Studies on the Chinese Crude Drug "Shoma." IX.¹⁾ Three Novel Cyclolanostanol Xylosides, Cimicifugosides H-1, H-2 and H-5, from Cimicifuga Rhizome

Mamoru Koeda, Yoshinobu Aoki, Nobuko Sakurai, and Masahiro Nagai*

Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan. Received November 30, 1994; accepted January 18, 1995

Three new cyclolanostanol xylosides were isolated from a batch of commercial Cimicifuga Rhizome, cimicifugoside H-1 (1), $C_{35}H_{52}O_{9}$, mp 260—262 °C, $[\alpha]_D$ –43.5°, cimicifugoside H-2 (2), $C_{35}H_{54}O_{10}$, mp 227—229 °C, $[\alpha]_D$ –38.8°, and cimicifugoside H-5 (3), $C_{35}H_{52}O_{10}$, mp 262—264 °C, $[\alpha]_D$ –22.9°, together with known glycosides, actein and 27-deoxyactein. Their structures were determined on the basis of chemical and spectrometric evidence including an X-ray crystallographic analysis. The structure of cimicifugoside H-1 (1) was established as (20R,24R)-24,25-epoxy-11 β -hydroxy-3- β -(β -D-xylopyranosyloxy)-9,19-cyclolanost-7-ene-16,23-dione. Cimicifugoside H-5 (3) is the 15-hydroxylated derivative of 1. Since 1 changed into cimicifugoside H-2 (2) on treatment with ρ -toluenesulfonic acid, 2 has a 24R,25-diol structure derived from 1 by opening its epoxy ring.

Key words cimicifugoside (H-1, H-2 and H-5); Cimicifuga Rhizome; 9,19-cyclolanostanol; triterpenol glycoside

Cimicifuga Rhizome (The Pharmacopoeia of Japan, 12th ed.) is the rhizome of *Cimicifuga simplex* or other species of the same genus (Ranunculaceae), and has been used as an antipyretic and an analgesic in Chinese traditional medicine. The rhizome of *Cimicifuga* species is known to contain highly oxygenated 9,19-cyclolanostane triterpenol glycosides such as cimigenol xyloside,²⁾ acetylshengmanol xyloside³⁾ and 24-*O*-acetylhydroshengmanol xyloside,⁴⁾ in addition to cinnamic acid derivatives,⁵⁾ chromones⁶⁾ and indolinones.⁷⁾

We have preliminarily reported the isolation and the structure determination of cimicifugosides H-1 (1), H-3 and H-4.⁸⁾ In this paper, we present a full account of the structure elucidation of cimicifugoside H-1 (1) and, in addition, two new cimicifugosides H-2 (2) and H-5 (3).

The isolation and purification of these cimicifugosides and two known xylosides, actein and 27-deoxyactein, are described in detail in the experimental section.

Cimicifugoside H-1 (1) was obtained as colorless needles, mp 260—262 °C, $[\alpha]_D$ –43.5°. Its molecular formula was determined as $C_{35}H_{52}O_9$ on the basis of the elemental analysis and the FAB-MS result. The IR spectrum of 1 showed absorptions at 1720 and 1715 cm⁻¹ due to two carbonyl groups. The UV spectrum of 1 showed an absorption maximum due to a cyclopropane ring conjugating with a double bond at 205 nm (ϵ 6275). The 13C-NMR spectrum of 1 showed the signals ascribable to three methine carbons bearing an oxygen atom at δ_C 88.4 (C-3), 63.0 (C-11) and 65.8 (C-24), and oxygen-bearing quaternary carbons including two ketonic carbons at 60.7

- **1**: R₁=H, R₂=H, R₃=β-p-xylopyranosyl
- 3: R₁=OH, R₂=H, R₃=β-D-xylopyranosyl
- **4**: R₁=H, R₂=H, R₃=H
- 5: R₁=H, R₂=Ac, R₃=Ac

Chart 1

© 1995 Pharmaceutical Society of Japan

^{*} To whom correspondence should be addressed.

Fig. 1. ¹H-¹H COSY Spectrum of Compound 1 in Pyridine-d₅

(C-25), 218.4 (C-16) and 205.6 (C-23). The spectrum also gave information about the sugar moiety: five oxygenated carbons assignable to a β -D-xylopyranose moiety were observed [$\delta_{\rm C}$ 107.4 (C-1), 75.5 (C-2), 78.5 (C-3), 71.2 (C-4), 67.1 (C-5)].

The ¹H-NMR spectrum of **1** exhibited the presence of a secondary and six tertiary methyl groups ($\delta_{\rm H}$ 1.04—1.41), a trisubstituted double bond (δ 5.15, br d, J=6 Hz), two carbinol methines (δ 3.59, dd, J=8, 4 Hz, and 4.58, m), a methine bearing an oxygen atom (δ 3.74, s) and an anomeric proton (δ 4.88, d, J=7 Hz).

