characteristic resonances due to four sp^3 methylenes at δ_C 42.9, 40.5, 28.3, and 28.0 and an sp^2 quaternary carbon at δ_C 156.1. The sp^2 carbon chemical shift at C-14 as well as positive coloration in the Sakaguchi test implied the presence of a guanidino group. An agmatine (4-(aminobutyl)guanidine) moiety in 3 was assigned by the following $^1H^{-1}H$ COSY cross-peaks: 9-NH/H₂-10, H₂-10/H₂-11, H₂-11/H₂-12, H₂-12/H₂-13, and H₂-13/13-NH. Thus the structure of purealidin L was elucidated to be 3.

The molecular formula, $C_{15}H_{16}Br_2N_4O_4$, of purealidin M (4) was established by the HR-FAB-MS (m/z 476.9564, M^++2+H , $\Delta-3.2$ mmu). Though the 1H - and ^{13}C -NMR data (Table I) of 4 were similar to those of ianthelline⁹⁾ (13), differences were found for the aromatic ring (C-1—C-6): 13 possessed a symmetrical tetrasubstituted benzene ring, while the 1H -NMR spectrum of 4 showed signals due to a pentasubstituted benzene ring (δ_H 7.26, 1H) and an additional phenol hydroxy group (δ_H 10.48). Assignment of C-1—C-6 was based on HMBC correlations for H-5/C-1, H-5/C-3, H-5/C-4, H-5/C-6, H₂-7/C-1, H₂-7/C-5, H₂-7/C-6, and 3-OMe/C-3. Thus the structure of purealidin M was determined to be 4. *E*-Geometry of the oxime at C-8 of 4—6 was inferred from the carbon chemical shift of C-7 (δ_C 25.5—27.0). 10)

The molecular formulae, $C_{15}H_{17}Br_2N_5O_4$ and $C_{15}H_{21}Br_2N_5O_4$, of purealidins N (5) and O (6) were the same as those of aerophobin-1 (10) and purealidin L (3), respectively. Comparison of the 1H - and ^{13}C -NMR data (Table I) of 5 and 6 with those of purealidin M (4) suggested that 5 and 6 had the same pentasubstituted bromotyrosine moiety (C-1—C-9) as 4. The carbon resonances of C-10—C-14 in 5 were similar to those of the histamine unit in 10, while those for 6 corresponded to the agmatine unit in 3. The structures of purealidins N and O were, therefore, concluded to be 5 and 6, respectively.

Purealidin P (7) showed the pseudomolecular ions at m/z 742, 744, 746, 748, and 750 (1:4:6:4:1) in the FAB-MS spectrum, and the molecular formula, $C_{23}H_{27}$ -Br₄N₃O₅, was established by the HR-FAB-MS (m/z 745.8776, M⁺+4+H, Δ +5.5 mmu). The ¹H- and ¹³C-NMR data for 7 were almost same as those of purealidin B^{6d)} except for an N-methyl resonance (δ_C 59.2), which was shifted to higher field than that (δ_C 64.2) of purealidin B. A 6H singlet proton signal resonated at δ_H 2.78 was assigned to be a dimethylamino group. NOEs for H₂-15/H₂-17 and H₂-18/18-NMe₂ in addition to the above data established the structure of purealidin P to be 7.

Purealidin Q (8) possessed the same molecular formula

as that of 7, and the ¹H- and ¹³C-NMR data suggested that 7 and 8 had a common partial structure. Analyses of the ¹H-¹H COSY spectrum of 8 revealed proton connectivities of 9-NH—H₂-11 and H₂-16—H₂-18, and the NOE observed for H₂-18/18-NMe₂ suggested that an *N*-dimethyl group was attached to a C₃ unit. Thus the structure of purealidin Q was assigned to be 8.

Purealidin R (9, $[\alpha]_0^{24} + 86^{\circ}$ (c = 0.19, MeOH)) showed molecular ions at m/z 380, 382, and 384 (1:2:1) in the EI-MS spectrum. The molecular formula, $C_{10}H_{10}Br_2N_2-O_4$, was determined by HR-EI-MS (m/z 381.8901, $M^+ + 2$, $\Delta + 0.3$ mmu). The 1H - and ^{13}C -NMR data (Table I) revealed the presence of a spirocyclohexadienylisoxazole unit and a primary amide NH₂, thus suggesting that the structure of purealidin R is 9.

