Fungal Metabolites. XX.^{1,2)} Effect of Proline Residue on the Structure of Ion-Channel-Forming Peptide, Trichosporin B-VIa

Yasuo Nagaoka, Akira Iida, Eiichi Tachikawa, and Tetsuro Fujita*, a

Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan and School of Medicine, Iwate Medical University, Morioka 020, Japan. Received February 27, 1995; accepted April 10, 1995

The secondary structures of an ion-channel-forming icosapeptaibol, trichosporin B-VIa, and its ${\rm Aib}^{14}$ -substituted derivative containing no Pro were investigated on the basis of CD and various NMR experiments in methanol. Trichosporin B-VIa has a fully helical structure with a kink stabilized by a $1\leftarrow 4$ hydrogen-bond between the Leu¹² CO and Val¹⁵ NH. The helical structure is composed of 3_{10} -helix in the N-terminal first turn and the C-terminal moiety following Leu¹², and α -helix in the middle region. In contrast, the ${\rm Aib}^{14}$ derivative predominantly has a straight α -helical structure except for a 3_{10} -helix region in the N-terminal first turn.

Key words Trichoderma polysporum; peptaibol; trichosporin; α-aminoisobutyric acid; ion-channel

Trichosporin Bs (TS-Bs)^{3,4)} are peptides isolated from the culture broth of the fungus Trichoderma polysporum. (LINK ex PERS.) RIFAI (strain TMI 60146). These peptides contain a high proportion of α-aminoisobutyric acid (Aib) and their N- and C-terminal residues are protected by an acetyl group (Ac) and phenylalaninol (Pheol), respectively. On the basis of these characteristics, TS-Bs are members of the peptaibol family.⁵⁾ They show biological activities such as uncoupling of oxidative phosphorylation in rat liver mitochondria⁶⁾ and induction of catecholamine secretion from bovine adrenal medullary chromaffin cells.⁷⁾ These bioactivities are related to an alteration of ion permeability through biomembranes, suggesting that TS-Bs form ion-channels in the membranes or modify the membranes. Recently, we found that TS-B-VIa, one of the major components of TS-Bs, forms ion-channels in planar lipid bilayers, 8) as other peptaibols do. Many peptaibols, e.g. alamethicins, 9) suzukacillins, 10) paracelsins, 5) trichorzianines, 11) hypelcins, 12) and trichocellins, 13) have a Pro residue at the seventh position from the C-terminal. This Pro residue generates a kinked structure¹⁴⁻¹⁶⁾ which is supposed to play an important role in voltage-gated ionchannel formation. 14)

To examine the role of Pro¹⁴ in the structure and function of peptaibols, TS-B-VIa was derived to Aib¹⁴-TS-B-VIa, in which Pro in TS-B-VIa is replaced by Aib.¹⁷⁾ TS-B-VIa and Aib¹⁴-TS-B-VIa have the following primary structures: TS-B-VIa (Aib¹⁴-TS-B-VIa), Ac-Aib-Ala-Aib-Ala-Aib-Gln-Aib-Ile-Aib-Gly-Leu-Aib-Pro(Aib)-Val-Aib-Aib-Gln-Gln-Pheol. In this paper, we describe the solution structures of these peptides.

Materials and Methods

Synthetic TS-B-VIa and Aib¹⁴-TS-B-VIa¹⁷⁾ were used for the experiments. CD spectra were recorded at 23 °C on a JASCO J-720 spectropolarimeter using a 1-mm path cell. For NMR measurements, samples were dissolved in CD₃OH, containing TMS as an internal standard. All ¹H-NMR spectra were recorded by a Bruker AM-600 (600 MHz) spectrometer. DQF-COSY spectra¹⁸⁾ were measured in the phase-sensitive mode with selective saturation of the OH resonance of the solvent at all times. A total of 512 t_1 -values were recorded, with 2048 data points and 32 scans for each t_1 . NOESY spectra¹⁹⁾ were measured in the phase-sensitive mode with selective saturation of the OH resonance of the solvent at all times except during the detection periods. A total of 512 t_1 -values were recorded, with 2048 data points

and 64 scans for each t_1 . The data matrices of DQF-COSY and NOESY were filtered by shifted squared sine-bell multiplication in the t_1 and t_2 dimensions and zero-filled to 2048 data points in the t_1 dimension; spectral width 6000 Hz; relaxation delay time 2.4 s. For NOESY, the mixing time was 300 ms with 10% random variation. The spectra were unsymmetrized. Under the NMR conditions, there was no evidence for peptide aggregation: no broadening of signals or significant variations of chemical shifts were detectable in the concentration range from 5 to 40 mm and in the temperature range from 268 to 307 K.