The ¹H-¹H shift correlation spectroscopy (COSY) spectrum (Fig. 1) disclosed that the xyloside 1 has partial structures a, b, c, d, e and f (Fig. 2) in the molecule. When the partial structures a to f were applied to a 9,19cyclolanostanol skeleton, rings A, B, C and D and a part of the side chain of the triterpenic genin were presumable as in the structure 1 in Chart 1, except for the binding site of the hydroxyl in the partial structure d. But the protons assignable to the cyclopropane methylene (19-H₂) in the ¹H-NMR spectrum were observed as a pair of AB doublets at markedly low magnetic field ($\delta_{\rm H}$ 0.96 and 1.96 ppm) compared with those of 9,19-cyclolanost-7-enes such as 7,8-didehydrocimigenol ($\delta_{\rm H}$ 0.54 and 1.11 ppm). 10) The downfield shift of the cyclopropane methylene could be explained by the exsistence of 11β -OH on ring C: the spatial arrangement of the cyclopropane methylene and the hydroxyl, similar to that in 1,3-diaxially substituted cyclohexane, reasonably accounts for the marked downfield shift of the methylene protons. 11a)

Fig. 2. Partial Structures of Compound 1

All signals of ¹H- and ¹³C-NMR of 1 were assigned with the assistance of ¹H-¹H COSY and ¹H-¹³C COSY (Tables 1 and 2).

Enzymatic hydrolysis of 1 with molsin afforded a diketonic genin (4), $C_{30}H_{44}O_5$, mp 204—206 °C, $[\alpha]_D$ –31.4°, and xylose. Xylose was identified as xylitol acetate by GLC. Application of Klyne's rule¹²⁾ to 1 and 4 supported the view that the sugar moiety of 1 is β -D-xylopyranose [molecular rotation difference between 1 and 4, -116.0°: methyl β -D-xylopyranoside, M_D -108°; methyl α -D-xylopyranoside M_D +253°].¹³⁾ On comparison of the ¹³C-NMR spectra of 1 and 4, the signal due to C-3 showed a downfield shift ($\Delta\delta$ value; +10.4: glycosylation shift).¹⁴⁾ So, we concluded that the β -D-xylopyranose was bound to C-3 of the genin 4.

Acetylation of 4 with acetic anhydride in pyridine yielded a diacetate (5), $C_{34}H_{48}O_7$, mp 183—184 °C, $[\alpha]_D$

Table 1. 13 C-NMR Chemical Shifts of 1, 2, 3, 4 and 11 in Pyridine- d_5

	1	2	3	4	11	
1	27.5	27.7	27.5	27.6	31.9	
2	29.8	29.8	29.8	30.9	29.8	
3	88.4	88.4	88.5	78.0	88.1	
4	40.7	40.7	40.7	40.5	41.2	
5	43.9	43.8	43.9	43.5	47.0	
6	22.1	22.0	22.0	22.3	20.3	
7	115.5	115.3	115.9	115.6	25.7	
8	147.2	147.3	146.3	147.1	45.6	
9	27.6	27.4	28.0	27.6	20.2	
10	29.4	29.3	29.2	29.7	26.8	
11	63.0	63.0	63.1	63.1	36.6	
12	47.4	47.2	46.8	47.3	77.0	
13	44.4	44.5	40.9	44.4	48.8	
14	46.2	46.1	49.7	46.1	47.9	
15	49.8	49.8	80.7	49.8	44.2	
16	218.4	218.3	220.5	218.4	74.5	
17	61.2	61.4	58.7	61.1	56.2	
18	20.1	20.1	19.5	20.1	14.3	
19	18.6	18.5	18.5	18.7	29.4	
20	27.7	27.5	27.8	27.7	23.3	
21	20.4	20.4	20.9	20.4	21.3	
22	47.4	47.6	48.9	47.3	37.6	
23	205.6	213.7	205.3	205.6	105.9	
24	65.8	84.0	65.8	65.8	62.3	
25	60.7	72.5	60.7	60.6	62.5	
26	18.4	27.4	18.3	18.3	13.4	
27	24.6	25.7	24.6	24.6	68.2	
28	27.7	28.0	21.0	27.7	19.6	
29	26.0	25.9	25.9	26.3	25.6	
30	14.5	14.5	14.5	13.8	15.3	
CH ₃ COO-					170.6	
V v1.1	107.4	107.4	107.3		21.6 107.4	
Xyl-1	75.5	75.4	75.4		75.5	
Xyl-2	73.5 78.5	78.5	75.4 78.4		78.5	
Xyl-3		78.3 71.2	78.4 71.1		78.5	
Xyl-4 Xyl-5	71.2 67.1	67.0	67.0		67.0	

Xyl, β -D-xylopyranosyl.

