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An Improvement of Neural Networks Applied to Pharmaceutical Problems
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In applying the neural network to the classification problem in pharmacology, we adept an extended
back-propagation (EBP) learning which adjusts the parameters appearing in an activation function, as well as the
weights. The results of simulations show that such an extended learning speeds up the learning process as compared
with the conventional basic back-propagation procedure, irrespective of the initial values of the parameters, which
is extremely useful in the practical application of the neural network in the pharmaceutical field. We have also found
that use of Morita’s activation function beyond the sigmoid type further accelerates the EBP learning in some cases.
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For the structure classification of chemical substances
based on physical chemistry data, and quantitative struc-
ture-activity relationships (QSAR) analysis, multiregres-
sion analysis and pattern recognition-related methods
such as the adaptive least-squares (ALS)") method have
been widely applied, but they do not take nonlinearity
into account. Most problems in the pharmaceutical field
involve marked nonlinearity. To utilize methods such as
the advanced nonlinear least-squares method, however, it
is necessary to assume a theoretical model, for which the
most appropriate values of model parameters are deter-
mined by minimizing the least-squares error between the
experimental data and the model-predicted values. The
difficulty here is that in the pharmaceutical field, it is often
still difficult to construct a good model.

Ichikawa and his colleagues have shown in a series of
studies that neural networks with the basic back-propaga-
tion algorithm (BBP) by Rumelhart et al.”) can improve
the fitting, prediction and generalization ability as com-
pared with other conventional methods in the pharma-
ceutical field.*~7 Neural networks can be regarded as
a natural extension of the pattern recognition-related
methods to fully include nonlineality, and the MR-type
neural network operates as a nonlinear multiregression
analysis.” In a neural network approach, we do not
assume a specific theoretical model for the problem but
learn experimental data according to a back-propagation
algorithm and construct the simulator of general ap-
plicability on the basis of optimized weight matrices
between units. Introducing a forgetting process into the
back-propagation learning, often referred to as recon-
struction learning,®® allows the network structure to
be much simpler, consisting of less important weight
matrices, without lowering the simulating ability. In this
way we can establish which units play the major role in the
classification, and gain insight into a suitable model for
the problem. To fully apply such an efficient tool to
pharmaceutical problems, speeding up BBP learning is of
great practical importance.

In BBP neural networks the continuous analog type
unit or neuron, which has an activation function that is
differentiable and nonlinear, is very useful. A sigmoid
activation function is most frequently used. The ability of
neural networks to learn quickly and correctly depends
strongly on the values of the parameters appearing in the
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network. They are not known a priori, and so how to find
suitable values in particular problems is very important,
though it is generally difficult. As for parameters ap-
pearing in an activation function, the possibility of quick
and correct learning of neural networks depends strongly
on their values, as we will show in the later section con-
cerning pharmaceutical problems. Seeking appropriate
values of such parameters becomes more difficult if neural
networks are larger.

In the present paper we will show that it is possible not
to keep the parameters which appear in an activation
function fixed, but to adapt them in the course of the
learning based on an extended back-propagation algo-
rithm (EBP), which speeds up learning and so greatly
helps practical application of neural networks to pharma-
ceutical problems. A nonmonotone activation function
may also be useful. EBP learning using Morita’s activation
function further facilitates fast learning for some cases.

Theory In a BBP network consisting of m feed-foward
layers, the weight w{~'*, which is the strength of the
connection between unit i in the (k— 1)-th layer and unit

j in the k-th layer, is adapted so as to minimize the error

function E({w{ **}; {Bj®, 7®, -

+, B1®}) through the

equation
0E
(k=1.k) . _
dofy = e 1)
Here ¢ is the learning coefficient and g!® (/=1,2, - - -, n)

are n parameters appearing in an activation function of
unit j in the k-th layer. This is further expressible in the
form of error back-propagation by

Aotk = _go= g @
using the output 0% Y of the unit 7 in the (k— 1)-th layer
and the quantity

d,(ik) — (Z w(}l[(k + Ud?‘ + 1)) afaii;)
1 :

J

(k<m) (3a)

