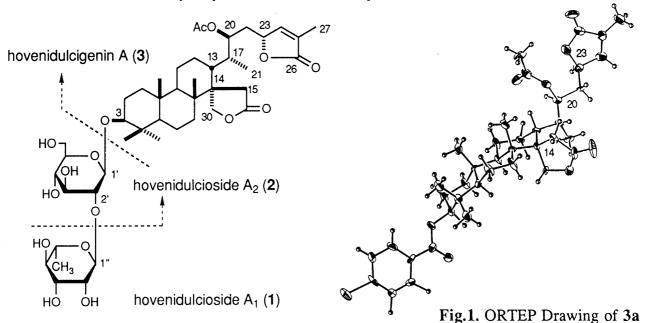
ABSOLUTE STEREOSTRUCTURES OF HOVENIDULCIOSIDES A_1 AND A_2 , BIOACTIVE NOVEL TRITERPENE GLYCOSIDES FROM HOVENIAE SEMEN SEU FRUCTUS, THE SEEDS AND FRUIT OF *HOVENIA DULCIS* THUNB.


Masayuki YOSHIKAWA,*,^a Tomohiko UEDA,^a Osamu MURAOKA,^b Hiroshi AOYAMA,^b Hisashi MATSUDA,^a Hiroshi SHIMODA,^a Johji YAMAHARA,^a and Nobutoshi MURAKAMI ^a

Kyoto Pharmaceutical University, ^a 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607, Japan, and Faculty of Pharmaceutical Sciences, Kinki University, ^b 3-4-1, Kowakae, Higashi-Osaka 577, Japan

Two bioactive novel triterpene glycosides named hovenidulciosides A_1 and A_2 have been isolated from a Chinese natural medicine, Hoveniae Semen Seu Fructus, the seeds and fruit of *Hovenia dulcis* Thunb. (Rhamnaceae). The absolute stereostructures of hovenidulciosides A_1 and A_2 with a migrated 16,17-seco-dammarane skeleton have been determined on the basis of chemical and physicochemical evidence which included the X-ray crystallographic analysis of the p-bromobenzoate of their common aglycone, hovenidulcigenin A. Hovenidulciosides A_1 and A_2 exhibited inhibitory activity on the histamine release from rat mast cells induced by compound 48/80 or calcium ionophore A-23187.

KEY WORDS hovenidulcioside; hovenidulcigenin A; migrated 16,17-seco-dammarane triterpene; Hoveniae Semen Seu Fructus; *Hovenia dulcis*; histamine release inhibitor

Hoveniae Semen Seu Fructus (Japanese name "Kigushi"), the seeds and fruit of *Hovenia dulcis* Thunb. (Japanese name "Kenponashi," Rhamnaceae), has been used as a diuretic and antidote in Chinese traditional medicine. In the chemical study of *Hovenia dulcis*, several dammarane and 16,17-seco-dammarane type triterpene glycosides have been characterized from the root cortex and leaves of this plant.¹⁾ In the course of our studies on the bioactive constituents in natural medicine,²⁾ we have found many oleanene type triterpene glycosides which exhibit potent inhibitory effect on ethanol and sugar absorption in the digestive tract.³⁾ As a continuing part of our screening for bioactive saponins, novel triterpene glycosides named hovenidulciosides A_1 (1) and A_2 (2) were isolated from Hoveniae Semen Seu Fructus. This communication deals with the absolute stereostructures of 1 and 2 and their inhibitory effect on the histamine release from the rat mast cells induced by compound 48/80 or calcium ionophore A-23187.⁴⁾

* To whom correspondence should be addressed.