+10.1°. The ¹H-NMR of **5** showed a signal due to two acetyl methyl groups at δ 2.06 ppm (6H, s), and the signals of cyclopropane methylene observed at δ 1.01 and 1.99 ppm (each d, J=4 Hz) in **4** showed an upfield shift to 1.00 and 1.60 ppm (each d, J=5 Hz) in **5**.^{11b)}

Finally, in order to confirm the structure of cimicifugoside H-1 (1), an X-ray crystallographic analysis of the diacetate (5) was carried out. The ORTEP¹⁵⁾ drawing is shown in Fig. 3.¹⁶⁾ The 20R and 24R configurations and location of the β -hydroxy group at C-11 were determined unambiguously.

From this evidence, cimicifugoside H-1 (1) was determined to be (20R,24R)-24,25-epoxy-11 β -hydroxy-3 β -(β -D-xylopyranosyloxy)-9,19-cyclolanost-7-ene-16,23-dione.

A second new xyloside **2**, $C_{35}H_{54}O_{10}$, mp 227—229 °C, $[\alpha]_D$ —38.8°, was isolated as colorless needles, and named cimicifugoside H-2. In the ¹³C- and ¹H-NMR spectra of **2**, the chemical shifts were very similar to those of **1** (Tables 1 and 2). The differences observed in the ¹³C-NMR spectra were in the chemical shifts ascribable to C-23, C-24 and C-25 (Table 1). In the ¹H-NMR spectra, there were some differences between **1** and **2**: the signals assignable to 22-H₂ [δ 3.62 and 2.61 ppm for **1**; 3.79 (dd, J=14, 3 Hz) and 3.44 (dd, J=14, 9 Hz) for **2**] and 24-H [δ 3.74

(s) ppm for 1; 4.50 (s) for 2]. The reducing nature of 2 was demonstrated by a positive coloration (blue) with alkaline blue tetrazolium reagent on TLC: this is consistent with an α -ketol system at C-23 and C-24 in the proposed structure for 2 (below).

Acetylation of **2** with acetic anhydride afforded a hexaacetate (**6**), mp 189—192 °C. The ¹H-NMR spectrum of **6** showed six singlets due to acetyl methyl groups ($\delta_{\rm H}$ 1.97—2.15 ppm). The IR spectrum of **6** showed no absorption due to hydroxy group(s). These results indicate that **2** has six hydroxy groups (including three hydroxyls of the sugar moiety) in its molecule.

Enzymatic hydrolysis of **2** with Cellulase T [Amano] 4 in diluted acetic acid (pH 5) afforded a diketonic genin (7), mp 190—192 °C, $C_{30}H_{46}O_6$ and xylose. The ¹H-NMR spectrum of **7** showed the cyclopropane methylene signals at δ 0.96 and 2.00 ppm (each d, J=4 Hz), and one secondary and six tertiary methyl groups at δ 1.09—1.65 ppm. The ¹³C-NMR spectrum showed thirty signals including two carbonyl signals at δ 218.5 (C-16) and 213.6 (C-23) ppm, trisubstituted double bond signals at δ 147.1 (C-8) and 115.3 (C-7) ppm, and four oxygenated carbon signals at δ 83.8 (C-24), 77.9 (C-3), 72.4 (C-25) and 62.9 (C-11) ppm.

From these results, the structure of **2** was presumed to be **2** (Chart 1), except for the absolute configuration at C-24.

To confirm the structure of cimicifugoside H-2 (2), the following reaction was employed. On treatment with p-toluenesulfonic acid in H_2O –MeOH (20:1), cimicifugoside H-1 (1) changed into a product, mp 226—228 °C, $[\alpha]_D$ —34.3°, which was identical with cimicifugoside H-2 (2). This transformation of 1 into 2 under acidic conditions can be explained as follows. The acid-catalyzed opening of the 24,25-epoxide ring of 1 proceeds through intermediate A in Chart 1, with retention of the configuration at C-24, and addition of a water molecule to the cationic center at C-25 followed by elimination of a proton affords 2. Thus, the structure of cimicifugoside H-2 (2) including the configuration at C-24 was established as (20R,24R)- 11β ,24,25-trihydroxy- 3β - $(\beta$ -D-xylopyranosyloxy)-9,19-cyclolanost-7-ene-16,23-dione.

Cimicifugoside H-5 (3), $C_{35}H_{52}O_{10}$, mp 262—264 °C, $[\alpha]_D$ –22.9°, was isolated as colorless needles from aq. MeOH. The ¹H-NMR spectrum of 3 revealed the presence of a cyclopropane methylene, and one secondary and six tertiary methyl groups. The ¹H-NMR spectrum of 3 was very similar to that of 1, but with two different signals $[\delta 6.17 \text{ (br d, } J=6 \text{ Hz, } 7\text{-H)} \text{ and } 4.56 \text{ ppm (s, } 15\text{-H)}].$

The 13 C-NMR spectrum of **3** showed two ketonic signals at δ 220.5 (C-16) and 205.3 (C-23) ppm, a trisubstituted double bond at δ 146.3 (C-8) and 115.9 (C-7) ppm, and ten oxygenated carbon signals including those due to β -D-xylopyranose at δ 88.5 (C-3), 63.1 (C-11), 80.7 (C-15), 65.8 (C-24), 60.7 (C-25), 107.3 (xyl-1), 75.4 (xyl-2), 78.4 (xyl-3), 71.1 (xyl-4) and 67.0 (xyl-5). The 13 C-NMR spectrum was very similar to that of **1**, except for the signal assignable to C-15 (Table 1).