=(o%—1) ffagkfﬂ (k=m) (3b)

j

where i¥ is the total net input to unit j in the k-th layer

and ¢; is the j-th component of the target pattern.
Usually n parameters fi® (/=1,2, -- -, n) have to be

specified prior to learning. Appropriate values, which
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promote quick and correct learning, are not known a
priori. 1t is of interest to extend BBP learning to adjust
parameters appearing in an activation function as well as
weights, since the error function depends on the network
weights and on the parameters ¥ (/=1,2, - - -, n) as well.
The error minimization requirement for such parameters
is given by the equations

oE , 0E 0 ' -t
A= g o7 _eaw Y ( af) 4

- j .
aﬁg(k) ao(k) aﬁl(k) 5[}3-(’” alg_k)

which describe the adaptation of f4*. Here we introduced
a new proportional constant ¢'. Considering the change
of the error function given by

AE=YY-

kl}a (k lk)

(= 1.6) _ Lk
- Ao +z%: 8[1”("’ 4B %)

we can show that the change AE in EBP with the learning
coefficient ¢ is equivalent to the change AE in BBP with
the learning coefficients &{s ™% given by

of 2
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which depend on the neurons i and j coupling with each
other and vary in the course of learning.”

In the present work we assume that all N, neurons in
the k-th layer take the same value

B =P =" = =p"" 0]
for simplicity. Then Eq. 4 becomes
, OE of

4p*0=—¢ B Z dy opi® (@,;k)) ®)

The adaptation equation for the steepness parameter ¢ in
a sigmoid function

1
Sxse)=——c ®
I+e

T CRX
is given by

dey=—¢y,dPi%c) ™ (10)
J
after a little manipulation. Sperduti and Starita have
already considered EBP learning for a sigmoid activation
function and derived a similar equation to Eq. 10.1” They
successfully applied EBP to simple problems such as the
4 bit parity problem and the encoder problem. It would
be interesting to investigate whether EBP works well in
treating more complicated pharmaceutical problems. The
parameter ¢, ! is often treated as a temperature and
sometimes varied according to some prescription which
assists rapid convergence. Sperduti and Starita also con-
fined the steepness ¢, to a positive value. Hereafter we
treat ¢, purely as a parameter which characterizes the
activation function and we do not restrict ¢, to be positive.
As we will show in the next section, there is the case in
which negative steepness (¢, <0) makes fast EBP learning
possible. This suggests the possibility of fast EBP Jearning
by the use of a nonmonotone type activation function.
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Furthermore, Morita indicated that a nonmonotone
activation function, which expresses the response of an
effective neuron consisting of an excitatory type and an
inhibitory type rather than of a biological neuron, is
useful in giving neural networks better recalling ability.*
Kotani ez al. indicated that the use of a nonmonotone
activation function in BBP learning generally brings
about more rapid convergence than the sigmoid function
in their analysis of a practical pattern recognition pro-
blem,!? although they adopted a different type of activa-
tion function from Morita’s. Thus, it is of interest to
examine EBP learning using Morita’s activation function

L l—em Ik eilxmm

X3 Cps Cho» M K - . -
SO0 o b k)= T

(1
which is nonmonotone for k,<1 and reduces to the
sigmoid form

S5 0 o i b=+ 1) = (12)

irrespective of ¢; and A, if k, is set to be +1. In the k-th
layer we obtain equations describing the adaptation of
parameters ¢, ¢, i, and k, respectively, which are more
complicated than Eq. 10.

Results and Discussion

Application to the Relationship between '*C-NMR
Chemical Shift and the Conformation of Norbornene To
investigate the usefulness of an extended back-propaga-
tion procedure, we applied a 7-7-2 feed-forward network
to the norbornene problem formerly studied by Ichikawa
et al>%7 The learning coefficient & was set to be 0.15.
The learning was stopped when the error function de-
creased to less than 0.001. Table 1 shows the relative
13C.NMR chemical shifts of C,~C, and the conforma-
tions of norbornenes first given by Grutzner et al.'® and
cited in references 3 and 6. Ichikawa et al. took the upper
25 compounds as learning data to fix the weights w{ ™%
and predicted the exo/endo conformation for the lower
untrained 13 compounds when their relative **C-NMR
chemical shifts are given, and we also adopt this approach
in the present work. The neural network predicted 100%
correct conformations while the use of a linear learning
machine and cluster analysis both gave only 85% correct
(11/13).