© 1995 Pharmaceutical Society of Japan

Table I. ¹³C NMR Data for Hovenidulciosides A₁ (1) and A₂ (2), and Hoveniadulcigenin A (3) (68MHz)

Hovemaduicigenin A (3) (08MHz)							
	1 ^{a)}	2 ^{a)}	3 ^{b)}		1	2	3
C-1	39.7	39.5	38.4	C-23	80.6	80.6	78.3
C-2	27.3	26.7	27.2	C-24	151.0	151.0	147.8
C-3	89.9	90.5	78.6	C-25	130.4	130.5	130.5
C-4	40.3	40.3	38.8	C-26	176.2	176.2	173.6
C-5	56.6	56.4	55.0	C-27	10.6	10.6	10.7
C-6	18.9	19.0	18.0	C-28	28.3	28.4	28.0
C-7	35.4	35.4	35.4	C-29	17.0	16.8	15.9
C-8	42.3	42.3	41.1	C-30	71.8	71.9	70.0
C-9	54.0	54.0	53.0	OAc	21.2	21.2	21.1
C-10	37.9	37.9	37.1		172.4	172.5	170.7
C-11	21.6	21.6	20.4	Glu-1	105.6	106.7	
C-12	25.8	25.9	24.5	2	78.9	75.7	
C-13	39.0	39.1	37.7	3	79.4	78.3	
C-14	53.6	53.1	52.0	4	72.0	71.7	
C-15	34.8	34.8	33.9	5	77.6	77.7	
C-16	179.9	180.1	177.1	6	62.8	62.8	
C-17	37.0	37.1	35.8	Rha-1	101.8		
C-18	18.6	18.6	18.3	2	72.0		
C-19	16.7	16.6	15.4	3	72.1		
C-20	74.8	74.8	73.7	4	73.9		
C-21	11.9	11.9	12.1	5	69.9		
C-22	35.0	35.0	34.4	6	18.0		

The spectra were taken in CD₃OD^{a)} or CDCl₃b).

The MeOH extract of Hoveniae Semen Seu Fructus was subjected to reversed phase SiO₂ column (silica gel 60 silanised, H₂O-MeOH) chromatography; then the MeOH-eluted fraction was purified by repeated ordinary SiO₂ (CHCl₃-MeOH) and reversed phase SiO₂ (chromatorex-ODS DM1020T, H₂O-MeOH) column chromatography and finally HPLC (YMC-Pack ODS-A, H₂O-MeOH) to give hovenidulciosides A₁ (1, 0.0043% from the natural medicine), A₂ (2, 0.0014%), B₁ (0.0041%), and B₂ (0.0018%) together with hoduloside III (0.0012%).^{1d)}

Hovenidulcioside A_1 (1), colorless fine crystals, mp 183~186°C, $[\alpha]_D$ -48.5° (MeOH), C44H68O₁₆, UV [MeOH (log ϵ)]: 224 nm (3.8), IR (KBr): 3453, 2944, 1765, 1751, 1735 cm⁻¹, negative FAB-MS (m/z): 851 (M-H)⁻, positive FAB-MS (m/z): 875 (M+Na)⁺, liberated methyl D-glucoside and methyl L-rhammnoside upon methanolysis with 9%

HCl-MeOH. On the enzymatic hydrolysis of 1 with naringinase, a genuine aglycon, hovenidulcigenin A (3), colorless fine crystals, mp 230~233°C, $[\alpha]_D$ -23.1° (MeOH), $C_{32}H_{48}O_6$, IR (KBr) : 3439, 2962, 1771, 1736 cm⁻¹, was obtained in 97% yield.

