Fern Constituents: *Adiantum cuneatum*. III. Four New Triterpenoids, 4,23-Bisnor-3,4-secofilic-5(24)-en-3-al, 4,23-Bisnor-3,3-dimethoxy-3,4-secofilic-5(24)-ene, 7β ,25-Epoxyfern-9(11)-en-8 α -ol and 7α ,8 α -Epoxyfernan-25-ol

Kenji Shiojima, Yôko Arai, Takahisa Nakane, Hiroyuki Ageta, *, a and Shao-Qing Cai b

Shôwa College of Pharmaceutical Sciences, Machida, Tokyo 194, Japan and Department of Pharmacognosy, School of Pharmaceutical Sciences, Beijing Medicinal University, Beijing 100083, China.
Received April 23, 1997; accepted June 16, 1997

Four new triterpenoids, 4,23-bisnor-3,4-secofilic-5(24)-en-3-al (1), 4,23-bisnor-3,3-dimethoxy-3,4-secofilic-5(24)-ene (2), 7β ,25-epoxyfern-9(11)-en-8 α -ol (3) and 7α ,8 α -epoxyfernan-25-ol (4) were isolated from the fresh leaves of *Adiantum cuneatum*, and their structures were elucidated by means of spectroscopic analysis.

Key words fern; Adiantum cuneatum; triterpenoid; secofilicane group; fernane group

In the preceding paper of this series, 1) we reported the isolation and structure elucidation of nine new compounds, as well as thirteen known triterpenoids, from the fresh leaves of *Adiantum cuneatum* Langsd. and Fisch. (*A. raddianum* Presl, Adiantaceae). Further fractionation of the same extract resulted in the isolation of four more new triterpenoids viz. 4,23-bisnor-3,4-secofilic-5(24)-en-3-al (1),2 4,23-bisnor-3,3-dimethoxy-3,4-secofilic-5(24)-ene (2),2 7 β ,25-epoxyfern-9(11)-en-8 α -ol (3) and 7α ,8 α -epoxyfernan-25-ol (4) along with three known triterpenoids. This paper deals with structure elucidation of 1—4.

Results and Discussion

The more polar fractions than those reported earlier^{1a)} were purified by various chromatographic techniques (see Experimental) to afford four new triterpenoids 1—4 together with three known compounds 5—7, which are summarized in Table 1 along with their physical constants and yields.

Compound 1 and 2 were obtained as colorless needles and plates, respectively. The IR spectrum of 1 indicated the presence of a carbonyl group, whereas that of 2 showed neither carbonyl nor hydroxyl absorptions. The high-resolution mass spectra (HR-MS) of 1 and 2 showed their molecular formulae to be $C_{28}H_{46}O$ (M⁺ m/z 398.3558, Calcd 398.3548) and $C_{30}H_{50}O_2$ (M⁺ m/z 444.3979, Calcd 442.3811), respectively. Their low-resolution MS (LR-MS) showed the same fragment ions at m/z 355 (a), 287 (b), 274 (base peak, c), 259 (c-15), 205 (d) and 191(e) (Chart 2)³⁾ with different intensities, suggesting that both compounds have almost the same partial structure or skeleton. Their ¹H-NMR (Table 2) spectra displayed signals due to four tertiary and two secondary methyl

groups and an exocyclic methylene group; the signals of H-26—H-30 were very similar. The signals of an aldehyde proton in 1 and two methoxyl groups in 2 were observed, and the ¹³C chemical shifts (Table 3) of C-1, C-2 and C-3 in the two compounds were very different from each other.

A detailed analysis of the heteronuclear multiple bond correlation (HMBC) spectra of **1** and **2** clearly revealed the same carbon skeleton, shown by heavy lines in Fig. 1, thereby indicating that both compounds possess 4,23-bisnor-3,4-secofilic-5(24)-ene structure with a difference at C-3. The relative configurations of the stereogenic centers of **1** and **2** were established by nuclear Overhauser effect spectroscopy (NOESY), in which NOE interactions were observed between methyl, methylene and methine groups situated on the α side: (H-10—H-8—H₃-27—H₃-28) and on the β side (H₂-24—H₃-25—H₃-26), respectively. Thus, the structures of compounds **1** and **2** were established to be 4,23-bisnor-3,4-secofilic-5(24)-en-3-al and 4,23-bisnor-3,3-dimethoxy-3,4-secofilic-5(24)-ene, respectively.

Compound 3 was obtained as colorless needles and its IR spectrum suggested the presence of a hydroxyl group in the molecule. Its molecular formula was found to be $C_{30}H_{48}O_2$ by HR-MS (M⁺ m/z 440.3701, Calcd 440.3654). The ¹H-NMR spectrum of 3 indicated the presence of five tertiary methyl and two secondary methyl groups, and a carbinyl methylene (Table 2). Since ¹H- and ¹³C-NMR data (Tables 1 and 2) were not conclusive for determination of the structure of the compound, the HMBC spectrum of 3 was recorded. Detailed analysis of the HMBC (partial structure shown in Fig. 1) revealed that the compound is a fern-9(11)-ene derivative with an ether linkage between C-25 and C-7. The ¹³C chemical shift of δ 84.08 suggested that a hydroxyl group was

Chart 1

^{*} To whom correspondence should be addressed.

attached to C-8. This is also supported by the comparatively deshielded chemical shift of H_3 -27 in comparison with that of fern-9(11)-ene.⁴⁾ The relative stereochemistry at most of the chiral centers of 3 was established by the NOESY spectrum as depicted in Fig. 2. Thus, the structure of 3 was determined as 7β ,25-epoxyfern-9(11)-en-8 α -ol.