Sigmoid Activation Function The initial values of
weights o~ are usually set by using small random
numbers. Figure 1 shows the number of iterations needed
to converge in BBP learning as a function of steepness
parameters ¢, in the hidden layer and ¢, in the output
layer, and it can be seen that the learning time depends
strongly on these parameters. In Table 2a we show the
number of iterations NI in BBP and in EBP learning to
attain convergence for 11 sets of steepness parameters
(¢n ¢,) Of sigmoid activation functions. Fast BBP learning
is possible around (¢, ¢,)=(11,11), but it needs many
iterations or does not converge (denoted by symbol x) in
general for other values. In EBP learning, values of (¢, ¢,)
change according to Eq. 10 starting from those values in
the left row, and the final values obtained when the learn-
ing has been successfully finished are given in Table 2b.
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Table 1. Relative '*C-NMR Chemical Shifts and Conformations in For the cases which need many iterations at ¢’ =¢ (the
Norbornenes ratio y=¢'/e=1), we tried further simulations at large &’

= 7>1). Tables 2a and 2b indicate that the steepness
parameters in EBP automatically approach the region of

Compd. C, C, C, C, Cs C, C,  exo/endo

| 67 67 101 05 02 —11 —37  evo suitable values in BBP and so the learning converges
2 89 253 124 —04 —12 —31 —44  exo quickly, irrespective of the initial values of such param-
3 7.7 443 123 —L0 —13 =52 —44  exo eters. When derivative df,/0c, is small, setting a large
4 46 167 44 —02 -03 —10 —18  exo value of ¢'/¢ enables the rapid convergence of EBP learn-
2 ;3 12(1) 3'2 :8§ 78'2 ﬂg'; :;; o ing. For large values of initial (¢, ¢,), EBP learning with
7 61 59 106 06 02 02 -37  exo large ¢’ converges rapidly while BBP learning does not.
8 6.5 63 104 03 —08 —01 =35 exo These results show that in EBP learning we do not need
9 65 75 95 05 1.7 07 -38 exo to know the most appropriate initial values of parameters
10 78 470 117 —13 3'2 —27 -3 e which appear in the activation function in advance. It
}; 2’:2 2:3 1(7)(1) g; :i; 8; :;2 i:g should be noted that in EBP learning at (y,,,7.)=
13 25 425 119 —08 —11 —24 14 evo (100, 100), the case starting from the initial values (c,, ¢,) =
14 54 45 106 14 05 =77 02  endo (1,1) takes a final value of negative sign for ¢, when
15 68 233 105 12 06 -95 03  endo the convergence is attained. The behavior of such an
}g’ Z; ‘:2"2‘ Z? 8'3 78'2 :?1'57; ‘?3 Z:Zﬁ: activation function, that is, monotonic increasing in the
18 17 128 40 04 02 -72 14  endo early stage but monotonic decreasing in the later stage,
19 47 31 22 03 13 —65 —06 endo sometimes resembles the action of an nonmonotone type
20 47 53 92 13 —04 —65 14  endo function. This fact that fast learning is possible even by
2146 ILS 89 —01 08 04 18  endo using a sigmoid activation function with a negative
32 3(1’ 4;'2 12; ;i ;Z :;2 (l)z o ZZS steepness parameter suggests the feasibility of fast learning
2 41 42 70 07 05 —74 00  endo by the use of a nonmonotone type activation function
25 32 402 104 -05 0.0 —103 3.1  endo such as Eq. 11. The values of weight matrices obtained by
% 55 10 63 —03 —15 —16 —13  exo EBP learning are very different from those by BBP, but
27 34 01 55 02 —07 —49 00 endo we obtain the same outputs in both cases.

28 50 164 42 -04 —11 —14 21  exo In Fig. 2 we show how the steepness parameters ¢, and
200 4019 22 07 —07 ”5-(5) ;; "f”‘_’” ¢, change with the number of iterations for the cases with
N6 e on o U TN e () =(20.20) and with (,7,)=(100,100). In the
3 63 72 98 07 —01 08 35  exo former case, both parameters behave similarly. They
33 51 48 84 11 =01 =73 16 endo decrease at first from the initial value of 1.0 and then
34 L9 171 52 —01 09 09 -34 exo increase rapidly to a plateau value near 7.0. In the latter
22 g: ‘i-g g-g ?? L‘)Z i%‘; }2 Z::ZZ case ¢, decreases rapidly after 15 iterations and reaches
37 29 303 134 —05 —21 —07 20  evo an almost constant value after 30 iterations. To check the
38 3.7