Results and Discussion

As shown in Fig. 1, the CD spectra of TS-B-VIa and Aib¹⁴-TS-B-VIa in methanol were characteristic of right-handed helices. The ellipticities of Aib¹⁴-TS-B-VIa at 208 and 222 nm were greater than those of TS-B-VIa, indicating that the replacement of Pro with Aib increased the helical content of the molecule. In our previous work, a similar increment of helicity was observed in des-Pro¹⁴-TS-B-V,¹⁶⁾ a synthetic 19-residue analogue of TS-B-V without the Pro¹⁴ residue. These increments of helicity are consistent with the fact that Aib promotes helical conformation and Pro often breaks it.^{20,21)}

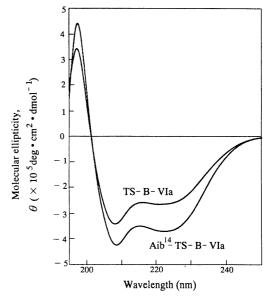


Fig. 1. CD Spectra of TS-B-VIa and Aib¹⁴-TS-B-VIa in MeOH (25 °C) Molecular ellipticity, θ (deg cm² dmol⁻¹), at 208 and 222 nm: -3.415×10^5 and -2.639×10^5 (TS-B-VIa), -4.219×10^5 and -3.706×10^5 (Aib¹⁴-TS-B-VIa).

^{© 1995} Pharmaceutical Society of Japan

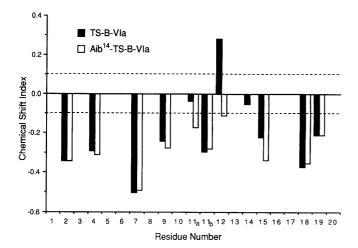


Fig. 2. Comparison of Chemical Shift Index Values between TS-B-VIa and Aib¹⁴-TS-B-VIa

Chemical shift index is the difference between $C\alpha H$ chemical shift values for α -amino acid residues of the peptides (described in a previous paper¹⁴) and those in a random coil conformation, described by Wishart $et~al.^{22}$)

The secondary structure of a protein can be estimated from the "chemical shift index," the difference between the CaH chemical shift in a protein structure and that in a random coil.²²⁾ When the chemical shift indices are consecutively less than -0.1 ppm for more than four residues, the structure in that part is considered to be a helix, while more than three consecutive values greater than +0.1 ppm suggest a β -strand. Termination points of helices or β -strands are indicated by the appearance of chemical shift indices that are opposite in magnitude to those of the corresponding secondary structure or by the first appearance of two consecutive values within ± 0.1 ppm. Figure 2 shows the chemical shift indices calculated for TS-B-VIa and Aib14-TS-B-VIa. Because of the lack of an α proton in Aib, the values for Aib residues are not marked. The results suggested that a helical structure in the N-terminal moiety of TS-B-VIa terminated at Gly11 and another helical structure was located in the C-terminal part from Val¹⁵. On the other hand, all the chemical shift index values of Aib14-TS-B-VIa were less than -0.1 ppm, suggesting that the Aib¹⁴-TS-B-VIa molecule has a regular helical structure all over the sequence. These structures for TS-B-VIa and Aib¹⁴-TS-B-VIa were in agreement with those obtained from J values reported previously. 17)