Stereochemistry at C-1 and C-6 of the spiroisoxazole ring in purealidins J (1), K (2), L (3), P (7), Q (8), and R (9), and aerophobin-1 (10) was deduced to be *trans* from the proton chemical shift (ca. $\delta_{\rm H}$ 4.05) of H-1 in CD₃OD.¹¹⁾ These compounds were found to be dextrorotatory from the signs of optical rotations and Cotton effects at 248 and 284 nm in the CD spectra, indicating that absolute configurations at C-1 and C-6 are 1R and 6S. $^{6a,6d,12)}$ The $[\alpha]_{\rm D}$ value (+68°) of compound 10 is smaller than that ($[\alpha]_{\rm D}$ +139°) in the literature, $^{7)}$ indicating that aerophobin-1 (10) isolated from this sponge may be an enantiomeric mixture containing an excess of the dextrorotamer (ca. 50% ee).

Purealidins M (4), N (5) and O (6) are the second examples¹³⁾ of bromotyrosines with a phenolic hydroxy group at C-1 from natural origin. 14) Biosynthetically compounds 1—9 may be closely related to one another, presumably being generated through condensation of bromotyrosine units (C-1—C-9) with various amines such as agmatine, brominated tyramine with C₃ units, ammonia, or histamine. The spirocyclohexadienylisoxazole ring may be derived from an arene oxide intermediate (a) as proposed by Andersen and Faulkner¹⁵ (Chart 1). Ring-opening of the spirocyclohexadienylisoxazole units of purealidins J (1), L (3), and aerophobin-1 (10) may generate purealidins M (4), O (6), and N (5), respectively, with a hydroxy group at C-1. The aminohistamine units of 1 and 4 may be biogenetically derived from the agmatine units of 3 and 6. Cyclization between C-12 and 14-N in 3 may afford 1, which is probably oxygenated to yield 2.

Purealidins N (5), P (7), and Q (8) exhibited cytotoxicity against murine lymphoma L1210 cells (IC₅₀ values: 0.07, 2.8, and 0.95 μ g/ml, respectively) and human epidermoid carcinoma KB cells (IC₅₀: 0.074, 7.6, and 1.2 μ g/ml, respectively) *in vitro*, while purealidins J—M (1—4), O (6) and R (9), and aerophobin-1 (10) had no cytotoxicity (IC₅₀

Chart 1. Plausible Biogenetic Path of Bromotyrosines with a Spirocyclohexadienylisoxazole Unit and/or a Hydroxy Group at C-1

> $10 \,\mu\text{g/ml}$). Purealidins J (1), K (2), P (7), and Q (8) showed inhibitory activity against epidermal growth factor (EGF) receptor kinase¹⁶⁾ (IC₅₀: 23, 14, 18, and 11 $\mu\text{g/ml}$, respectively).

Experimental

General Methods UV and IR spectra were taken on a JASCO Ubest-35 and a JASCO IR Report-100 spectrometer, respectively. $^1\text{H-}$ and $^{13}\text{C-}\text{NMR}$ spectra were conducted with a JEOL EX-400 and GSX-270 spectrometer in CD₃OD and DMSO- d_6 . The resonances of MeOH at δ_{H} 3.30 and δ_{C} 49.0 were used as internal references for $^1\text{H-}$ and $^{13}\text{C-}\text{NMR}$ spectra, respectively. The resonances of residual DMSO at δ_{H} 2.50 and δ_{C} 39.5 were used as internal references for $^1\text{H-}$ and $^{13}\text{C-}\text{NMR}$ spectra, respectively. FAB-MS spectra were recorded employing a JEOL HX-110 spectrometer by using glycerol as a matrix. EI-MS spectra were obtained on a JEOL DX-303 spectrometer operating at 70 eV.