298 108 —16 —1.1 —90 22  endo generalization ability of the neural network, it is useful
N : — B to remove n arbitrary pieces of data from the training

Number of iterations

Fig. 1. NI versus (¢, ¢,) in BBP Learning for the Norbornenes Problem
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Table 2a. The Number of Iterations (NI) in BBP and in EBP Learning (Sigmoid-Type Activation Function)
EBP (3, 7.,)
BBP -
1,1 (10, 10) (20, 20) (100, 100) (500, 500)
(ens € NI NI NI NI NI NI
(1,1 7369 324 89 66 60
2,2 1823 291 74 49 29
4,4 429 227 71 30 25
(6, 6) 145 116 45 33 31
3,8 49 53 43 30
(10, 10) 43 24
(11, 11) 17 26
(12, 12) 28 72 28
(13, 13) 35 26
(15, 15) X X 39
(20, 20) X X X X X 94
Table 2b. Final Values of (¢, ¢,) in EBP Learning Shown in Table 2a
EBP (y.,, 7c,)
1D (10, 10) (20, 20) (100, 100) (500, 500)
(Cys Co) Final (¢, ¢,)
1,0 (3.72, 4.01) (6.02, 6.55) (6.72, 7.19) (10.91, —9.85)
2,2 (3.90, 4.18) (6.09, 6.57) (6.82, 7.20) (9.22,9.21)
4, 4 (4.75, 4.93) (6.45, 6.79) (7.16, 7.09) (9.31, 9.37)
(6, 6) (6.21, 6.25) (7.14, 7.13) (7.79, 7.70) (10.89, 8.42)
3, 8) (8.05, 8.02) (8.47, 8.19) (8.69, 8.08)
(10, 10) (10.00, 9.98)
(11, 11) (11.02, 10.96)
(12, 12) (12.01, 11.99) (11.97, 11.53)
(13, 13) (12.99, 12.97)
(15, 15) (14.66, 13.45)
(20, 20) (12.63, 8.28)
15 ET**ﬁ*F**T*Wﬁ*"*'|' M B L L B
C, (=100) ]
. o C, tr=20)
s S
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P ]
& e ]
o ]
c
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oy ]
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Number of iterations

Fig. 2. Change of Steepness Parameters in EBP Learning with ¢’=20¢ and ¢'=100¢ for the *C-NMR Chemical Shifts and Conformations of

Norbornenes

patterns to settle the weight matrices and to check the
prediction ability of the neural network for the » removed
data, though this requires much computation time. We
confirmed that the speeding up by EBP makes such
investigation easier.

Morita’s Activation Function The number of iterations
needed to achieve convergence in BBP learning is shown
in Table 3 for Morita’s nonmonotone (k< 1) activation
function given by Eq. 11 as well as for the sigmoid one
for a few typical examples. Even if we set the same value
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Table 3. NI and Parameter Values in Morita’s Nonmonotone Activation Function as well as the Sigmoid One in BBP Learning

BBP
Sigmoid Morita Sigmoid Morita
we) N ekl e N ooy N
() 7369 (1, 1,09, 0.8) 8662 (1,11 17 (11, 12, 0.9, 0.0) 2
a1, ., ,+D a, o, . +0D
(30, 1) 368 (30, 30, 0.9, —1) 302 (11, 11, 0.7, —1) 15
1, , ,+1) (11, ,+1)
4, 4) 429 4,4,09, —1) 421 (13, 11) St (13, 13, 0.9, +0.8) 35
“, , s +1) (11, 11, 0.9, — 1)
(15, 4) 98 (15, 15, 0.7, +0.2) 58 (13, 13, 1.2, —0.6) 31
@, . , +1) (11, 11, 0.9, —1)
(15, 15, 0.9, —0.8) 42 (13, 13, 1.2, —0.8) 22
@, , ,+1D (11, 11, 0.9, ~ 1)
(13,13, 0.9, —1) 29
(11, 11, 0.9, —1)
Table 4a.