The 1 H NMR (1 : CD₃OD ; 3 : CDCl₃) and 13 C NMR (Table I) spectra of 1 and 3, which were assigned by COSY (1 H- 1 H, 1 H- 13 C), HMBC, and HOHAHA (1 H- 1 H, 1 H- 13 C), indicated the presence of four *tert*. methyls [1 : δ 0.92 (29-H₃), 0.93 (19-H₃), 1.06 (18-H₃), 1.12 (28-H₃) ; 3 : δ 0.78 (29-H₃), 0.82 (19-H₃), 0.96 (18-H₃), 0.99 (28-H₃)], a *sec*. methyl [1 : δ 0.97 (d, J=6.9) ; 3 : δ 0.89 (d, J=6.9) (21-H₃)], an acetyl methyl [1 : δ 2.12 ; 3 : δ 2.09 (20-OAc)], a methine-bearing glycosyl residue or hydroxyl group [1 ; δ 3.21 (m) ; 3 : δ 3.19 (dd, J=5.2, 11.2) (3-H)], a γ -lactone [1 : δ 2.49, 2.71 (ABq, J=19.0, 15-H₂), 4.34, 4.53 (ABq, J=10.7, 30-H₂) ; 3 : δ 2.34, 2.59 (ABq, J=18.8, 15-H₂), 4.23, 4.38 (ABq, J=10.3, 30-H₂)], and α -methyl butenolide [1 : δ 1.91 (dd, J=1.6, 1.7, 27-H₃), 5.13 (br s, 23-H), 7.34 (br s, 24-H) ; 3 : δ 1.91 (br s, 27-H₃), 4.88 (br s, 23-H), 7.09 (br s, 24-H)]. The carbon and proton signals assignable to the tricarbocyclic moieties of 1 and 3 were found to be very similar to those of hovenolactone, 1 0 which was the common aglycone of various 16,17-*seco*-dammarane type triterpene glycosides obtained from the leaves of *Hovenia dulcis*, excepting the signals due to the side chain moiety.

The side chain moiety with a sec methyl, an acetoxyl, and α -methyl-26,23-butenolide group of 1 was confirmed from the HMBC experiment. Namely, long-range correlations were obtained between the following carbons and protons of 1 (17-H & 20, 21-C; 21-H₃ & 13, 17-C; 22-H₂ & 20, 23-C; 24-H & 23, 25, 27-C; 27-H₃ & 24, 25, 26-C). Based on these findings, it appeared that 1 had the novel triterpene structure with the methyl group migrated from 20-C to 17-C in the 16,17-seco-dammarane triterpene.⁵⁾

In order to substantiate the presumption and to establish the absolute stereostructure of the aglycon part of 1, the X-ray crystallographic analysis of 3-O-p-bromobenzoyl hovenidulcigenin A (3a), which was prepared from 3 by the condensation with p-bromobenzoic acid in the presence of 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide hydrochloride and 4-dimethylaminopyridine in CH_2Cl_2 , was carried out (Fig. 1). The crystal data are as follows:

Table II. Inhibitory Effects of Hovenidulciosides A₁ (1) and A₂ (2) on Histamine Release from Rat Mast Cells Induced by Compound 48/80 or Calcium Ionophore A-23187

	Compound			
	48/80	A-23187		
Hovenidulcioside A ₁ (1)	29.2 ± 2.9	10.1 ± 3.4		
Hovenidulcioside A ₂ (2)	53.2 ± 1.1	48.2 ± 2.3		

Each value represents the mean with standard error of 3-4 experiments. The numeral values denote the inhibition percentage of histamine release at 10⁻⁴M.

 $C_{39}H_{51}O_8Br$, M=727.73, monoclinic, a=14.059 (3), b=7.683 (4), c=16.767 (4)Å, β =95.78 (2)°, V=1802 (1)Å³, Z=2, space group P2₁ (#4), Dc=1.341g/cm³.6)

Finally, based on comparison of the 13 C NMR spectra for the oligosaccharide moiety of 1 with those for the saponins having α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranosyl moiety¹⁾ and observation of the HMBC correlation between the following protons and carbons of 1 (1"-H & 2'-C; 1'-H & 3-C), the total structure of hoveni-

dulcioside A_1 (1) was determined as shown.

Hovenidulcioside A_2 (2), colorless fine crystals, mp 157~160°C, $[\alpha]_D$ -14.0° (MeOH), $C_{38}H_{58}O_{12}$, UV [MeOH (log ϵ)] : 234 nm (3.8), IR (KBr) : 3432, 1768, 1750, 1734 cm⁻¹, liberated hovenidulcigenin A (3) on enzymatic hydrolysis with β -D-glucosidase. Comparison of the 1 H NMR 7) and 13 C NMR (Table I) for 2 with those of 1 and 3 led us to determine the structure of hovenidulcioside A_2 (2).

