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IMPROVED TOTAL SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIP OF
ARENASTATIN A, A POTENT CYTOTOXIC SPONGEAN DEPSIPEPTIDE

Motomasa KOBAYASHI,* Weiqi WANG, Naoki OHYABU, Michio KUROSU, and [sao KITAGAWAD

Faculty of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565, Japan

An efficient asymmetric synthesis of a cyclic depsipeptide arenastatin A (1) is described. 1,
isolated from the marine sponge Dysidea arenaria, exhibited extremely potent cytotoxicity
with IC50 of 5 pg/ml for KB cells, and in this context the structure-activity relationship
among several stereoisomers of 1 and allied compounds has also been examined.
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Recently, we have reported an asymmetric total synthesisz) of an extremely cytotoxic depsipeptide
designated arenastatin A (1), which we isolated from the Okinawan marine sponge Dysidea arenaria through
bioassay-guided separation.3) In order to define the structural requirement for exhibiting such potent
cytotoxicity of arenastatin A (1), a larger amount of 1 was required and thus an efficient synthetic route has
been explored. In this paper, we describe improved asymmetric total synthesis of 1 which has provided
enough material for studies of the structure-activity relationship as summarized below.

Intramolecular cyclization by the Wittig-Horner reaction (method a, Chart 1) that we employed at the final
depsipeptide ring construction in the previous total synthesis,z) proceeded in 40% yield. Further investi-
gations on the final cyclization reaction for building up 2 (a desepoxy derivative of 1) led us to find that the
macrolactamization (method b, Chart 1) proceeds in favorable yield. Strategic disconnections and
retrosynthetic analysis of arenastatin A (1) are depicted in Chart 1 (segments A (4) to D (7)). Since arena-
statin A (1), with an epoxy moiety adjacent to a phenyl group as well as a cyclic diester structure, is fairly
unstable under both acidic and alkaline conditions,>>) the epoxy function is introduced at the final stage.

Segment A (4) was synthesized starting from trans-styrylacetic acid by taking advantage of Evans
asymmetric aldol reactions as shown in Chart 2.9 Oxazolidyl carboximide 8, prepared from trans-
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styrylacetic acid and (4R,5S)-oxazolidinone, was treated with an aldehyde 9 to afford a 3S-hydroxy-4R
adduct 109 stereoselectively in 95% yield (de >99%). Reductive removal of the asymmetric auxiliary group
in 10 using LiBH4 gave a diol 11, which was then converted to a 3S-hydroxy-4R-methyl derivative 129 in
71% yield from 10. Exchange of the protective group of 12 furnished segment A (4) in 64% overall yield
from 8. Segment A (4) thus prepared was proved identical with the authentic sample synthesized
previouslyz) by direct comparison.

Next, connection of three segments A (4), B (5), and C(6) was carried out as summarized in Chart 3.
Segment A (4) was first coupled with segment C (6), synthesized from L-leucine,?) in the presence of NEt3
and DMAP to furnish 13 in 90% yield. Removal of the TBDPS group in 13 and subsequent Dess-Martin
oxidation furnished an aldehyde, which was then coupled with segment B (5) by the Wittig-Horner reaction
to give 147) in 59% yield. Removal of the MPM group in 14 using PhSH and BF3-OEt) and subsequent
coupling reaction with segment D (7) using IPCPF®) afforded a triester 3% in 76% yield. Removal of the 2-
(trimethylsilyl)ethyl group as well as tert-butoxy carbonyl (Boc) group in 3 provided 15, which was then
subjected to intramolecular macrolactamization using DPPALD) 1o give a cyclic depsipeptide 2 in 90% yield.

By dimethyldioxirane oxidation, compound 2 was already converted to arenastatin A (1) and its 7,8-epoxy
isomer 16 in 2.2:1 ratio, totally in 80 % yield.)
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Then, in order to study the structure-cytotoxicity relationship concerning arenastatin A (1), we further
synthesized the following four stereoisomers 17-20 in an analogous manner.}1"1%)  Among these
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synthesized allied compounds, only 1 showed extremely potent cytotoxicity (IC50 5 pg/ml for KB cells)
while the others such as 2 and 16-20 did not show any potent cytotoxicity at concentrations below 0.1 pg/mi
(Chart 4). The detailed action mechanism of arenastatin A (1) is currently under investigation.
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Chart 4. The Structures and Cytotoxicities of Arenastatin A (1) and its Diastereoisomers 16-20
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