Collection, Extraction, and Isolation The dark brown sponge, Psammaplysilla purea Carter, was collected off Ishigaki Island, Okinawa and kept frozen until needed. The sponge (1.5 kg, wet weight) was extracted with MeOH (1.31 and then 11). After evaporation under reduced pressure the residue (55.6 g) was partitioned between EtOAc $(500 \,\mathrm{ml} \times 3)$ and $\mathrm{H}_2\mathrm{O}$ (500 ml). The EtOAc soluble material (3.30 g) was subjected to a silica gel column with CHCl₃-n-BuOH-AcOH-H₂O (1.5:6:1:1). The fraction (134 mg, 760—940 ml) was chromatographed on a C₁₈ column (Develosil LOP ODS 24S, Nomura Chemical, $30 \times 300 \text{ mm}$) with $CH_3CN-H_2O-CF_3CO_2H$ (35:65:0.1) and then MeOH to give two fractions. The fraction (34 mg, 45-100 ml) was separated by C_{18} HPLC (YMC Pack AM323 ODS, 10×250 mm; eluent, CH₃CN-H₂O-CF₃CO₂H, 35:75:0.1; flow rate, 2.5 ml/min; UV detection at 254 nm) to afford purealidins J (1, 0.004%, t_R 10.8 min), K (2, 0.002%, t_R 10.2 min) and L (3, 0.0002%, t_R 11.5 min). The other fraction (36.4 mg) eluted with MeOH from the C₁₈ column was subjected to C₁₈ HPLC (YMC Pack AM323 ODS, 10×250 mm; eluent, CH₃CN-H₂O-CF₃CO₂H, 42:58:0.1; flow rate, 2.5 ml/min; UV detection at 254 nm) to afford purealidins N (5, 0.0003%, t_R 12.0 min), O (6, 0.0001%, t_R 14.0 min), and R (9, 0.0004%, t_R 19.0 min). The other fraction (219.2 mg) eluted at 950—1080 ml from the first silica gel column was subjected to a C₁₈ column (Develosil LOP ODS 24S, 30 × 300 mm; eluent, CH₃CN-H₂O-CF₃CO₂H, 45:55:0.1) followed by purification by C₁₈ HPLC (YMC Pack AM323 ODS, 10×250 mm; eluent, CH₃CN-H₂O-CF₃CO₂H, 45:55:0.1; flow rate, 2.5 ml/min; UV detection at 254 nm) to afford purealidins M (4, 0.002%, t_R 8.4 min), P $(7, 0.0008\%, t_R 17.4 \text{ min})$, and Q $(8, 0.0004\%, t_R 16.2 \text{ min})$ together with aerophobin-1 (10, 0.005%).

Purealidin J (1) TFA Salt Colorless oil, $[\alpha]_{c}^{21} + 24^{\circ}$ (c = 0.98, MeOH). IR (KBr): 3400, 2930, 2845, 1680, 1540, 1430, 1200, 1135 cm⁻¹. UV λ_{max}^{MeOH} nm (ε): 277 (1700), 284 (1400). CD ($c = 0.64 \times 10^{-4}$, MeOH) $\Delta \epsilon^{30}$ (nm): +2.2 (255), +2.1 (287). 1 H-NMR (DMSO- d_{6}) δ: 2.61 (2H, t, J = 6.4 Hz, H₂-11), 3.19 (1H, d, J = 18.6 Hz, H-7), 3.37 (2H, brt, J = 6.4 Hz, H₂-10), 3.61 (1H, d, J = 18.6 Hz, H-7), 3.64 (3H, s, 3-OMe), 3.91 (1H, d, J = 6.4 Hz, H-1), 6.37 (1H, d, J = 6.4 Hz, 1-OH), 6.58 (1H, s, H-5), 6.62 (1H, br s, H-13), 7.40 (2H, s, 14-NH₂), 8.63 (1H, t, J = 5.6 Hz, 9-NH), 11.71 (1H, br s, 12-NH), 12.13 (1H, br s, 13-NH). 13 C-NMR: see Table I. FAB-MS m/z: 490, 492, 494 (M⁺ + H, 1:2:1). HR-FAB-MS Calcd for $C_{15}H_{19}Br_2N_5O_4$ (M+2+H)⁺: 491.9705. Found: 491.9682.

