Studies on the Constituents of *Cimicifuga* Species. XVII.¹⁾ Four New Glycosides from the Aerial Parts of *Cimicifuga simplex* WORMSK.

Akiko Kusano, Makio Shibano, and Genjiro Kusano*

Osaka University of Pharmaceutical Sciences, 2–10–65 Kawai, Matsubara, Osaka 580, Japan. Received January 5, 1995; accepted March 25, 1995

Four new glycosides (1—4) were isolated from the aerial parts of *Cimicifuga simplex* (Ranunculaceae), and their structures were determined to be 12β -hydroxycimigenol-3-O- β -D-xylopyranoside (1), 12β -hydroxycimigenol-3-O- α -L-arabinopyranoside (2), 7β -hydroxycimigenol-3-O- β -D-xylopyranoside (3) and 25-O-acetyl- 7β -hydroxycimigenol-3-O- β -D-xylopyranoside (4).

Key words Cimicifuga simplex; 12β -hydroxycimigenol; β -D-xyloside; α -L-arabinoside; cycloartane; 12β -hydroxycimigenol

We recently reported on the isolation of three new triterpenic glycosides from the aerial parts of *Cimicifuga simplex*. ¹⁾ In our continuing work, we isolated four new glycosides (1—4) from the same herb. This paper deals with the isolation and the structural elucidation of these glycosides.

Compounds 1—4 were obtained as described in the experimental section by repeated chromatographies on

Diaion HP-20, octadecylsilanized silicic acid (ODS) and silica gel columns, and HPLC of the aqueous fraction after removal of the *n*-BuOH fraction from MeOH extracts of the aerial parts.

Compound 1 was obtained as colorless needles, mp 286-287 °C, $[\alpha]_D + 6.4$ ° (c=0.44%, MeOH), and the molecular formula was determined to be $C_{35}H_{56}O_{10}$ by positive high resolution secondary ion mass spectroscopy