In order to obtain detailed structural information, NOESY spectra of both peptides (40 mm) were recorded in CD₃OH (Fig. 3). In the spectra for both peptides, successive NOEs $[d_{NN}(i, i+1)$ -type] and other diagnostic NOEs $[d_{\alpha N}(i, i+1)$ -, $d_{\alpha N}(i, i+3)$ -, $d_{\alpha \beta}(i, i+3)$ - and $d_{\beta N}(i, i+1)$ -type] strongly suggested overall helical structure (Fig. 4).²³⁾ Characteristic NOEs $[d_{\alpha N}(i, i+4)$ -, $d_{\alpha \beta}(i, i+3)$ -, and $d_{\alpha N}(i, i+2)$ -type] were also observed in both peptides. These NOEs are generally used to distinguish between α -helix and 3_{10} -helix: in an ideal α -helical peptide, $d_{\alpha N}(i, i+4)$ - and $d_{\alpha \beta}(i, i+3)$ -type NOEs are stronger and $d_{\alpha N}(i, i+2)$ -type NOEs are weaker or cannot be observed, while in an ideal 3_{10} -helical structure, stronger $d_{\alpha N}(i, i+2)$ -type NOEs are observed.²⁴⁾ In the N-terminal region of TS-B-VIa, a strong $d_{\alpha N}(i, i+2)$

(between the acetyl CH₃ proton and the Ala² NH proton) and a strong $d_{\alpha N}(i, i+4)$ (between the acetyl CH₃ proton and the Ala4 NH proton) were observed spontaneously (Figs. 3a, 4a). Therefore, the N-terminal first turn of TS-B-VIa was considered as a mixed conformation of 3_{10} - and α -helix. In the region from position 4 of TS-B-VIa, a stretch of α -helix was indicated by strong or medium $[d_{\alpha N}(i, i+4), i=4, 9]$ and $[d_{\alpha \beta}(i, i+3), i=4, 9]$, and terminated at position 11, because the $d_{\alpha N}(i, i+4)$ between the Gly¹¹ αH and Val¹⁵ NH, or between the Leu¹² αH and Aib¹⁶ NH were absent (Figs. 3a, 4a). In the C-terminal region following Pro¹⁴ of TS-B-VIa, $\lceil d_{\alpha N}(i, i+2), i =$ 14, 15] were much stronger than $[d_{\alpha N}(i, i+4), i=14, 15]$ (Figs. 3a, 4a). Therefore, the C-terminal region (positions 14 to 20) of TS-B-VIa takes predominantly a 3₁₀-helical conformation. However, the weaker $[d_{\alpha N}(i, i+4) \ i=14,$ 15] in this 3_{10} -helical region suggested that the 3_{10} -helix is not tightly bound and has a larger radius and a smaller pitch than those of the ideal 3₁₀-helix. It is interesting that in our previous work on TS-B-V, a member of TS-Bs, we found that the C-terminal moiety has α-helical conformation. 16) The conformational difference between TS-B-VIa and TS-B-V could be due to the influence of position 3 (Aib in TS-B-VIa, Ala in TS-B-V).

In Aib¹⁴-TS-B-VIa, the N-terminal first turn has a mixed 3_{10} - and α -helical structure, as in TS-B-VIa (Figs. 3b, 4b). In the other part, strong or medium $d_{\alpha N}(i, i+4)$ and $d_{\alpha \beta}(i, i+3)$ cross peaks were observed, indicating that α -helical structure is predominant in this region. Thus, the conformation of Aib¹⁴-TS-B-VIa can be regarded as a straight cylinder.