Purealidin K (2) TFA Salt Colorless oil, $[\alpha]_D^{24} + 26^\circ$ (c = 0.38, MeOH). IR (KBr): 3400, 2920, 2850, 1670, 1540, 1430, 1200, 1135, 1125 cm⁻¹. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 231 (6300), 284 (2400). CD ($c = 0.73 \times 10^{-4}$, MeOH) $\Delta \varepsilon^{30}$ (nm): +2.3 (255), +2.1 (289). ¹H-NMR (DMSO- d_6) δ: 1.86 (1H, m, H-11), 1.96 (1H, m, H-11), 3.19 (1H, d, J = 18.0 Hz, H-7), 3.35 (2H, m, H₂-10), 3.62 (1H, d, J = 18.0 Hz, H-7), 3.65 (3H, s, 3-OMe), 3.92 (1H, d, J = 6.3 Hz, H-1), 4.30 (1H, dd, J = 4.9, 7.8 Hz, H-12), 6.36 (1H, d, J = 6.3 Hz, 1-OH), 6.58 (1H, s, H-5), 8.63 (1H, t, J = 5.1 Hz, 9-NH), 8.96 (2H, s, 14-NH₂), 9.64 (1H, br s, 13-NH), 12.5 (1H, br, 12-NH). ¹³C-NMR: see Table I. FAB-MS m/z: 506, 508, 510 (M⁺ + H, 1:2:1). HR-FAB-MS Calcd for $C_{15}H_{18}Br_2N_5O_5$ (M+2+H)⁺: 507.9654. Found: 507.9672.

Purealidin L (3) TFA Salt Colorless oil, $[\alpha]_D^{24} + 27^{\circ} (c = 0.18, \text{MeOH})$. IR (KBr): 3400, 2920, 1660, 1520, 1470, 1210 cm⁻¹. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 228 (8600), 290 (3400). CD $(c = 1.4 \times 10^{-4}, \text{MeOH}) \Delta \epsilon^{30}$ (nm): +2.3 (248), +1.9 (284). ¹H-NMR (DMSO- d_6) δ: 1.45 (2H, m, H₂-12), 1.47 (2H, m, H₂-11), 3.09 (2H, m, H₂-13), 3.16 (2H, m, H₂-10), 3.19 (1H,

d, $J=18.2\,\mathrm{Hz}$, H-7), 3.62 (1H, d, $J=18.2\,\mathrm{Hz}$, H-7), 3.64 (3H, s, 3-0Me), 3.91 (1H, d, $J=7.9\,\mathrm{Hz}$, H-1), 6.34 (1H, d, $J=7.9\,\mathrm{Hz}$, 1-OH), 6.57 (1H, s, H-5), 7.1—7.3 (4H, br, 14-C(-NH₂)NH₂), 7.44 (1H, br s, 13-NH), 8.54 (1H, t, $J=5.8\,\mathrm{Hz}$, 9-NH). ¹³C-NMR see Table I. FAB-MS m/z: 494, 496, 498 (M⁺+H, 1:2:1). HR-FAB-MS Calcd for $C_{15}H_{22}Br_2N_5O_4$, (M+2+H)⁺: 496.0018. Found: 496.0035.

Purealidin M (4) TFA Salt Colorless oil. IR (KBr): 3400, 2920, 1680, 1520, 1470, 1200, 1135, 1120 cm⁻¹. UV $\lambda_{\text{max}}^{\text{MoOH}}$ nm (ε): 277 (1700), 284 (1400). 1 H-NMR (DMSO- d_{6}) δ: 2.63 (2H, t, J=6.9 Hz, H₂-11), 3.40 (2H, dt, J=5.9, 6.9 Hz, H₂-10), 3.70 (2H, s, H₂-7), 3.74 (3H, s, 3-OMe), 6.60 (1H, s, H-13), 7.26 (1H, s, H-5), 7.33 (2H, s, 14-NH₂), 8.55 (1H, t, J=5.9 Hz, 9-NH), 10.48 (1H, br s, 1-OH), 11.55 (1H, br s, 12-NH), 11.99 (1H, br s, 13-NH), 12.19 (1H, s, 8-NOH). 13 C-NMR: see Table I. FAB-MS m/z: 490, 492, 494 (M⁺+H, 1:2:1). HR-FAB-MS Calcd for $C_{15}H_{18}Br_{2}N_{5}O_{4}$ (M+2+H)⁺: 491.9705. Found 491.9740.