The ¹H-¹H COSY spectrum of 3 showed the same partial structures as those of 1, except for partial structure e in Fig. 2. The reducing nature of 3 was also demonstrated by a positive coloration (blue) with alkaline blue

774 Vol. 43, No. 5

Table 2. ${}^{1}\text{H-NMR}$ Chemical Shifts of 1, 2, 3, 4, 10 and 11 in Pyridine- d_{5}

	1 a)	2 ^{a)}	3 ^{a)}	4 ^{a)}	10 4)	11 ^{a)}
1	1.72, 2.79	1.69, 2.80	1.72, 2.80	1.68, 2.78	1.15, 1.56	1.13, 1.52
2	2.08, 2.40	2.05, 2.40	2.05, 2.32	2.04, 2.04	1.80, 2.23	1.84, 2.23
3	3.59 dd (8, 4)	3.59 dd (8, 4)	3.58 m	3.62 m	3.42 dd (11, 4)	3.44 dd (11, 4)
5	1.34	1.35 dd (9, 4)	1.39	1.37	1.22	1.25
6	1.70, 1.92	1.70, 1.93	1.72, 1.98	1.78, 2.00	0.64, 1.43	0.64, 1.40
7	5.15 br d (6)	5.13 br d (6)	6.17 br d (6)	5.18 dd (7, 2)	0.90, 1.23	0.91, 1.22
8		• • •		, ,	1.59	1.61
11	4.58 m	4.53 m	4.59 m	4.58 m	1.20, 2.69 dd (16, 9)	1.18 dd (16, 3). 2.71 dd (16, 9)
12	2.18 dd (10, 4), 2.78	2.21, 2.78	2.22, 2.82	2.22 dd (14, 4), 2.84	5.05 dd (9, 4)	5.10 dd (9, 3)
15	2.37 d (18),	2.26 d (18),	4.56 s	2.31 d (18),	1.53, 1.93	1.77, 1.89
	2.50 d (18)	2.48 d (18)		2.53 d (18)	,	,
16	, ,	` '		,	4.57 dd (14, 7)	4.25 m
17	2.39	2.43	2.20	2.40 d (9)	1.72	1.79
18	1.21 s	1.22 s	1.30	1.24 s	1.34 s	1.46 s
19	0.96 d (4),	0.94 d (4),	1.02 d (4),	1.01 d (4),	0.25 d (4),	0.27 d (4),
	1.96 d (4)	1.95 d (4)	1.95 d (4)	1.99 d (4)	0.59 d (4)	0.54 d (4)
20	2.61	2.40	2.65	2.63	1.80	2.21 m
21	1.04 d (6)	1.13 d (7)	1.05 d (6)	1.06 d (7)	0.97 d (6)	1.02 d (7)
22	2.61, 3.62	3.44 dd (14, 9), 3.79 dd (14, 3)	2.65, 3.62	2.63, 3.68 m	1.63, 2.20	1.43, 1.56
24	3.74 s	4.50 s	3.72 s	3.75 s	3.86 s	3.61 s
26	1.35 s	1.55 s	1.31 s	1.36 s	1.75 s	1.41 s
27	1.36 s	1.67 s	1.36 s	1.37 s	5.66 s	3.62 d (10),
						4.05 d (10)
28	1.21 s	1.16 s	1.37 s	1.23 s	0.79 s	0 84 s
29	1.41 s	1.42 s	1.36 s	1.30 s	1.27 s	1.29 s
30	1.15 s	1.14 s	1.12 s	1.20 s	0.96 s	0.98 s
CH ₃ COO-					2.11 s	2.12 s
Xyl-1	4.88 d (7)	4.89 d (7)	4.82 d (7)		4.78 d (7)	4.82 d (7)
Xyl-2	4.02	4.04	3.98		3.94	4.00
Xyl-3	4.15	4.17	4.09		4.10	4.14
Xyl-4	4.22	4.24	4.15		4.18	4.21
Xyl-5	3.74 dd (10, 7),	3.73 t (10),	3.66, 4.33 dd (11, 5)		3.67 t (10),	3.72 t (10),
	4.34 dd (10, 4)	4.35 dd (10, 4)	, (,-)		4.30 dd (10, 5)	4.35 dd (10, 5)

a) Signal assignments were based on ¹H-¹H COSY spectra.

Fig. 3. ORTEP Drawing of the Diacetate of 4 (5) with Atomic Numbering

tetrazolium reagent on TLC. These findings suggested the location of a hydroxyl at C-15: an α -ketol structure at C-15 and C-16 would be consistent with the reducing nature of 3. Thus, the structure was elucidated as 3 in Chart 1. Namely, 3, designated cimicifugoside H-5, was determined to be (20R,24R)-24,25-epoxy- 11β , 15ξ -dihydroxy- 3β - $(\beta$ -D-xylopyranosyloxy)-9,19-cyclolanost-7-ene-

16,23-dione.