NI in BBP and in EBP Learning (Morita’s Activation Function)

EBP (v, Vews V> Vi) (es)

BBP
(L L 1L, DA (10,10, 1, 1)/(10) (20, 20, 1, 1)/20) (100, 100, 1, 1)/(100)

(Cos €l By p)/(C0) NI NI NI NI NI
(1, 1,0.5, D)D) 7369 171 64 52 55
@,2,0.5, D/2) 1823 131 49 41 25
@, 4,05, D/4) 429 88 50 41 25
(6, 6, 0.5, 1)/(6) 145 46 48 33 27
3,8, 0.5, 1)/(8) 49 55 35 31
(10, 10, 0.5, 1)/(10) 43 29
(11, 11, 0.5, 1)/(11) 17 27
(12, 12, 0.5, D))(12) 28 31 36
(13, 13, 0.5, 1)/(13) 35 27 29
(15, 15, 0.5, 1)/(15) X X X X 46

(20, 20, 0.5, 1)/(20)

X

for steepness parameters (¢, ¢,) with the sigmoid activa-
tion function, a good choice of other parameters # and k
in the nonmonotone function speeds up the learning. But
finding optimum values of parameters is generally more
difficult for a nonmonotone activation function than for
a sigmoid one, since the former has many parameters.
Tables 4a—4e show the results of BBP and EBP learning
with the use of Morita’s activation function. We always
fixed the k, value at 1.0, i.e., sigmoid form, simply to get
output in the range [0,1],'* and only ¢, changes in the
course of learning in the output layer. Parameters ¢, ¢;,
and k; in the hidden layer change according to equations
which are like Eq. 10, but more complicated. For the cases
which require many iterations at ¢'=¢ ((y,,, 7.,y e View)/
(7.,)=(1,1,1,1)/(1)), we tried further simulations at large
& (Ve Vews Veo>1 and y, =y, =1 due to the relative
smallness of the derivatives df,/dcy,, df,/dcy, and df,/dc,
with respect to others). Table 4a gives the number of
iterations in BBP and in EBP learning for 11 sets of pa-
rameters at initial values 4, =0.5 and k,=1. Comparing
Table 4a with Table 2a shows that Morita’s activation
function speeds up EBP learning 2—3 times compared
with the sigmoid function at ¢’ =¢ and is also a little better
at ¢'>¢ in the region of small parameters ¢, ¢; and c,.
Table 4b lists the final values of (¢, ¢}, Ay, ky)/(c,) in EBP

learning, and Morita’s activation function (k, > 1) behaves
as a monotonically increasing one in these cases. Even if
we keep the &, value in the range |k,|<1.0, the use of
Morita’s activation function gives a good result. As shown
in Tables 4a and 4b, however, we can get a much better
result if we release this restriction. The activation function
having a k value of greater than 1.0 takes a value of more
than 1.0, and this can be interpreted as an increase of the
effective number of units, which is not necessarily an
integer, in the hidden layer. Results for EBP learning
starting from initial parameters 4, =0.5 and k, = —1 are
shown in Tables 4c and 4d, and those for 4, =1 and k, =
— l are shown in Table 4e. Values of (4, =0.5and k, 1)
and (h,=1 and k, = —1) seem not to be suitable for BBP
learning, contrary to the former case of h,=0.5 and
ky,= +1, and BBP learning in these cases gives a somewhat
worse result than the sigmoid activation function. Final
values of (¢, ¢y, iy, kn)/(c,), corresponding to Table 4c,
are shown in Table 4d and Morita’s activation function
(k,<1) behaves as a nonmonotone one in these cases.
Overall features of such final values corresponding to
Table 4e are similar to this, and are omitted. The results
show that EBP with such a nonmonotone activation
function speeds up the learning as compared with BBP,
though the sigmoid function seems to be better. To say
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Table 4b. Final Values of (cy, ¢y, Ay, ky)/(c,) in EBP Learning of Table 4a

EBP

(1, 1, 1, DI

Fenr Venr Vhoo P/ (Ves)
(10, 10, 1, D/(10)

(Chs O Ko )/ (o)

Final (cy, ¢y, Ay, kp)/(c,)

1, 1, 0.5, D)/(M)
(2,2,05, D/
4, 4,05, )/(4
(6, 6, 0.5, 1)/(6)
(8, 8, 0.5, 1)/(8)
(10, 10, 0.5, 1)/(10)
(11, 11, 0.5, 1)/(11)
(12, 12, 0.5, 1)/(12)
(13, 13, 0.5, 1/(13)
(15, 15, 0.5, 1)/(15)
(20, 20, 0.5, 1)/(20)