Purealidin N (5) Colorless oil. IR (KBr): 3400, 2920, 2845, 1680, 1520, 1135, 1120 cm⁻¹. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (ε): 235 (2600), 290 (2800). ¹H-NMR (DMSO- d_6) δ: 2.85 (2H, t, J=6.7 Hz, H₂-11), 3.48 (2H, dt, J=5.9, 6.7 Hz, H₂-10), 3.70 (2H, s, H₂-7), 3.74 (3H, s, 3-OMe), 7.26 (1H, s, H-5), 7.40 (1H, s, H-13), 8.59 (1H, t, J=5.9 Hz, 9-NH), 8.89 (1H, s, H-14), 10.45 (1H, br s, 1-OH), 12.20 (1H, s, 8-NOH), 14.1 (1H, br s, 13-NH). ¹³C-NMR: see Table I. FAB-MS m/z: 475, 477, 479 (M⁺+H, 1:2:1). HR-FAB-MS Calcd for C₁₅H₁₇Br₂N₄O₄ (M+2+H)⁺: 476.9596. Found: 476.9564.

Purealidin O (6) TFA Salt Colorless oil. IR (KBr): 3400, 2920, 2850, 1680, 1635, 1135 cm⁻¹. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 235 nm (2600), 287 (700).

¹H-NMR (DMSO- d_6) δ: 1.42 (2H, m, H₂-12), 1.44 (2H, m, H₂-11), 3.09 (2H, m, H₂-13), 3.18 (2H, m, H₂-10), 3.70 (2H, s, H₂-7), 3.74 (3H, s, 3-OMe), 7.1—7.3 (4H, br, 14-C (-NH₂)NH₂), 7.31 (1H, s, H-5), 7.43 (1H, br s, 13-NH), 8.56 (1H, t, J = 5.9 Hz, 9-NH), 10.68 (1H, br s, 1-OH), 12.17 (1H, s, 8-NOH).

¹³C-NMR: see Table I. FAB-MS m/z: 494, 496, 498 (M⁺ + H, 1:2:1). HR-FAB-MS Calcd for C₁₅H₂₂Br₂N₅O₄ (M+2+H)⁺: 496.0018. Found: 496.0028.

Purealidin P (7) TFA Salt Colorless oil, $[\alpha]_D^{19} + 6.6^{\circ}$ (c = 0.75, MeOH). IR (KBr): 3400, 2940, 2845, 1670, 1520, 1470, 1135, 1120 cm⁻¹. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ): 277 (1700), 284 (1400). CD ($c = 0.37 \times 10^{-4}$, MeOH) Δε³⁰ (nm): +0.9 (248), +1.1 (284). ¹H-NMR (DMSO- d_6) $δ_H$: 2.01 (2H, m, H_2 -11), 2.78 (6H, s, 18-NMe₂), 2.93 (2H, t, J=8.1 Hz, H_2 -17), 3.23 (1H, d, J = 18.0 Hz, H-7), 3.35 (2H, m, H₂-18), 3.41 (2H, m, H₂-10), 3.62(1H, d, J=18.0 Hz, H-7), 3.65 (3H, s, 3-OMe), 3.92 (1H, d, J=8.1 Hz,H-1), 3.97 (2H, t, J = 6.3 Hz, H₂-12), 6.36 (1H, d, J = 8.1 Hz, 1-OH), 6.59 (1H, s, H-5), 7.64 (2H, s, H-15, 15'), 8.57 (1H, t, J = 5.8 Hz, 9-NH). ¹³C-NMR (CD₃OD) $\delta_{\rm C}$: 30.3 (t, C-17), 30.6 (t, C-11), 37.9 (t, C-10), 40.1 (t, C-7), 43.6 (2C, q, 18-NMe₂), 59.2 (t, C-18), 60.4 (q, 1-OMe), 72.3 (t, C-12), 75.5 (d, C-1), 92.5 (s, C-6), 114.2 (s, C-2), 119.5 (2C, s, C-14, 14'), 122.8 (s, C-4), 132.3 (d, C-5), 134.4 (d, C-15), 134.5 (d, C-15'), 136.5 (s, C-16), 149.4 (s, C-3), 153.7 (s, C-13), 155.3 (s, C-8), 161.6 (s, C-9). FAB-MS m/z: 742, 744, 746, 748, 750 (M⁺+H, 1:4:6:4:1). HR-FAB-MS Calcd for $C_{23}H_{28}Br_4N_3O_5$ $(M+4+H)^+$: 745.8721. Found: 745.8776.