Cimicifugosides H-1 (1), H-2 (2) and H-5 (3) are particular components, having a hydroxy group at C-11, of known *Cimicifuga* triterpenol glycosides. Cimicifugosides H-3 (8) and H-4 (9), whose genin is a trinor-triterpenol, also have a hydroxy group at C-11. The details of the structures of 8 and 9 will be presented elsewhere.

May 1995 775

Actein (10)¹⁷⁾ and 27-deoxyactein (11)¹⁸⁾ have been isolated from *C. racemosa*, but no physical or ¹H- or ¹³C-NMR spectral data for 11 have been reported. The proton signals of 10 have not been assigned, either. The data for 10 and 11 are given in the experimental section: all the proton and carbon signals were assigned on the basis of two-dimensional (2D) NMR spectra (Tables 1 and 2).

The plants of origin of the commercial Cimicifuga Rhizome on the Japanese market have been investigated on the basis of morphological study.¹⁹⁾ We were unable to detect cimicifugosides H-1 to H-5 in authentic specimens of the rhizomes of *C. dahurica* and *C. heracleifolia*.²⁰⁾

Experimental

General Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP-181 automatic polarimeter at 25 °C. NMR spectra were recorded with JEOL JMN GX-270 and JEOL JMN GX-400 spectrometers. Tetramethylsilane was used as the internal standard. Chemical shifts are given on the δ scale (ppm). The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants (J values) are given in Hz. Mass spectra (MS) were recorded with a JEOL JMS D-300 spectrometer, and FAB-MS with a JEOL JMS SX-102 spctrometer. Gas-liquid partition chromatography (GLC) was run on a Shimadzu GC-4A chromatograph with a hydrogen flame ionization detector. IR spectra were recorded with a Hitachi IR 260-10 spectrometer. UV spectra were recorded with a Shimadzu UV 250 spectrometer. Silica gel 60 F₂₅₄ (Merck) precoated TLC plates were used, and detection was carried out by spraying 10% H₂SO₄ followed by heating. Preparative HPLC was performed using an ODS column (YMC-pack ODS-AQ, Nishio, 4.6 × 150 mm, detector: reflective index). The crude drug was purchased from Uchida Wakanyaku Co., Ltd. in 1991.

Isolation of Compounds 1, 2, 3, 10 and 11 An EtOAc-soluble fraction (160 g) of the MeOH extract (500 g) from Cimicifuga Rhizome (10 kg)²⁰⁾ was applied to a column of silica gel with EtOAc-MeOH (98:2—0:1) to give fr. A_1 — A_3 . Fraction A_3 , eluted with MeOH from the column, was rechromatographed on silica gel with CHCl₃–MeOH (9:1—0:1) to give fr. B_1 — B_3 . Fraction B_3 , eluted with MeOH from the column, was rechromatographed on silica gel with EtOAc–acetone–MeOH– H_2 O (20:3:1:1) to give fr. C_1 — C_3 . Fraction C_2 was chromatographed on silica gel with CHCl₃–MeOH (20:1) to give fr. D_1 — D_5 . Fraction D_1 afforded 11 (0.8 g) and fr. D_2 afforded 10 (1 g). Fraction D_4 was rechromatographed on ODS (RP-18) with MeOH– H_2 O (2:1) to afford fr. E_1 — E_3 . Fraction E_1 and E_2 gave 1 (0.8 g) and 2 (50 mg), respectively. On purification by preparative HPLC using octadecyl silica (ODS) column with aq. 50% MeOH, fr. E_3 (30 mg) gave 3 (24 mg).

Properties of Cimicifugoside H-1 (1) Colorless needles (MeOH), mp 260—262 °C. Optical rotatory dispersion (ORD) (c=0.50, MeOH) [α] (nm): -43.5° (589), -47.2° (577), -56.1° (546), -134.2° (435), -357.1° (365). *Anal.* Calcd for $C_{35}H_{52}O_9$: C, 68.15; H, 8.50. Found: C, 67.87; H, 8.70. Alkaline blue tetrazolium reaction (on TLC): negative (no coloration). IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3500—3300, 1040 (br OH), 1720, 1715 (C=O). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (ε): 205 (6275). Positive FAB-MS m/z: 639 [M+Na]⁺. Positive HRFAB-MS Calcd for $C_{35}H_{52}O_9$ Na m/z: 639.3509. Found: 639.3508. EI-MS m/z: 598 (M⁺ – H₂O), 484 (M⁺ – $C_5H_8O_4$). ¹H-NMR and ¹³C-NMR: Tables 1 and 2.