(3.05, 1.17, —0.21, 2.79)/(3.17)
(3.23, 2.12, —0.33, 2.59)/(3.35)
(4.40, 4.02, —0.14, 2.02)/(4.47)
(6.13, 5.99, 0.15, 1.48)/(6.13)

(8.05, 7.99, 0.40, 1.20)/(8.02)
(10.02, 9.99, 0.49, 1.07)/(9.99)
(10.999, 10.999, 0.41, 1.15)/(10.968)
(11.97, 12.00, 0.39, 1.50)/(11.95)
(13.007, 13.002, 0.48, 1.40)/(12.98)

(5.46, 0.89, 0.34, 1.81)/(5.83)
(5.53, 1.98, 0.22, 1.77)/(5.86)
(5.94, 3.98, 0.16, 1.61)/(6.18)
(7.01, 5.96, 0.27, 1.39)/(6.88)
(8.39, 7.99, 0.41, 1.22)/(8.01)

(11.97, 12.03, 0.48, 1.32)/(11.35)
(12.999, 13.03, 0.50, 1.39)/(12.70)

(20, 20, 1, 1)/(20)

(ens Vews Vins Yiend (cs)
(100, 100, 1, 1)/(100)

(ch’ Civ hha kh)/(co)

Final (¢, ¢, hy ky)/(Co)

(1, 1, 0.5, /(D)
2,2,0.5, 1)/2)
(4,4,0.5, 1)/(4)
(6, 6, 0.5, 1)/(6)
8, 8, 0.5, 1)/(8)
(10, 10, 0.5, 1)/(10)
(11, 11, 0.5, D/(11)
(12, 12, 0.5, 1)/(12)
(13, 13, 0.5, 1)/(13)
(15, 15, 0.5, 1)/(15)
(20, 20, 0.5, 1)/(20)

(6.30, 0.84, 0.41, 1.62)/(6.59)
(6.34, 1.91, 0.33, 1.59)/(6.65)
(6.72, 3.93, 0.27, 1.50)/(6.83)
(7.51, 5.94, 0.33, 1.34)/(7.30)
(8.76, 7.98, 0.41, 1.21)/(8.12)

(10.41, 0.27, 0.48, 1.30)/(—9.57)
(9.02, 1.73, 0.45, 1.33)/(9.06)
(8.72, 3.88, 0.40, 1.32)/(9.30)
(9.41, 591, 0.41, 1.27)/(9.18)

(14.64, 15.08, 0.40, 1.45)/(8.32)

Table 4c. NI in BBP and in EBP Learning (Morita’s Activation Function)
EBP (7o Vs Voo Yiend/ (e
BBP
(1,1, 1, /D) (10, 10, 1, 1)/(10) (20, 20, 1, 1)/(20) (100, 100, 1, 1)/(100)

(Cor Chr Py K/ (C0) NI NI NI NI NI
(1, 1, 0.5, —1)/(1) 11129 364 343 576 1192
2,2,0.5 —1)/©2) 2011 161 95 84 56
4, 4,0.5, —1)/(4) 448 107 50 34 23
(6, 6, 0.5, —1)/(6) 179 60 48 37 32
(8, 8, 0.5, —1)/(8) 49 49 64 29
(10, 10, 0.5, —1)/(10) 119 29
(11, 11, 0.5, = D/(11) 32 37 26
(12, 12, 0.5, —1)/(12) 32 31
(13, 13, 0.5, —1)/(13) X X 29
(15, 15, 0.5, —1)/(15) 228 13807 3143 X 58
(20, 20, 0.5, —1)/(20) X X X X X

that the use of a nonmonotone activation function is
worse than the use of a sigmoid one may not be correct,
however, since another choice of initial parameters 4, and
k, would give better results than the cases of Tables 4c and
4e, as is seen in Table 3 for BBP learning.