Table 1. ¹H-NMR Data of 1—4 and Their Aglycones (1a, 3a, 4a) in Pyridine-d₅

	1a ^{a)}	1	2	3a	3	4a	4
1	1.25, 1.57	1.20, 1.55	1.20, 1.55	1.20, 1.60	1.25, 1.58	1.20, 1.60	1.25, 1.58
2	1.85 1.97	1.80. 2.12	1.80, 2.14	1.92, 2.35	1.92, 2.35	1.95, 2.35	1.94, 2.37
3	3.53 dd (11.5.4.0)	3.45 dd (11.5, 4.2)	3.46 dd (11.5, 4.2)	3.57 dd (11.6, 4.5)	3.52 dd (11.6, 4.3)	3.57 dd (11.5, 4.3)	3.53 dd (11.6, 4.2)
5	1.30 dd (12.0, 3.8)		1.31	1.55	1.60	1.55	1.58
6	0.82 ddd		0.72 ddd	1.20, 2.05	1.20, 2.04	1.20, 2.05	1.20, 2.04
Ü			(12.5, 12.5, 12.5)				
	1.60	1.58	1.60				
7	1.25, 2.17	1.25, 2.26	1.25, 2.28	3.66 ddd	3.67 ddd	3.68 ddd	3.68 ddd
•	,	,	,	(11.5, 10.5, 3.0)	(12.0, 10.0, 3.0)	(12.0, 10.0, 3.0)	(12.0, 10.0, 3.0)
8	1.85	1.80	1.79	1.82 d (10.0)	1.80 d (10.0)	1.83 d (10.0)	1.82 d (10.0)
11	1.50	1.50	1.50	1.10	1.08	1.10	1.10
• •		2.78 dd (15.5, 9.0)	2.80 dd (15.5, 9.0)	2.08	2.08	2.08	2.06
12		4.20 bd (9.0)	4.20 bd (9.0)	1.50, 1.65	1.55, 1.65	1.55, 1.65	1.55, 1.65
15	4.44 s	4.42 s	4.40 s	4.46 s	4.43 s	4.46 s	4.44 s
17	1.84 d (9.2)	1.81 d (9.3)	1.82 d (9.3)	1.51 d (10.8)	1.52 d (10.8)	1.52 d (11.0)	1.51 d (11.0)
18	1.45 s	1.41 s	1.43 s	1.19 s	1.18 s	1.21 s	1.19 s
19	0.46 d (4.0)	0.40 d (4.0)	0.42 d (4.0)	0.37 d (4.0)	0.35 d (4.2)	0.39 d (4.2)	0.36 d (4.2)
	0.67 d (4.0)	0.58 d (4.0)	0.58 d (4.0)	0.67 d (4.0)	0.66 d (4.2)	0.69 d (4.2)	0.67 d (4.2)
20	1.85	1.85	1.86	1.58	1.60	1.60	1.60
21	1.39 d (6.0)	1.35 d (5.7)	1.37 d (5.8)	0.88 d (6.5)	0.87 d (6.4)	0.89 d (6.4)	0.88 d (6.5)
22	1.15, 2.41	1.12, 2.38	1.13, 2.39	1.10, 2.30	1.10, 2.28	1.04, 2.30	1.10, 2.28
23	4.77 d (9.2)	4.74 d (8.8)	4.76 d (8.8)	4.73 d (9.0)	4.72 d (8.8)	4.65 d (9.0)	4.63 d (8.8)
24	3.85 s	3.84 s	3.86 s	3.86 s	3.81 s	4.19 s	4.17 s
26	1.53 s	1.52 s	1.55 s	1.56 s	1.52 s	1.78 s	1.75 s
27	1.50 s	1.49 s	1.51 s	1.52 s	1.49 s	1.74 s	1.73 s
28	1.24 s	1,28 s	1.26 s	1.33 s	1.34 s	1.32 s	1.35 s
29	1.20 s	1.21 s	1.23 s	1.23 s	1.30 s	1.23 s	1.30 s
30	1.07 s	1.01 s	0.99 s	1.10 s	1.07 s	1.11 s	1.08 s
1′		4.82 d (7.6)	4.81 d (7.2)		4.84 d (7.5)		4.86 d (7.5)
2′		4.00 dd (8.5, 7.6)	4.40 dd (8.5, 7.2)		4.02 dd (8.5, 7.5)		4.05 dd (8.0, 7.5)
3′		4.16 dd (8.6, 8.5)	4.20 dd (8.5, 3.0)		4.17 dd (8.8, 8.5)		4.19 dd (8.8, 8.0)
4′		4.24 ddd	4.35 br s		4.23 ddd		4.26 ddd
		(10.5, 8.6, 5.0)			(11.0, 8.8, 5.0)		(10.0, 8.8, 5.0)
5′		3.71 dd	3.80 d (11.0)		3.73 dd		3.75 dd
		(10.5, 10.5)			(11.0, 11.0)		(11.0, 10.0)
		4.35 dd (10.5, 5.0)	4.30 dd (11.0, 3.0)	ı	4.36 dd (11.0,5.0)		4.38 dd (11.0, 5.0)
COCH ₃						1.98 s	1.98 s

a) Obtained on a General Electric GN-400. The other data were obtained on a Varian XL-300.

^{*} To whom correspondence should be addressed.

(pos. HR-SIMS) [(M+H)⁺, m/z 637.3957], pos. FAB-MS [(M+H)⁺, m/z 637, (M+Na)⁺, m/z 659] and the data of the ¹³C-NMR spectrum. The IR spectrum showed strong hydroxyl bands at 3550—3250 cm⁻¹. The ¹H-NMR (Table 1) and the ¹³C-NMR (Table 2) spectra were similar to those of cimigenol and its related triterpene glycosides previously isolated from the *Cimicifuga* species.¹⁻⁵

Compound 1 was hydrolyzed with Cellulase T [Amano] 4 to afford **1a**, mp 216—217 °C, $[\alpha]_D + 10.1^\circ$ (c = 0.71%, MeOH), $C_{30}H_{48}O_6$. The positive high resolution electron impact mass spectroscopy (pos. HR-EI-MS) showed a M⁺ ion at m/z 504.3447, clarifying the molecular formula. Signals due to 45 Hs and 30 Cs were assigned by the ¹H-¹H shift correlation spectroscopy (¹H-¹H COSY) spectrum coupled with the ¹³C-¹H COSY and heteronuclear multiple bond correlation (HMBC) spectra as summarized in Tables 1 and 2 (3 Hs of 48 Hs were exchanged by D₂O). A long-range correlation, especially among the quaternary carbons (C-4, 9, 10, 13, 14, 16, 25) and hydrogens, was found in the HMBC spectrum in assigning the H signals of the tertiary methyl groups $(18-H_3: \delta 1.45 \text{ ppm}, 26-H_3: 1.53, 27-H_3: 1.50, 28-H_3: 1.24,$ 29-H₃: 1.20, 30-H₃: 1.07) as shown in Fig. 1 and Table