Enzymatic Hydrolysis of 1 A solution of 1 (200 mg) in a mixture of EtOH (10 ml) and 0.2 m Na₂HPO₄-0.1 m citric acid buffer (pH 4.0) (40 ml) was treated with molsin (Aspergillus saitoi) (300 mg) in H₂O (10 ml), and the mixture was kept for 7 d with gentle stirring at 37 °C. The EtOH was removed in vacuo and the residue was extracted with EtOAc. The EtOAc layer was washed with water, dried over anhydrous Na₂SO₄ and concentrated. The residue was chromatographed over silica gel with benzene-EtOAc (1:1) to afford the diketonic genin (4) (115 mg). The water-soluble part was treated with Amberlite MB-3, and concentrated under reduced pressure. The residue was treated with NaBH₄ (ca. 3 mg) at room temperature under N₂ for 1 h. The reaction mixture was passed through an Amberlite MB-3 column and concentrated to dryness. Boric acid was removed by co-distillation with MeOH. The residue was

acetylated with acetic anhydride (10 ml) and dry pyridine (2 ml) at room temperature overnight. The reagents were evaporated *in vacuo*. Alditol acetate was detected by GLC. GLC conditions: column, 2% OV-17 (support Gas-chrom Q) 3 mm \times 2 m; column temperature, 200 °C; carrier gas, N_2 . t_R : 7.4 min (xylitol acetate).

Properties of 4 Colorless needles (MeOH), mp 204—206 °C. ORD (c=0.7, MeOH) [α] (nm): -31.4° (589), -57.3° (577), -66.8° (545), -148.6° (435), -397.9° (365). IR $\nu_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3500—3300 (br OH), 1740, 1705 (C=O). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 205 (6214). EI-MS m/z: 484 (M $^{+}$), 466 (M $^{+}$ - H₂O), 448 (M $^{+}$ - 2H₂O). HREI-MS Calcd for C₃₀H₄₄O₅: 484.3187. Found 484.3192. 1 H- and 13 C-NMR: Tables 1 and 2.

Acetylation of 4 A solution of **4** (20 mg) in acetic anhydride (5 ml) and dry pyridine (1 ml) was left standing at room temperature overnight. Usual work-up afforded **5** (5 mg), colorless needles, mp 183—184 °C (from MeOH). ORD (c=0.51, CHCl₃) [α] (nm): +10.1° (589), -0.3° (577), -3.4° (546), -50.6° (435), -266.2° (365). IR $v_{\text{max}}^{\text{CCl}4}$ cm⁻¹: 1740, 1720, 1705, 1240. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ε): 203 (6638). EI-MS m/z: 568 (M +), 508 (M + -AcOH), 448 (M + -2AcOH). HREI-MS Calcd for C₃₂H₄₄O₅ m/z: 508.3189. Found: 508.3192. ¹H-NMR (pyridine- d_5) δ: 1.00, 1.60 (each d, J=5 Hz, 19-H₂), 2.06 (6H, s, 2×CH₃COO), 4.75 (dd, J=11, 4 Hz, 3-H), 5.48 (dd, J=10, 4 Hz, 11-H).

X-Ray Crystallographic Analysis²¹⁾ **of 5** Prismatic crystals were grown from MeOH as orthorhombic crystals (mp 183—184 °C, $C_{34}H_{48}O_7$). Space group $P2_12_12_1$ with a=13.582(3), b=22.856(3), c=10.297(3) Å, Z=4, $D_c=1.182$ gcm⁻³. Intensity measurements were made with CuK α radiation ($\lambda=1.542$ Å: graphite monochromator) on a Rigaku AFC-7R diffractometer in the ω -2 θ mode within 2θ <120.1°. The structure was solved using MITHRIL 90^{22} and refined by the full-matrix least-squares method using 2395 unique reflections with $I>3\sigma$ (I). All hydrogen atoms were found on the difference electron-density map at the calculated locations. Anisotropic thermal parameters were used for all non-hydrogen atoms and parameters for all hydrogen atoms were fixed. The R-value was 0.056. Rw 0.049.

Properties of Cimicifugoside H-2 (2) Colorless needles, mp 227—229 °C (from MeOH). $[\alpha]_D$ –38.8° (c=1.1, MeOH). Alkaline blue tetrazolium reaction (on TLC): positive (blue). Positive FAB-MS m/z: 635 $[M+H]^+$. Positive HR-FABMS Calcd for $C_{35}H_{55}O_{10}$ m/z: 635.3795. Found: 635.3788. IR $v_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3400—3300 (OH), 1720, 1700 (C=O), 1650 (C=C). 1 H-NMR and 13 C-NMR: Tables 1 and 2.

Acetylation of 2 A solution of **2** (10 mg) in acetic anhydride (7 ml) and dry pyridine (3 ml) was left standing at room temperature overnight. Usual work-up afforded the hexaacetate (6) (6 mg), colorless needles (from MeOH), mp 189—192 °C. IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 1740—1710, 1240 (OCOCH₃), 1595 (C=C). 1 H-NMR (pyridine- $d_{\rm s}$) $\delta_{\rm H}$: 0.97, 1.82 (each 1H, d, J=4 Hz, 19-H₂), 1.97, 1.98, 2.03, 2.05, 2.11, 2.15 (each 3H, 6 × CH₃COO), 5.12 (1H, br d, J=6 Hz, 7-H).