Application to the Classification of Activities of Mito-
mycins Next we applied EBP learning to the classifica-
tion of the activities of mitomycins by using a 6-12-5
feed-forward neural network with only a sigmoid acti-
vation function for simplicity. Using a BBP neural

network, Ichikawa er al* have already examined this
structure-activity relationship (SAR), and found excellent
classification and prediction abilities of the neural net-
work. There are 6 structure parameters and 5 classes of
observed activities in mitomycins, and they are assigned
to 6 neurons in the input layer and 5 neurons in the output
layer, respectively. The 16 derivatives are classified into 5
ranks in complete accord with observation, while the
classification by the ALS method leads to one case of
disagreement, which indicates the excellent classification
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Table 4d. Final Values of (¢, c;, Ay, ky)/(c,) in EBP Learning of Table 4c

EBP

(I L 1, /()

(ews Vews Vo Vi) (eo)
(10, 10, 1, 1)/(10)

(ch’ C;’l’ hha kh)/(co)

Final (cy, ¢, Ay, kn)/(c,)

1, 1,05, — A1) (2.52, 2.40, —0.24, —3.39)/(3.24)
22,05, —1)/(2) (2.76, 3.39, 1.02, —2.89)/(3.53)
(4, 4,05, —1)/(4) (4.15, 4.43, 0.58, —2.33)/(4.52)
(6, 6, 0.5, —1)/(6) (6.04, 6.14, 0.57, —1.88)/(6.14)
(8, 8,0.5, —1)/(8) (8.00, 8.06, 0.70,

(10, 10, 0.5, —1)/(10)
(11, 11, 0.5, —1)/(11)
(12, 12, 0.5, —1)/(12)
(13, 13, 0.5, —1)/(13)
(15, 15, 0.5, —1)/(15)
(20, 20, 0.5, —1)/(20)

—1.70)/(8.02)

(10.03, 9.96, 1.27, —0.67)/(9.87)
(11.004, 11.003, —0.29, —1.19)/(10.85)
(12.004, 11.985, 1.01, —0.79)/(11.90)

(.38, 5.42, 0.73,
(5.40, 5.86, 0.93,
(5.01, 6.13, 0.60, —1.86)/(6.23)
(6.27, 6.90, 0.60, —1.75)/(6.81)
(7.87, 8.14, —0.20, —1.63)/(7.75)

—2.03)/(5.87)
~L71)/(6.18)

(12,62, 12.01, —0.36, — 1.24)/(9.02)
(12.79, 12.88, 0.15, —1.20)/(11.89)

(15.01, 14.996, 2.47, —0.60)/(14.83)

(20, 20, 1, 1)/(20)

OVens Vers Vs P/ (Vel)
(100, 100, 1, 1)/(100)

(ch’ L’;‘, hh! kh)/(co)

Final (cy, ¢, Ay, ky)/(c,)

(10.86, 6.59, 0.97, —0.88)/(—9.52)
(9.48, 9.08, 0.72, —1.20)/(8.21)
(9.09, 9.34, 0.73, —1.25)/(8.93)
(7.54, 8.26, 0.63, —1.56)/(8.09)

(13.79, 15.29, 1.38, —0.82)/(7.45)

(1,1, 0.5, =D/ (5.89, 6.66, 0.76, —1.71)/(6.88)
,2,0.5, —1)/2) (6.77, 6.75, 0.82, —1.47)/(7.02)
@, 4,0.5, —1)/(4) (5.76, 6.99, 0.56, —1.69)/(6.89)
(6, 6, 0.5, —1)/(6) (6.41,7.25,0.55, — 1.71)/(7.15)
(8,8, 0.5, —1)/(8) (7.83, 8.53, —0.29, —1.48)/(6.80)
(10, 10, 0.5, — 1)/(10)

(11, 11, 0.5, —1)K11)

(12, 12, 0.5, —1)/(12)

(13, 13, 0.5, —1)/(13)

(15, 15, 0.5, —1)/(15)

(20, 20, 0.5, —1)/(20)

Table 4e. NI in BBP and in EBP Learning (Morita’s Activation Function)

EBP (ych’ yéha 7hh’ Ykh)/(’yco)

BBP
(L, L L, DAL (10,10, 1, DAI0) (20,20, 1, 1)/20) (100, 100, 1, 1)/(100)