The kinetics of proton-deuterium (H-D) exchange between backbone NH and deuterium ions in the solvent provides information on the flexibility of backbone hydrogen-bonds (H-bond).²⁵⁾ The H-D exchange rates of both peptides are shown in Fig. 5. The exchange rates of positions 1 to 12 are similar for both peptides, suggesting that the conformations of these peptides are almost identical in this region. The very high exchange rates for the N-terminal Aib¹ NH and Ala² NH (Fig. 5a) indicated that these protons are not involved in intramolecular H-bonding and are always exposed to the solvent. The low rates for the Aib³ NHs and Ala⁴ NHs of both peptides supported the presence of two types of H-bonds, as indicated by the NOE data: i) a 1←4 H-bond between the acetyl CO and the Aib³ NH (3₁₀-helical turn) and ii) a 1←5 H-bond between the acetyl CO and the Ala4 NH (α-helical turn). The rates for positions 5 to 20 of both peptides were low enough to imply that all the NHs in this region participate in inter-residual H-bonding. The Val¹⁵ NH and the Aib¹⁶ NH of TS-B-VIa should participate in H-bonding with the Leu¹² CO and Aib¹³ CO, respectively, because the 1←5 H-bonding between the Gly¹¹ CO and Val¹⁵ NH or between the Leu¹² CO and Aib¹⁶ NH is ruled out by the NOE data. However, the H-D exchange rate for the Aib¹⁶ NH of TS-B-VIa was faster than those of other NHs except for the N-terminal NHs (Fig. 5), suggesting that the H-bonding of this NH is not so tight and this residue may be exposed to the solvent. Accordingly, the 1←4 H-bonding between the Leu¹² CO and the Val¹⁵ NH would stabilize the ProJuly 1995

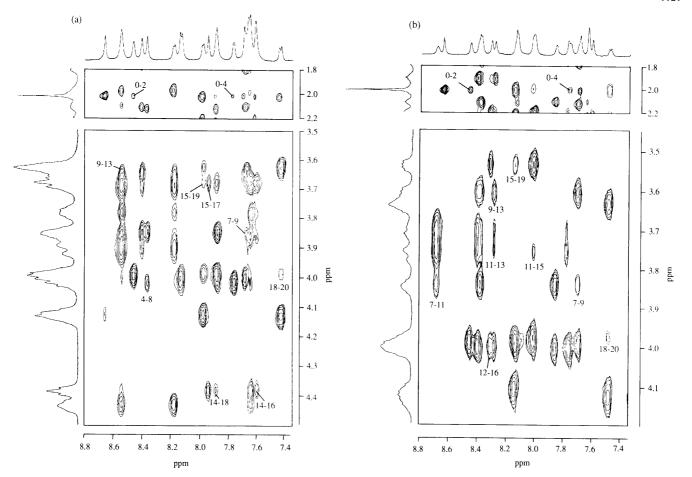


Fig. 3. Parts of the 600 MHz NOESY Spectra of 40 mm TS-B-VIa (a) and 40 mm Aib 14 -TS-B-VIa (b) in CD $_3$ OH at 268 K, with a Mixing Time of 300 ms

NOE cross-peaks $[d_{xN}(i, i+2) \text{ or } d_{xN}(i, i+4)]$ are labeled with the numbers of two residues involving acetyl CH₃ (0). In order to enhance the NOEs, NOESY spectra were recorded at low temperature (268 K) and the signals have been assigned by means of the same procedures as described in the previous paper.¹⁷⁾

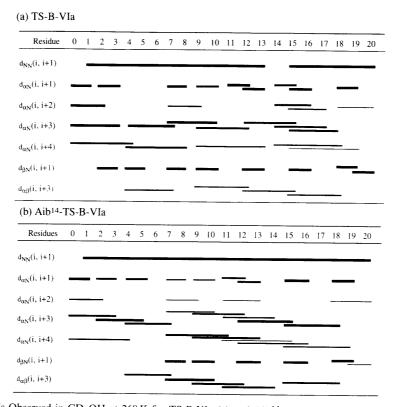


Fig. 4. Inter-Residual NOEs Observed in CD₃OH at 268 K for TS-B-VIa (a) and Aib¹⁴-TS-B-VIa (b)

The observed NOEs are classified based on the cross-peak counter levels (represented by the thickness of the lines). Residue 0 represents the acetyl group.

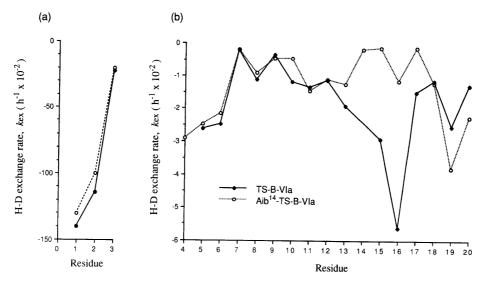


Fig. 5. Hydrogen-Deuterium (H-D) Exchange Rates of the Amide Protons at 293 K

Exchanging rates $(k_{\rm ex})$ are defined as the slope of semilogarithmic plots of the decay of amide signal intensity versus the time (h) after dissolving the peptides in ${\rm CD_3OD}$. Because of an overlap of the signals, the rate of Ala*NH for TS-B-VIa was not detected. Note that the scales of $k_{\rm ex}$ for positions 1 to 3 (a) and for positions 4 to 20 (b) are different.