Inhibitory effects of hovenidulciosides A_1 (1) and A_2 (2) on the histamine release from rat peritoneal mast cells induced by compound 48/80 and calcium ionophore A-23187 are summarized in Table II. Both hovenidulciosides A_1 (1) and A_2 (2) were found to exhibit activity inhibiting histamine release.

ACKNOWLEDGEMENT The authors are grateful to the Ministry of Education, Science and Culture of Japan for a Grant-in-Aid for financial support (Grant No. 06672126).

REFERENCES AND NOTES

- a) O. Inoue, T. Takeda, Y. Ogihara, J. Chem. Soc., Perkin Trans. 1, 1978, 1289;
 b) Y. Kimura, Y. Kobayashi, T. Takeda, Y. Ogihara, ibid., 1981, 1923;
 c) Y. Kobayashi, T. Takeda, Y. Ogihara, Y. Iitaka, ibid., 1982, 2795;
 d) K. Yoshikawa, S. Tumura, K. Yamada, S. Arihara, Chem. Pharm. Bull., 40, 2287 (1992).
- 2) M. Yoshikawa, S. Yamaguchi, H. Matsuda, N. Tanaka, J. Yamahara, N. Murakami, *Chem. Pharm. Bull.*, 42, 2430 (1994).
- 3) a) M. Yoshikawa, E. Harada, H. Matsuda, T. Murakami, J. Yamahara, N. Murakami, *Chem. Pharm. Bull.*, 41, 2069 (1993); b) M. Yoshikawa, E. Harada, T. Murakami, H. Matsuda, J. Yamahara, N. Murakami, *ibid.*, 42, 742 (1994); c) M. Yoshikawa, H. Matsuda, E. Harada, T. Murakami, N. Wariishi, J. Yamahara, N. Murakami, *ibid.*, 42, 1354 (1994); d) M. Yoshikawa, E. Harada, T. Murakami, H. Matsuda, N, Wariishi, J. Yamahara, N. Murakami, I. Kitagawa, *ibid.*, 42, 1357 (1994); e) M. Yoshikawa, T. Murakami, T. Ueno, M. Kadoya, H. Matsuda, J. Yamahara, N. Murakami, *ibid.*, 43, 350 (1995).
- 4) M. Yoshikawa, T. Ueda, N. Murakami, O. Muraoka, presented at the 115th Annual Meeting of the Pharmaceutical Society of Japan (March, 1995, Sendai).
- 5) a) Recently a methyl migrated 16,17-seco-dammarane triterpene was obtained from the stems of Gouania lupuloides and, based on the NMR analysis, the relative stereostructure was deduced excepting the side chain structure ^{5b)}; b) E. J. Kennelly, W. H. Lewis, R. E. K. Winter, S. Johnson, M. E. Lewis, J. Gossling, J. Nat. Prod., **56**, 402 (1993).
- 6) All data were collected on Rigaku AFC5R diffractometer with MoKa radiation and a graphite monochrometer. The structure was solved by direct methods and refined by full-matrix least-squares to an R factor of 0.043 for 4436 reflections.
- 7) The ¹H NMR (CD₃OD) data of 2: 8 0.84, 0.87, 0.99, 1.06 (3H each, all s, 29, 19, 18, 28-H₃), 0.92 (3H, d, J=7.2, 21-H₃), 1.84 (3H, br s, 27-H₃), 2.05 (3H, s, OAc), 2.43, 2.64 (2H, ABq, J=19.0, 15-H₂), 3.18 (1H, m, 3-H), 4.26, 4.47 (2H, ABq, J=10.5, 30-H₂), 4.68 (1H, m, 20-H), 5.06 (1H, br s, 21-H), 7.27 (1H, br s, 24-H).

(Received January 26, 1995; accepted February 9, 1995)