Purealidin Q (8) TFA Salt Colorless oil, $[\alpha]_D^{19} + 9.1^{\circ}$ (c=0.39, MeOH). IR (KBr): 3400, 2940, 2850, 1675, 1470, 1200, 1135, 1120 cm⁻¹ UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 277 (1700), 284 (1400). CD ($c = 0.52 \times 10^{-4}$, MeOH) $\Delta \varepsilon^{30}$ (nm): +1.5 (250), +1.4 (284). ¹H-NMR (DMSO- d_6) $\delta_{\rm H}$: 2.15 (2H, m, H_2 -17), 2.76 (2H, t, J=6.9 Hz, H_2 -11), 2.83 (6H, s, 18-NMe₂), 3.18 (1H, d, J = 18.2 Hz, H-7), 3.36 (2H, m, H₂-10), 3.40 (2H, m, H₂-18), 3.60(1H, d, J = 18.2 Hz, H-7), 3.64 (3H, s, 3-OMe), 3.92 (1H, d, J = 8.2 Hz, H-1), 3.99 (2H, t, J = 6.3 Hz, H₂-16), 6.34 (1H, d, J = 8.2 Hz, 1-OH), 6.57 (1H, s, H-5), 7.54 (2H, s, H-15, 15'), 8.58 (1H, t, J = 5.7 Hz, 9-NH). ¹³C-NMR (CD₃OD) $\delta_{\rm C}$: 26.4 (t, C-17), 35.1 (t, C-11), 40.1 (t, C-10), 41.4 (t, C-7), 43.7 (2C, q, 18-NMe₂), 57.2 (t, C-18), 60.4 (q, 1-OMe), 71.2 (t, C-16), 75.5 (d, C-1), 92.4 (s, C-6), 114.2 (s, C-2), 118.8 (2C, s, C-14, 14'), 122.8 (s, C-4), 132.2 (d, C-5), 134.5 (d, C-13), 134.6 (d, C-13'), 140.3 (s, C-12), 149.3 (s, C-3), 152.2 (s, C-15), 155.2 (s, C-8), 161.6 (s, C-9). FAB-MS m/z: 742, 744, 746, 748, 750 (M⁺+H, 1:4:6:4:1). HR-FAB-MS Calcd for $C_{23}H_{28}Br_4N_3O_5$ $(M+4+H)^+$: 745.8721. Found: 745.8729.

Purealidin R (9) Colorless oil, $[α]_{c}^{24} + 86^{\circ}$ (c=0.19, MeOH). IR (KBr): 3400, 2940, 1675, 1135, 1120 cm⁻¹. UV $λ_{max}^{\text{MeOH}}$ nm (ε): 228 (8000), 290 (2000). CD (c=0.52 × 10⁻⁴, MeOH) $Δε^{30}$ (nm): +4.0 (248), +4.3 (284). ¹H-NMR (DMSO- d_6) δ: 3.18 (1H, d, J=18.2 Hz, H-7), 3.60 (1H, d, J=18.2 Hz, H-7), 3.65 (3H, s, 3-OMe), 3.92 (1H, d, J=6.2 Hz, H-1), 6.35 (1H, d, J=6.2 Hz, 1-OH), 6.58 (1H, s, H-5), 7.58 (1H, br s, NH-9), 7.82 (1H, br s, NH-9). ¹³C-NMR: see Table I. EI-MS m/z: 380, 382, 384

 $(M^+ + H, 1:2:1)$. HR-EI-MS Calcd for $C_{10}H_{10}Br_2N_2O_4$ $(M+2)^+$: 381.8898. Found: 381.8901.

Determination of the Stereochemistry of C-12 in Purealidin K (2) A solution of purealidin K (2, 1.0 mg) in MeOH (100 µl) was bubbled with O₃ at -78 °C for 1 min. After removal of excess O₃ with a stream of N₂, the solvent was evaporated under reduced pressure, and to the residue were added HCO₂H (250 ml) and 35% H_2O_2 (25 μ l). The mixture was stirred for 1 h at 0 °C and then for 18 h at room temperature. The solvent was evaporated, and then the residue was dissolved in 6 N HCl (100 μ l); this solution was heated at 110 °C for 24 h. Standard amino acid analysis was performed on a Hitachi amino acid autoanalyzer (Model 835, column $#2617 4.0 \times 250 \,\mathrm{mm}$) with Na buffer at a flow rate of 0.275 ml/min and detected at 570 nm. 2,4-Diaminobutyric acid (t_R 96.42 min) was found in the hydrolysate. The absolute stereochemistry of 2,4-diaminobutyric acid was examined by chiral HPLC analysis (Sumichiral OA-6000, Sumika Chemical Analysis Service, Ltd., 4.6 × 150 mm; flow rate, 0.5 ml/min; UV detection at 254 nm; eluent, 1 mм aqueous CuSO₄). The retention times of authentic L- and D-2,4-diaminobutyric acid were 30.5 and 29.6 min, respectively. The retention times of the 2,4-diaminobutyric acid in the hydrolysate was found to be 30.5 and 29.6 min (ratio of ca.