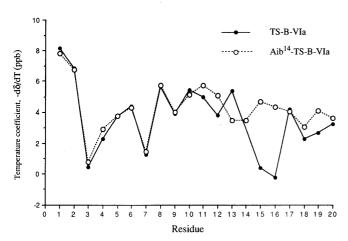


Fig. 6. Temperature Coefficients of NH Chemical Shifts for TS-B-VIa and Aib¹⁴-TS-B-VIa Obtained over the Range of 286—307 K in CD₃OH Positive $-\mathrm{d}\delta/\mathrm{d}T$ (ppb/K) values represent upfield shift of the NH signals with increasing temperature.

kinked structure in TS-B-VIa, minimizing repulsion between the imino ring of Pro¹⁴ and the Gly¹¹ CO.^{14,16)}

The NH thermal coefficient values for the two peptides are shown in Fig. 6. Most values are small and negative (upfield shift with temperature increase). The values for both peptides at the N-terminal residues (Aib¹ NH-Aib¹⁰ NH) were similar, supporting the strong similarity of conformations of the two peptides in this region. The larger values for the Aib¹ NH and the Ala² NH of both peptides indicate that these NHs are not involved in the intramolecular H-bonding, but are exposed to the solvent. The Aib³ NHs of both peptides and the Val¹⁵ NH and the Aib¹⁶ NH of TS-B-VIa show significantly small values. These NHs are involved in 1←4 H-bonding at the turning points from 3_{10} -helix to α -helix or α -helix to 3_{10} -helix. The small values would be due to the specific effects of these locations. The inter-residual H-bonding schemes proposed for TS-B-VIa and Aib¹⁴-TS-B-VIa are illustrated in Fig. 7.

The Pro¹⁴→Aib¹⁴ substitution of TS-B-VIa alters its C-terminal (Leu¹² to Pheol²⁰) 3₁₀-helical conformation to

 α -helical conformation. Conversion of α -helix-Pro- 3_{10} -helix structure to a long α -helix was also observed in phage T_4 lysozyme in which the Pro was replaced with any of seven other amino acids. $^{26)}$ Several conformational studies of Aib-rich peptides have revealed that these peptides with less than eight residues preferentially form 3_{10} -helix, while α -helix was preferred by longer ones. $^{27,28)}$ These observations are in agreement with the result that the 3_{10} -helix appears in the small C-terminal moiety (seven residues) following the kink around Pro^{14} in TS-B-VIa, whereas, owing to the lack of the Pro-kinked structure, α -helix is predominant in $\text{Aib}^{14}\text{-TS-B-VIa}$.

Both alamethicin⁹⁾ and TS-B-V¹⁶⁾ form an α-helixkink(Pro14)-α-helix structure. In this structure, the polar Gln side chains and COs (Aib¹⁰ and Gly¹¹) not participating in inter-residual H-bonds align on one side of the helix. A single pore which is formed by a bundle of such helices seems to be the most probable form of voltagegated ion-channel (Fig. 8a). 14) On the other hand, TS-B-VIa forms an α -helix-kink (Pro¹⁴)-3₁₀-helix structure. In this structure, the polar side chains of Gln¹⁸ and Gln¹⁹ should be located on the opposite side to the polar surface (δ CONHs of Gln⁷ and COs of Aib¹⁰ and Gly¹¹) of the N-terminal helical domain. If TS-B-VIa forms ionchannels by the bundle model, the conformation of TS-B-VIa seems disadvantageous to the amphiphilic properties and to the stabilization of the bundle of helices. However, considering that the bundle is placed perpendicular to the lipid bilayers, a bundle of α -helix-kink- 3_{10} -helix could be stabilized by the interaction between C-terminal Gln side-chains and the polar region of lipid bilayers (Fig. 8b). Therefore, these polar side-chains could act as anchoring groups to the membrane surface.