Enzymatic Hydrolysis of 2 Compound 2 (20 mg) was dissolved in MeOH (2 ml) and 0.003% AcOH (about 40 ml) was added to the solution under stirring to adjust the pH to 5. Cellulase T [Amano] 4 (from Trichoderma viride) (50 mg) was added, and the mixture was stirred for 3 d at 30 °C, then shaken with EtOAc. The EtOAc layer was washed with water, dried over anhydrous Na₂SO₄ and concentrated. The residue was chromatographed over silica gel with benzene-EtOAc (5:2) to afford the diketonic genin (7) (7 mg), colorless needles, mp 190—192 °C (MeOH). Positive FAB-MS m/z: 503 $[M+H]^+$. Positive HRFAB-MS Calcd for $C_{30}H_{46}O_6Na\ m/z$: 525.3192. Found 525.3162 [M + Na]⁺. IR $v_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 3500—3300 (OH), 1725, 1700 (C=O). ¹H-NMR (pyridine- d_5) δ : 1.09 (3H, d, J = 8 Hz, 21-CH₃), 1.15, 1.16, 1.23, 1.27, 1.53, 1.65 (each 3H, s, $6 \times \text{CH}_3$), 0.96, 2.00 (each 1H, d, J = 4 Hz, 19-CH₂), 3.40 (1H, dd, J = 18, 8 Hz, 22-H), 3.60 (1H, m, 3-H), 3.81 (1H, dd, J = 18, 3 Hz, 22-H), 4.48 (1H, s, 24-H), 4.54 (1H, m, 11-H). ¹³C-NMR (pyridine-d₅) δ: 27.6 (C-1), 30.6 (C-2), 77.9 (C-3), 40.3 (C-4), 43.4 (C-5), 22.1 (C-6), 115.3 (C-7), 147.1 (C-8), 27.4 (C-9), 29.5 (C-10), 62.9 (C-11), 47.0 (C-12), 44.3 (C-13), 45.9 (C-14), 49.6 (C-15), 218.5 (C-16), 61.2 (C-17), 20.0 (C-18), 18.5 (C-19), 27.2 (C-20), 20.2 (C-21), 47.4 (C-22), 213.6 (C-23), 83.8 (C-24), 72.4 (C-25), 27.5 (C-26), 25.5 (C-27), 27.7 (C-28), 26.1 (C-29), 13.6 (C-30). The water-soluble part was treated with Amberlite MB-3, and concentrated under reduced pressure. The residue was subjected to TLC with BuOH-AcOH-H₂O (6:1:2), and identified as xylose, Rf value: 0.37.

Treatment of 1 with *p***-Toluenesulfonic Acid** Xyloside **1** (44 mg) in MeOH (2 ml) was treated with aqueous *p*-toluenesulfonic acid (pH 5) (about 40 ml) at room temperature for 5 d. Usual work-up afforded a mixture of **1** and **2**. The mixture was chromatographed on ODS (RP-18) with

MeOH–H₂O (2:1) to afford **2** (23 mg), colorless needles (MeOH), mp 226—228 °C, $[\alpha]_D$ –34.3° (c=0.62, MeOH) and unchanged **1** (15 mg). The product was identical with authentic **2** by TLC and ¹H- and ¹³C-NMR spectral comparisons.

Properties of Cimicifugoside H-5 (3) Colorless needles, mp 262—264 °C (from MeOH–H₂O, 2:1). $[\alpha]_D$ – 22.9° (c = 1.9, MeOH). Alkaline blue tetrazolium reaction (on TLC): positive (blue). Positive FAB-MS m/z: 655 $[M + Na]^+$. Positive HRFAB-MS Calcd for $C_{35}H_{52}O_{10}Na$ m/z: 655.3458. Found: 655.3467. IR $v_{\rm max}^{\rm KBF}$ cm⁻¹: 3450—3350 (OH), 1740, 1725 (C=O). ¹H-NMR and ¹³C-NMR: Tables 1 and 2.

Properties of Actein (10) Colorless prisms (MeOH), mp 232—233 °C. $[\alpha]_D - 66.0^\circ$ (c = 1.6, CHCl₃–MeOH, 1:1). IR v_{max}^{KBr} cm⁻¹: 3500—3350 (OH), 1715 (C=O). ¹H-NMR: Table 2.

Properties of 27-Deoxyactein (11) Colorless prisms (from MeOH), mp 252—254 °C. ORD (c=1.4, CHCl₃–MeOH (1:1)) [α] (nm): -44.3° (589), -48.8° (577), -55.7° (546), -92.6° (435), -142.5° (365). Positive FAB-MS m/z: 661 [M+H]⁺. IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3550—3400 (OH), 1715, 1250 (CH₃COO). ¹H-NMR and ¹³C-NMR: Tables 1 and 2.