Acknowledgments We thank Mr. Z. Nagahama for his help with collection of the sponge. We are also grateful to Banyu Pharmaceutical Co., Ltd., for EGF receptor kinase assay. This work was partly supported by a Grant-in-Aid from Ciba-Geigy Foundation (Japan) for the Promotion of Science and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

References

- J. Kobayashi, M. Ishibashi, "The Alkaloids," Vol. 41, ed. by A Brossi, G. A. Cordell, Academic Press, San Diego, 1992, pp. 41—124.
- 2) a) E. Fattorusso, L. Minale, G. Sodano, J. Chem. Soc., Chem.

- Commun., 1970, 751; b) E. Fattorusso, L. Minale, G. Sodano, J. Chem. Soc., Perkin Trans 1, 1972, 16.
- Y. Gopichand, F. J. Schmitz, Tetrahedron Lett., 1979, 3921.
- 4) R. Kazlauskas, R. O. Lidgard, P. T. Murphy, R. J. Wells, Tetrahedron Lett., 21, 2277 (1980).
- a) M. Tsuda, T. Sasaki, J. Kobayashi, J. Org. Chem., 59, 3734 (1994);
 b) J. Kobayashi, M. Tsuda, N. Kawasaki, K. Matsumoto, T. Adachi, Tetrahedron Lett., 35, 4384 (1994);
 c) M. Tsuda, N. Kawasaki, J. Kobayashi, ibid., 35, 4387 (1994).
- a) H. Nakamura, H. Wu, J. Kobayashi, Y. Ohizumi, Y. Hirata, Tetrahedron Lett., 26, 4517 (1985); b) H. Wu, H. Nakamura, J. Kobayashi, Y. Ohizumi, Y. Hirata, Experientia, 42, 855 (1986); c) M. Ishibashi, M. Tsuda, Y. Ohizumi, T. Sasaki, J. Kobayashi, ibid., 47, 299 (1991); d) J. Kobayashi, M. Tsuda, K. Agemi, H. Shigemori, M. Ishibashi, T. Sasaki, Y. Mikami, Tetrahedron., 47, 6617 (1991); e) M. Tsuda, H. Shigemori, M. Ishibashi, J. Kobayashi, Tetrahedron Lett., 33, 2597 (1992); f) M. Tsuda, H. Shigemori, M. Ishibashi, J. Kobayashi, J. Nat. Prod., 55, 1325 (1992).
- 7) G. Cimino, S. De Rosa, S. De Stefano, R. Self, G. Sodano, *Tetrahedron Lett.*, **24**, 3029 (1983).
- 8) J. Kobayashi, M. Tsuda, Y. Ohizumi, Experientia, 47, 301 (1991).
- 9) M. Litaudon, M. Guyot, Tetrahedron Lett., 27, 4455 (1986).
- 10) L. Arabshahi, F. J. Schmitz, J. Org. Chem., 52, 3584 (1987).
- S. Nishiyama, S. Yamamura, Bull. Chem. Soc. Jpn., 58, 3453 (1985).
- J. A. McMillan, I. C. Paul, Y. M. Goo, K. L. Rinehart, Jr., Tetrahedron Lett., 22, 39 (1981).
- 13) C. W. J. Cheng, A. J. Weiheimer, Tetrahedron Lett., 1977, 4005.
- 14) E. Fattorusso, L. Minale, G. Sodano, J. Chem. Soc., Chem. Commun., 1970, 752.
- 15) R. J. Andersen, D. J. Faulkner, Tetrahedron Lett., 1973, 1175.
- S. Tanaka, T. Okabe, S. Chieda, K. Endo, T. Kanoh, A. Okura, E. Yoshida, *Jpn. J. Cancer Res.*, 85, 253 (1994).