Since Aib¹⁴-TS-B-VIa forms an amphiphilic helix without a kinked structure, a bundle of such helices would suffer from steric hindrance owing to the bulky C-terminal residues. Furthermore, the bundle of Aib¹⁴-TS-B-VIa lacks solvent-accessible carbonyls, such as Aib¹⁰ CO and Gly¹¹ CO in TS-B-VIa, in the polar surface of the pore.

July 1995

(a) TS-B-VIa

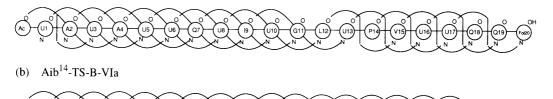


Fig. 7. Predominant Intramolecular Hydrogen Bonding Patterns for TS-B-VIa (a) and Aib¹⁴-TS-B-VIa (b) The one-letter code of amino acid residues is used with U=Aib, Fol=Pheol.

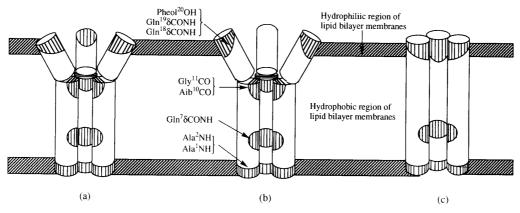


Fig. 8. Ion Channel Models Proposed for TS-B-VIa and Aib14-TS-B-VIa

Polar parts (NHs of Aib¹ and Ala²; δ CONHs of Gln⁷, Gln¹⁸, and Gln¹⁹; OH of Pheol²⁰; COs of Aib¹⁰ and Gly¹¹) of the peptide monomers are shown by oblique lines. The α -helix-kink- α -helix motif structure of alamethicin and TS-B-V (a) and the α -helix-kink- α -helix structure of TS-B-VIa (b) each form a funnel-shaped channel from a bundle of monomers. The Aib¹⁴-TS-B-VIa channel is a bundle of straight cylindrical monomers (c).

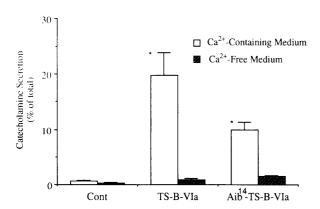


Fig. 9. Effects of TS-B-VIa and Aib¹⁴-TS-B-VIa on Catecholamine Secretion from Cultured Bovine Adrenal Chromaffin Cells

The secretion was measured as previously described. The Adrenal chromaffin cells were isolated from bovine adrenal glands by collagenase digestion. The cells in modified Eagle's minimum essential medium were maintained at 37 °C in a CO2 incubator and were used for experiments after 4d of culturing. The cells were incubated for 10 min at 37 °C with 5 μ m TS-B-VIa or Aib¹⁴-TS-B-VIa in Ca²⁺- containing or Ca²⁺-free medium (plus EGTA). Catecholamine secretion is shown as a percentage of total cellular catecholamine content (191 \pm 10 nmol). Data are means \pm standard deviations from three experiments. The secretion was completely dependent on external Ca²⁺ **, p<0.001, significantly different from the control (Cont).

Consequently, the channel of Aib¹⁴-TS-B-VIa would be more unstable than that of TS-B-VIa (Fig. 8c). Indeed, the catecholamine secretion-inducing activity of Aib¹⁴-TS-B-VIa is less than that of TS-B-VIa, suggesting that the channel-forming ability of Aib¹⁴-TS-B-VIa is lower than that of TS-B-VIa in the biomembranes (Fig. 9). The

ion-channel-forming properties of these peptides will be discussed elsewhere.

Acknowledgements This work was supported in part by Grants-in-Aid for Scientific Research (05453180, 06303014, 06680558, and 06780467) from the Ministry of Education, Science and Culture of Japan.