The nuclear Overhauser effect (NOE) difference spectra afforded the definitive formulation of 1a as 12β -hydroxycimigenol, as shown in Fig. 2. Irradiation of the 28-H_3 signal line increased the 12α -H signal at δ 4.23 by 2.8%. This irradiation increased 11α -H (δ 2.83) by 1.4%, 7α -H (δ 2.17) by 1.0% and 17-H (δ 1.84) by 3.4% at the same time. These data clarified the presence of a 12β -hydroxy group in 1a.

Compound 1 was hydrolyzed with 0.5 N HCl to afford 12β -hydroxycimigenol as an aglycone (1a), along with D-xylose, which was detected by HPLC (Shodex RS-Pak DC-6143, 80% CH₃CN, 1 ml/min., 70 °C) equipped with a chiral detection Shodex OR-1.⁶⁾

The ¹H-NMR spectrum of **1** showed 1'-H (δ 4.82, d, J=7.6 Hz), 2'-H (δ 4.00, dd, J=8.5, 7.6 Hz), 3'-H (δ 4.16, dd, J=8.6, 8.5 Hz), 4'-H (δ 4.24, ddd, J=10.5, 8.6, 5.0 Hz), 5'-H (δ 3.71, dd, J=10.5, 10.5 Hz) and 5'-H (δ 4.35, dd, J=10.5, 5.0 Hz), suggesting the presence of a β -D-xylopyranosyl group. On the other hand, the ¹³C-NMR

spectrum showed that C-3 appeared at δ 88.71 by the glycosylation shift of 10.94 ppm from **1a**. Thus, the structure of **1** should be 12β -hydroxycimigenol-3-O- β -D-xylopyranoside, as shown in Fig. 3.

Compound 2 was obtained as colorless needles, mp

Table 2. 13 C-NMR Chemical Shifts of 1—4 and Their Aglycones (1a, 3a, 4a) in Pyridine- d_5

	1a ^{a)}	1	2	3a	3	4a	4
1	32.54	32.42	32.06	30.72	30.18	30.08	30.50
2	30.86	29.99	29.53	30.31	29.98	30.08	29.88
3	77.77	88.71	88.18	77.68	88.28	77.28	88.13
4	40.84	41.23	40.84	40.81	41.03	40.39	40.19
5	47.04	47.35	46.92	46.08	46.28	45.71	46.14
6	21.01	20.80	20.47	32.46	32.29	32.13	32.19
7	26.09	26.08	25.71	69.42	69.29	69.02	69.15
8	47.30	47.35	46.92	56.16	56.28	55.83	56.18
9	20.47	20.53	20.25	18.90	18.94	18.50	18.85
10	26.47	26.49	26.14	27.20	27.17	27.04	27.09
11	40.65	40.63	40.24	26.58	26.57	26.26	26.47
12	72.66	72.89	72.39	33.92	33.96	33.59	33.85
13	47.84	47.85	47.44	42.25	42.37	41.99	42.23
14	48.14	48.27	47.86	47.80	47.76	47.44	47.71
15	79.68	79.93	79.40	79.12	79.15	78.67	78.93
16	112.15	112.53	111.90	111.86	111.72	111.92	112.14
17	59.63	59.81	59.36	59.82	59.85	59.38	59.60
18	11.96	12.04	11.70	19.61	19.63	19.23	19.47
19	30.83	30.75	30.38	30.79	30.64	30.53	30.50
20	23.89	24.00	23.64	23.96	24.00	23.51	23.75
21	20.94	21.03	20.69	19.61	19.63	19.23	19.47
22	38.64	38.78	38.39	38.08	38.10	37.51	37.75
23	71.61	71.89	71.40	71.75	71.70	71.12	71.36
24	89.88	90.22	89.65	90.29	90.30	86.38	86.63
25	70.97	71.33	70.81	71.22	71.18	83.29	83.42
26	25.37	25.43	25.10	25.49	25.54	20.92	21.15
27	26.67	26.49	26.14	26.03	26.37	23.08	23.34
28	11.74	11.81	11.48	11.95	11.94	11.68	11.88
29	26.00	25.71	25.34	26.03	25.65	25.71	25.54
30	14.68	15.32	14.96	14.72	15.29	14.37	15.17
1'		107.60	106.79		107.45		107.78
2′		75.41	72.22		75.31		75.27
3′		78.33	73.95		78.28		78.27
4′		71.11	68.84		71.01		70.96
5′		67.00	66.08		66.96		66.90
CO						170.21	170.23
CH_3						22.04	22.22