(Ca Ch Py )/ () NI NI NI NI NI

(1,1, 1, =D/ 13469 355 167 306 116

2,2, 1, —D/2) 2966 277 78 35 69

@ 4,1, —1)/@d) 485 218 65 41 2

6,6, 1, —1)/(6) 135 105 57 36 20

3,8, 1, —1)/8) 47 ) 33 29

(10, 10, 1, —1)/(10) 23 30 24

(11, 11, 1, = 1)/(11) 25 39 25

(12, 12, 1, —1)/(12) 26 26

(13, 13, 1, —1)/(13) 43 X 52 93

(15, 15, 1, —1)/(15) X 67 39 X 25

(20, 20, 1, —1)/(20) x X X X 398

ability of the network. They checked the generalization
ability by removing 5 arbitrary pieces of data from the 16
training data, and obtained good results. In this case we
have to set ¢ to be 0.03 since a larger value of ¢ leads to
instability in the learning process, and the necessary
number of iterations to accomplish the learning is much
larger in the case of the norbornene problem.

The number of iterations needed to converge in BBP
learning is shown in Fig. 3 as a function of the steepness
parameters ¢, and c,. This figure has several sets of (¢, ¢,)

marked by x where BBP learning fails and shows more
complicated behavior than Fig. 1. The result shown in
Table 5 confirms that the overall features of EBP en-
countered in the norbornene problem are also seen in the
present problem. In BBP learning the number of iterations
strongly depends on the values of steepness parameters
appearing in an activation function and so appropriate
setting of those values is very important, despite its
difficulty. In EBP, however, fast learning is almost always
possible, irrespective of the initial values of steepness
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Fig. 3. NI versus (c,, ¢,) in BBP Learning for the Mitomycins Problem

Table 5. NI in BBP and in EBP Learning (Sigmoid Activation
Function) in the Mitomycins Problem

BBP EBP (34, v.)=(1, 1)
(e €o) NI Final (¢, ¢,) NI
1,1 196167 (7.15, 7.50) 6331
2,2) 51008 (7.12, 7.35) 3776
3,3 23255 (7.23, 7.34) 3165
4,4 13312 (747, 7.52) 3002
¢, 5) 8651 (7.80, 7.82) 2922
(6, 6) 6109 (8.29, 8.32) 2838
(7,7 4884 (8.82, 8.98) 4049
(8, 8) 9303 X
©,9) 4052 (10.15, 10.07) 3268
(10, 10) 2633 (10.88, 10.75) 2299
(11, 11) 2224 (11.64, 11.55) 2026
(12, 12) 1834 (12.45, 12.38) 1688
(13, 13) 2397 (13.36, 13.32) 2933
(14, 14) 1970 (14.26, 14.19) 2283
(15, 15) X (15.31, 15.45) 77910
(20, 20) X X

parameters. An exceptional case occurs at initial values of
(cn, €0)=(8,8), which reflects the fact that BBP learning
itself is unstable around there, as is shown in Fig. 3. This
exceptional failure is not a serious problem in EBP learn-
ing since we have only to choose any initial values rather
than the special value of 8.0.

Concluding Remarks

To speed up the basic back-propagation learning in
feed-forward neural networks, which is important for its
practical application to pharmaceutical problems, we
investigated EBP which adapts parameters appearing in
an activation function as well as synaptic weights. Its
application to classification problems such as conforma-

Vol. 45, No. 1

tions of norbornenes and activities of mitomycins in-
dicated that EBP speeds up the learning and improves the
convergence ability beyond the bench mark examples of
Sperduti and Starita. In fact, EBP enables the same fast
learning, irrespective of the initial values of parameters
appearing in an activation function, as BBP does when
the optimum values of such parameters are given. Con-
sidering the change of the error function in EBP learning,
EBP learning can be viewed as equivalent to BBP learning
having large effective learning coefficients that depend on
units / and j coupling with each other and vary in the
course of learning, which explains why EBP speeds up the
learning.

We studied whether the generalized activation function
given by Morita, which is nonmonotonic or monotonic
according to parameter values, is more effective in EBP
learning than the usual sigmoid type or not. The result
indicated the superiority of Morita’s activation function
for some initial values of parameters.

It would be interesting to extend the present work to
large networks consisting of many units, and to important
QSAR problems, where EBP would be much more
effective. In principle, EBP would be applicable together
with other accelerating convergence methods of BBP,
such as the momentum method,®'® or the kick out
method,'® or together with a pruning method such as
reconstruction learning,>® though the validity of such
approaches must be checked by practical application to
problems in pharmacology and in other fields.
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