References and Notes

- Part XIX: Wada S., Iida A., Akimoto N., Kanai M., Toyama N., Fujita T., Chem. Pharm. Bull., 43, 910—915 (1995).
- 2) The following abbreviations are used: CD=circular dichroism; DQF-COSY = double quantum filtered correlation spectroscopy; EGTA = ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetra-acetic acid; NOE=nuclear Overhauser effect; NOESY=nuclear Overhauser enhancement spectroscopy.
- Fujita T., Iida A., Uesato S., Takaishi Y., Shingu T., Saito M., Morita M., J. Antibiot., 41, 814—818 (1988).
- Iida A., Okuda M., Uesato S., Takaishi Y., Shingu T., Morita M., Fujita T., J. Chem. Soc., Perkin Trans. 1, 1990, 3249—3255.
- 5) Brückner H., Przybylski M., J. Chromatogr., 296, 263—275 (1984).
- 6) Okuda M., Iida A., Uesato S., Nagaoka Y., Fujita T., Takaishi Y., Terada H., Biol. Pharm. Bull., 17, 482—485 (1994).
- Tachikawa E., Takahashi S., Furumachi K., Kashimoto T., Iida A., Nagaoka Y., Fujita T., Takaishi Y., Mol. Pharmacol., 40, 790—797 (1991).
- Nagaoka Y., Iida A., Kanbara T., Neoh L., Fujita T., Asami K., Asaka K., Tachikawa E., Kashimoto T., "Peptide Chemistry 1993," ed. by Okada Y., Protein Research Foundation, Japan, 1994, pp. 361—364.
- Pandey R. C., Cook J. C., Jr., Rinehart K. L., Jr., J. Am. Chem. Soc., 99, 8469—8483 (1977).
- Jung G., König W. A., Leibfritz D., Ooka T., Janko K., Boheim G., Biochim. Biophys. Acta, 433, 164—181 (1976).
- Bodo B., Rebuffat S., Hajji M. E., Davoust D., J. Am. Chem. Soc., 107, 6011—6017 (1985).

- Matsuura K., Shima O., Takeda Y., Takaishi Y., Nagaoka Y., Fujita T., Chem. Pharm. Bull., 42, 1063—1069 (1994).
- Wada S., Nishimura T., Iida A., Toyama N., Fujita T., Tetrahedron Lett., 35, 3095—3098 (1994).
- 14) Fox R. O., Jr., Richards F. M., Nature (London), 300, 325—330 (1982).
- Rebuffat S., Conraux L., Massias M., Aubin-Guette C., Bodo B., Int. J. Peptide Protein Res., 41, 74—84 (1993).
- Iida A., Uesato S., Shingu T., Nagaoka Y., Kuroda Y., Fujita T.,
 J. Chem. Soc., Perkin Trans. 1, 1993, 375—379.
- Nagaoka Y., Iida A., Fujita T., Chem. Pharm. Bull., 42, 1258—1263 (1994).
- Marion D., Wüthrich K., Biochem. Biophys. Res. Commun., 113, 967—974 (1983).
- Kumar A., Wagner G., Ernst R. R., J. Am. Chem. Soc., 103, 3654—3658 (1981).

- 20) Burgess A. W., Leach S. J., Biopolymers, 12, 2599-2605 (1973).
- Richardson J. S., Richardson D. C., Science, 240, 1648—1652 (1988).
- Wishart D. S., Sykes B. D., Richards F. M., Biochemistry, 31, 1647—1651 (1992).
- Wüthrich K., Billeter M., Braun W., J. Mol. Biol., 180, 715—740 (1984).
- 24) Wagner G., Neuhaus D., Wörgötter E., Vasak M., Kägi J. H. R., Wüthrich K., J. Mol. Biol., 187, 131—135 (1986).
- Englander S. W., Kallenbach N., Q. Rev. Biophys., 16, 521—655 (1984).
- Alber T., Bell J. A., Dao-Pin S., Nicholson H., Wozniak J. A., Cook S., Matthews B. W., Science, 239, 631—635 (1988).
- 27) Karle I. L., Balaram P., Biochemistry, 29, 6747—6756 (1990).
- Toniolo C., Benedetti E., Trends Biochem. Sci., 16, 350—353 (1991).