a) Measured at 100.5 MHz. The others: at 75.4 MHz.

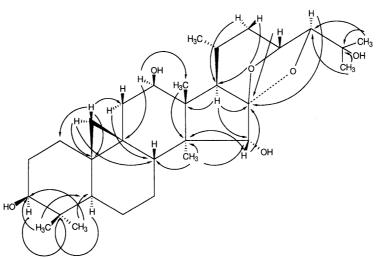


Fig. 1. HMBC of 12β-Hydroxycimigenol (1a)

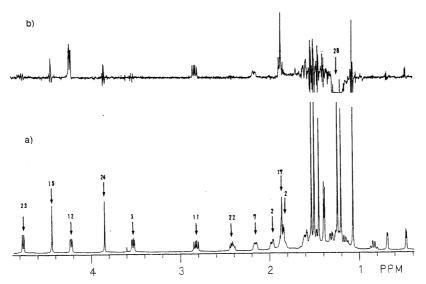


Fig. 2. ¹H-NMR (Normal and NOE) Spectra of 12β -Hydroxycimigenol (1a) a) Normal spectrum. b) NOE difference spectrum on irradiation at δ 1.24 (C-28).

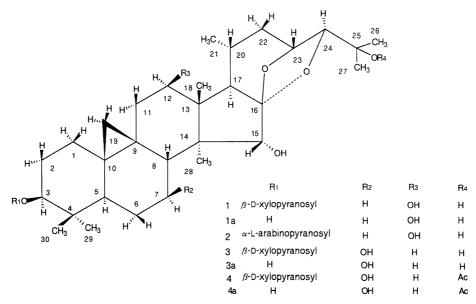


Fig. 3. The Structures of 1—4 and Their Aglycones (1a, 3a, 4a)

267—268 °C, $[\alpha]_D$ +15.3° (c=0.38%, MeOH), and the molecular formula was determined to be $C_{35}H_{56}O_{10}$ by the pos. HR-SIMS $[(M+H)^+, m/z 637.3954]$. The IR-spectrum showed strong hydroxyl bands at 3550—3200 cm⁻¹.

Compound **2** was hydrolyzed with 0.5 N HCl to afford 12β -hydroxycimigenol (**1a**) as an aglycone and L-arabinose as a sugar detected by HPLC equipped with Shodex OR-1, as in **1**. The ¹H-NMR spectrum showed the presence of an α -L-arabinopyranosyl moiety (1'-H: δ 4.81, d, J=7.2; 2'-H: δ 4.40, dd, J=8.5, 7.2 Hz; 3'-H: δ 4.20, dd, J=8.5, 3.0 Hz; 4'-H: δ 4.35, br s; 5'-H: δ 3.80, d, J=11.0 Hz; 5'-H: δ 4.30, dd, J=11.0, 3.0 Hz). The glycosylation position of 3-O was clarified by the ¹³C-NMR data (δ 88.18 ppm for 3-O). Thus, the structure of **2** should be 12β -hydroxycimigenol-3-O- α -L-arabinopyranoside, as shown in Fig. 3.

Compound 2 seems to be the same compound isolated from the roots of *Cimicifuga dahurica* by Kondo *et al.*⁷⁾ They reported it as a 12-hydroxycimigenol arabinoside at

the 96th Annual Meeting of the Japan Pharmaceutical Society (1976). We looked for a direct comparison, but neither the authentic sample nor the spectral data were available. Therefore, in this report we treated 2 as a new compound.