Enzymatic Hydrolysis of 11 A solution of 11 (300 mg) in a mixture of EtOH (100 ml) and $0.2\,\mathrm{M}$ Na₂HPO₄=0.1 M citric acid buffer (pH 4.0) (250 ml) was treated with molsin (*Aspergillus saitoi*) (300 mg) in H₂O (100 mg), and the mixture was kept for 3 d with gentle stirring at 37 °C. Usual work-up afforded an aglycone 12 (150 mg), C₃₂H₄₈O₆, colorless prisms (from MeOH), mp 289—291 °C. ORD (c=1.9, CHCl₃) [α] (nm): -82.1° (589), -85.8° (577), -97.1° (546), -162.8° (435), -251.4° (365). ¹H-NMR (pyridine- d_5) δ : 2.14 (3H, s, CH₃COO), 2.76 (1H, dd, J=16, 9 Hz, 11-H), 3.47 (1H, dd, J=12, 4 Hz, 3-H), 3.62, 4.06 (each 1H, d, J=10 Hz, 27-H₂), 4.24 (1H, dd, J=14, 8 Hz, 16-H), 5.12 (1H, dd, J=9, 4 Hz, 12-H). The aglycone 12 was identified as 27-deoxyacetylacteol by comparison of the data with those given in the literature. ²³⁾

Acknowledgement The authors are grateful to Seisin Pharmaceutical Co., Ltd. for the gift of molsin, and to Amano Pharmaceutical Co., Ltd. for the gift of cellulase T [Amano] 4. They thank the Analytical Division of this University for measurements of spectra.

References and Notes

- Sakurai N., Koeda M., Inoue T., Nagai M., Chem. Pharm. Bull., 42, 48 (1994).
- 2) Sakurai N., Inoue T., Nagai M., Yakugaku Zasshi, 92, 724 (1972).
- Sakurai N., Kimura O., Inoue T., Nagai M., Chem. Pharm. Bull., 29, 158 (1981).

- Kimura O., Sakurai N., Nagai M., Inoue T., Yakugaku Zasshi, 102, 538 (1982).
- 5) Inoue T., Nakata C., Izawa K., Shoyakugaku Zasshi, 24, 76 (1970).
- 6) Kondo Y., Takemoto T., Chem. Pharm. Bull., 20, 1940 (1972).
- 7) Baba K., Kozawa M., Hata K., Ishida T., Inoue M., *Chem. Pharm. Bull.*, **29**, 2182 (1981).
- Koeda M., Aoki Y., Sakurai N., Kawai K., Nagai M., Chem. Pharm. Bull., 42, 2205 (1994).
- 9) Nakano T., Terao S., Saeki J., Jin D. K., J. Chem. Soc., 1966, 1805.
- Li J. X., Kadota S., Hattori M., Yoshimachi S., Shiro M., Oogami N., Mizuno H., Namba T., Chem. Pharm. Bull., 41, 832 (1993).
- a) Kawazoe Y., Sato Y., Natsume M., Hasegawa H., Okamoto T., Tsuda K., Chem. Pharm. Bull., 10, 601 (1962); b) Kawazoe Y., Sato Y., Okamoto T., Tsuda K., ibid., 11, 328 (1963).
- 12) Klyne W., Biochem. J., 47, XLI (1950).
- 13) Eliel E. L., Allinger N. L., Morrison G. A., "Conformational Analysis," Wiley-Interscience, New York, 1965, p. 388.
- 14) a) Kasai R., Okihara M., Asakawa J., Mizutani K., Tanaka O., Tetrahedron, 35, 1427 (1979); b) Tori K., Yoshimura Y., Arita H., Tomiya Y., Tetrahedron Lett., 1979, 179.
- Johnson C. K., ORTEP II, Report ORNL-5238, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 16) The X-ray structure data have been deposited at the Cambridge Crystallographic Data Center, by Kawai K. at 11th November 1994.
- a) Radics L., Kajtar-Peredy M., Corsano S., Standoli L., *Tetrahedron Lett.*, **1975**, 4287; b) H. Linde, *Arch. Pharm.*, **301**, 120 (1968).
- 18) Bergar S., Junior P., Kopanski L., Short Lectures and Posters of the 36th Annual Congress of the Society for Medical Plant Research, Freiburg. September 1988, [Planta Med., 54, 579 (1988)].
- Namba T., Komatsu K., Li S. P., Abstracts of Papers, The 40th Annual Meeting of the Japanese Society of Pharmacognosy, Osaka, 1993. p. 127.
- 20) Samples of the rhizomes of C. dahurica and C. heracleifolia and the crude drug used in this work (lot No. 0051) have been deposited at our laboratory.
- teXan: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 and 1992).
- MITHRIL90: Gilmore C. J.; MITHRIL, an integrated direct methods computer program. Univ. of Glasgow, Scotland, 1990.
- 23) Linde H., Arch. Pharmaz., 301, 335 (1968).