Compound 3 was obtained as colorless needles, mp $310\,^{\circ}$ C, $[\alpha]_D + 14.7^{\circ}$ (c = 1.17%, MeOH), and the molecular formula was determined to be $C_{35}H_{56}O_{10}$ by the pos. HR-SIMS $[(M+H)^+, m/z 637.3947]$. The IR-spectrum showed strong hydroxyl bands at 3450—3200 cm⁻¹.

Compound 3 was hydrolyzed with 0.5 N methanolic HCl to afford 7β -hydroxycimigenol (3a), mp 255—256 °C as an aglycone and D-xylose ($[\alpha]_D + 17.4^\circ$) as a sugar. The structure of 3a was reported previously and the primary $^1\text{H-NMR}$ data in CDCl₃ were described. In this report, the detailed data of $^1\text{H-}$ and $^{13}\text{C-NMR}$ spectra(pyridine- d_5) of this aglycone are described (Tables 1, 2). The glycosylation position of 3-O was clarified by the $^{13}\text{C-NMR}$ data (δ 88.28 ppm for 3-C). Thus, the structure of

3 should be 7β -hydroxycimigenol-3-O- β -D-xylopyranoside, as shown in Fig. 3.

Compound 4 was obtained as colorless needles, mp 252—253 °C, $[\alpha]_D$ +14.0° (c=0.41%, MeOH), and the molecular formula was determined to be $C_{37}H_{58}O_{11}$ by the pos. HR-SIMS $[(M+H)^+, m/z$ 679.4053]. The IR-spectrum showed strong hydroxyl bands at 3560—3200 cm⁻¹ and an acetyl band at 1720 cm⁻¹. The ¹H-NMR (Table 1) and the ¹³C-NMR (Table 2) spectra were similar to those of 25-O-acetylcimigenol. ^{2,5)} An acetyl group (δ_H 1.98, 3H, s, δ_C 170.23, 22.22 ppm), 25-dimethyl groups (δ_H 1.75, 1.73 ppm, 26, 27-3H, s), 24-H (δ_H 4.17 ppm, 1H, s) and 25-C (δ_C 83.42 ppm) are characteristic to 4.

Compound 4 was hydrolyzed with Cellulase T [Amano] 4 to afford 25-O-acetyl- 7β -hydroxycimigenol (4a), mp 160—161 °C, [α]_D +22.6° (c=0.93, MeOH), and the molecular formula was determined to be $C_{32}H_{50}O_7$ by the pos. HR-SIMS [(M+H)⁺, m/z 547.3627].

Compound 4 was hydrolyzed with 1% Na₂CO₃ to afford 3. Thus, the structure of 4 should be 25-O-acetyl-7 β -hydroxycimigenol-3-O- β -D-xylopyranoside, as shown in Fig. 3.

Experimental

General The instruments used in this work were as follows: Yanagimoto micromelting apparatus (melting points), Perkin-Elmer 1720X-FT-IR spectrometer (IR spectra), Varian Gemini-200, Varian XL-300, and General Electric GN-400 (NMR spectra). Hitachi M-80 and JMS-DX-300 spectrometers (MS spectra). Melting points are uncorrected. NMR spectra were measured in pyridine- d_5 solution, and chemical shifts are expressed on the δ scale using tetramethylsilane as an internal standard. Column chromatography was carried out on silica gel (Wakogel C-200) and ODS-A YMC. HPLC was conducted on a Gilson 305 pump equipped with a Shodex refractometer as a detector.

Extraction of 1—4 The residue (185 g) after the isolation of cimigenol diglycosides from the aerial parts of Cimicifuga simplex 1) was chromatographed on SiO₂ (1.0 kg, i.d. 6.0 × 40.0 cm). Elution fractions with CHCl₃–MeOH (10—9:1) were chromatographed on ODS (100 g, i.d. 3.5 × 24 cm). Elution with MeOH–H₂O (2:1) afforded the mixtures of 1 and 2. HPLC [column: Crest Pak C18T-5 (5 μ m, i.d. 4.6 mm × 250 mm); solvent, MeOH–H₂O–CH₃CN (10:13:3); effluent speed: 1 ml/min; column temperature, 40 °C] and recrystallization from MeOH afforded 1 as colorless needles (28 mg), 2 as colorless needles (25 mg). Elution with MeOH:H₂O (3:1) afforded 3 and (5:1) 4. HPLC [same condition as in 1, 2 except the solvent: MeOH–H₂O–CH₃CN (10:7:3)] and recrystallization from CH₃CN–CH₃OH afforded 3 as colorless needles (60 mg) and 4 as colorless needles (65 mg).

1, mp 286—287 °C, $[\alpha]_D$ +6.4° (c=0.44%, MeOH), $C_{35}H_{56}O_{10}$. Pos. HR-SIMS: m/z 637.3957 $[(M+H)^+]$, error: 0.9 (m mass). Pos. FAB-MS: m/z 637 $[(M+H)^+]$, m/z 659 $[(M+Na)^+]$. IR (KBr) cm⁻¹: 3550—3250 (OH). ¹H- and ¹³C-NMR (pyridine- d_5) δ : Tables 1 and 2.

2, mp 267—268 °C, $[\alpha]_D$ +15.3° (c=0.38%, MeOH). $C_{35}H_{56}O_{10}$. Pos. HR-SIMS: m/z 637.3954 $[(M+H)^+]$, error: 0.6 (m mass), pos. SIMS: m/z 637 $[(M+H)^+]$, m/z 659 $[(M+Na)^+]$. IR (KBr) cm⁻¹: 3550—3200 (OH). ¹H- and ¹³C-NMR (pyridine- d_5): Tables 1 and 2.

3, mp 310 °C, $[\alpha]_D$ +14.7° (c=1.17%, MeOH). $C_{35}H_{56}O_{10}$. Pos. HR-SIMS: m/z 637.3947 $[(M+H)^+]$, error: -0.1 (m mass). IR (KBr) cm⁻¹: 3450—3200 (OH). ¹H- and ¹³C-NMR (pyridine- d_5): Tables 1 and 2

4, mp 252—253 °C, $[\alpha]_D$ +14.0° (c=0.41%, MeOH), $C_{37}H_{58}O_{11}$. Pos. HR-SIMS: m/z 679.4053 $[(M+H)^+]$, error: -0.1 (m mass). IR (KBr) cm⁻¹: 3560—3200 (OH), 1720 (CH₃CO). ¹H- and ¹³C-NMR (pyridine- d_4): Tables 1 and 2.

Hydrolysis of 1 with Cellulase T [Amano] 4 1 (19 mg) was dissolved in 1% ethanolic AcOH (20 ml), then water (40 ml) was added on stirring and the solution was adjusted to pH 4.5 by the dropwise addition of

AcOH. Cellulase T [Amano] 4 (from *Trichoderma viride*, 200 mg) was added. The solution was stirred for 2 d at room temperature. Then, the reaction solution was shaken with EtOAc (30 ml × 3), and after washing the joined EtOAc layer with water and drying it over Na₂SO₄, the solvent was evaporated *in vacuo*. The residue was chromatographed on SiO₂ (12 g) and eluted with *n*-hexane–EtOAc (1:1) to afford **1a** as colorless needles (7 mg) by recrystallization from EtOAc. **1a**: mp 216–217 °C, $[\alpha]_D + 10.1^\circ$ (c = 0.71%, MeOH), $C_{30}H_{48}O_6$ SIMS: m/z 505 [(M+H)+]. Pos. EI-HR-MS: m/z 504.3447 [(M)+], error: -0.2 (m mass). IR (KBr) cm⁻¹: 3500–3100 (OH). ¹H- and ¹³C-NMR (pyridine- d_5) δ: Tables I and 2. HMBC: Fig. 1. NOE: Fig. 2.

Acidic Hydrolysis of 1 with 0.5 N HCl 1 (5.8 mg) was treated in the same method as reported previously.¹⁾ The water layer and the water washings after the extraction of the aglycone (1a) were joined and passed to an Amberlite IR-35 column. The passed fraction was subjected to HPLC (column: Shodex RS-Pak DC-613, solvent: 80% CH₃CN, effluent speed: 1 ml/min, column temperature: 70 °C) equipped with a chiral detection OR-1: t_R 11 min, +15° (p-xylose).

Acidic Hydrolysis of 2 with 0.5 \times HCl 2 (20 mg) was treated as above to afford 1a (7.2 mg) as an aglycone. The water layer was passed to an Amberlite IR-35 column and the passed fraction was subjected to HPLC equipped with OR-1 as in 1. L-arabinose: t_R 13.5 min. $+10^\circ$.

Hydrolysis of 4 with 1% Na₂CO₃ **4** (4.7 mg) was dissolved in MeOH (2 ml) and 1% Na
₂CO
₃ (2 ml) was added on stirring for 15 h at 25 °C. After neutralization with 5% AcOH, the mixture was shaken with EtOAc (20 ml × 3) and washed with water. The product was chromatographed on SiO
₂ (10 g) and recrystallized from CH
₃CN–MeOH to afford colorless needles (3.2 mg). The ¹H-NMR spectrum (pyridine- d_5) was identical with that of the isolated compound **3**.

Hydrolysis of 3 with 0.5 N HCl 3 (20.5 mg) was treated as above, and the product (10 mg) from the EtOAc layer was identified with 7β -hydroxycimigenol (3a) by comparison of the ¹H-NMR spectrum. D-Xylose, [α]_D +17.4° (c=0.31%, 50% MeOH) was isolated from the water layer by HPLC [column: LiChrosorb NH₂ (5 μ, i.d 4.6 mm × 250 mm) solvent: CH₃CN-H₂O (4:1), effluent speed: 1 ml/min, column temperature: 40 °C, t_R 5:40 min].

Hydrolysis of 4 with Cellulase T [Amano] 4 4 (27.4 mg) was treated as in 1 with Cellulase T [Amano] 4 (200 mg) to afford 4a as colorless needles (12 mg), mp 160—161 °C, $[\alpha]_D$ +22.6° (c=0.93%, MeOH). C₃₂H₅₀O₇. Pos. HR-SIMS: m/z 547.3627 [(M+H)⁺], error: -0.5 (m mass). SIMS: m/z 547 [(M+H)⁺], 569 [(M+Na)⁺] .IR (CHCl₃) cm⁻¹: 3500—3200 (OH), 1733 (OAc). ¹H- and ¹³C-NMR (pyridine- d_5) δ: Tables 1 and 2.

Acknowledgements The authors are grateful to Amano Pharmaceutical Company, Nagoya, for the kind gift of Cellulase T [Amano] 4. We are also grateful to Dr. T. Iwashita of the Suntory Institute for Bioorganic Research for NMR spectral measurements on GN-400, to Mr. K. Minoura for NMR spectral measurements, to Mrs. M. Fujitake for mass spectral measurements at this university, and to Mr. H. Hayasaka and Mr. K. Ohba of the Faculty of Pharmaceutical Sciences, Tohoku University, for collecting the aerial parts of *Cimicifuga simplex*.

References and Notes

- Part XVI: Kusano A., Shimizu K., Idoji M., Shibano M., Minoura K., Kusano G., Chem. Pharm. Bull., 43, 279—283 (1995).
- Kusano G., Idoji M., Sogoh Y., Shibano M., Kusano A., Iwashita T., Chem. Pharm. Bull., 42, 1106—1106 (1994). Erratum: 12-hydroxycimigenol xyloside (p. 1106, the fourth line from the top) to 22-hydroxycimigenol xyloside.
- Sakurai N., Koeda M., Inoue T., Nagai M., Chem. Pharm. Bull., 42, 48—51 (1994).
- Li J. X., Kadota S., Hattori M., Yoshimachi S., Shiro M., Oogami N., Mizuno N., Namba T., Chem. Pharm. Bull., 41, 832—841 (1993).
- Takemoto T., Kusano G., Kawahara H., Yakugaku Zasshi, 90, 64—67 (1970).
- 6) D-Xylose and L-arabinose were identified by Prof. Shigenobu Arihara of Tokushima Bunri University, for whom the authors are very grateful.
- Kondo Y., Sato T., Satodate T., Yoshizaki H., Takemoto T., The 96th Annual Meeting of the Pharmaceutical Society of Japan at Nagoya, 1976, Abstract, 7G9-2, p. 276.