$$H_2$$
 $\stackrel{\circ}{\leftarrow}$
 H_2
 $\stackrel{\circ}{\leftarrow}$
 H_2
 $\stackrel{\circ}{\leftarrow}$
 H_2
 $\stackrel{\circ}{\leftarrow}$
 $\stackrel{\circ}{\leftarrow}$
 $\stackrel{\circ}{\leftarrow}$

Chart 2

Compound 4 was obtained as colorless needles and its IR spectrum suggested the presence of a hydroxyl group in the molecule. Its molecular formula was deduced to be $C_{30}H_{50}O_2$ by HR-MS (M⁺ m/z 442.3803, Calcd 442.3811). The ¹H-NMR spectrum of 4 indicated the presence of five tertiary and two secondary methyl groups, a hydroxy methylene group, and a carbinyl methine group (Table 2). Although the ¹H- and ¹³C-NMR data (Tables 2 and 3) were not conclusive for determination of the structure of 4, the HMBC spectrum clearly revealed the presence of the partial structure showed by heavy lines in Fig. 1. The presence of a 7α , 8α -epoxide in 4 was also indicated by the down-field shift of H_3 -27 (δ 1.087, α -Me) in comparison with that of fern-7-en-25-ol. 1b) The relative stereochemistry at most of the chiral centers of 4 was established by the NOESY spectrum, which showed NOE interactions between methyl, methylene and methine protons on the β -side (H₃-24—H₂-25—H₃-26—H-18— H-21, H-7—H-26), and on the α -side (H₃-27—H₃-28). Thus, the structure of 4 was determined as 7α , 8α -epoxyfernan-25-ol.

This is the first time that secotriterpenoids such as 1 and 2 have been found in fern plants. A possible biogenetic pathway for 1 and 2 is shown in Chart 3. The double bond at C-3-C-4 in filic-3-ene (8)^{1a)} is cleaved oxidatively; then

Fig. 1. Partial Structures of 1, 2, 3 and 4, Based on the HMBC Spectra

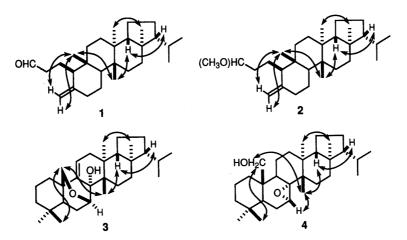


Fig. 2. NOEs Obtained from NOESY

Table 1. Triterpenoids Isolated from A. cuneatum

	mp (°C)	[α] _D ²³ (°)	Yield ^{a)} (%)	Ref.
4,23-Bisnor-3,4-secofilic- 5(24)-en-3-al (1)	138—139	+0.9	0.0003	2
4,23-Bisnor-3,3-dimethoxy-3,4-secofilic-5(24)-ene (2)	195196	-5.4	0.0015	2
7β ,25-Epoxyfern-9(11)-en-8 α -ol (3)	229—230	-59.0	0.0002	
7α,8α-Epoxyfernan-25-ol (4)	250-251	-49.6	0.0024	
Hydroxyhopane (5)	253—255	+44.0	0.0001	5
Ketohakonanol (6)	295297	+8.0	0.0002	5
Isoadiantol B (7)	213.5215.0	+16.0	0.0829	5

a) Yield from dried materials after removal of water by azeotropic distilla-

Table 2. ¹H-NMR Spectral Data^{a)} (500 MHz, CDCl₃, δ)

	1	2	3	4
H-23		_	0.903	0.883
H-24	4.422	4.505	0.935	0.893
	(ddd, 1.5, 1.5, 1.2)	(ddd, 1.5, 1.5, 1.5)		
	4.813	4.795		
	(ddd, 1.5, 1.5, 1.2)	(ddd, 1.5, 1.5, 1.5)		
H-25	0.712	0.690	2.975	3.484
			(d, 7.6)	(d, 7.9)
			4.185	4.052
			(d, 7.6)	(d, 7.9)
H-26	0.881	0.875	0.979	1.109
H-27	0.974	0.973	1.121	1.087
H-28	0.788	0.787	0.790	0.751
H-29	0.825	0.824	0.904	0.887
	(d, 6.4)	(d, 6.4)	(d, 6.4)	(d, 6.4)
H-30	0.881	0.882	0.834	0.822
	(d, 6.4)	(d, 6.4)	(d, 6.4)	(d, 6.4)
Η-7β				4.068
				(dd, 5.5, 5.5)
H-11			5.424	
			(dd, 4.6, 2.4)

Multiplicity and coupling constants (J, Hz) are shown in parentheses. a) Assignments have been done on the basis of DEPT, $^1H^{-1}H$ COSY, $^1H^{-13}C$ COSY, HMBC and NOESY spectra.

a methyl ketone group is eliminated from the intermediate seco-compound and the exomethylene moiety is formed. A. cuneatum also contains compounds having a fernane skeleton with an unusual ether linkage between C-25 and C-7, viz. 7β ,25-epoxyfern-8-ene^{1a)} and 7β ,25-epoxyfern-9(11)-en-8 α -ol(3).

Experimental

General procedure and the plant material: see the preceding papers. 1)

4,23-Bisnor-3,4-secofilic-5(24)-en-3-al (1), 4,23-Bisnor-3,3-dimethoxy-3,4-secofilic-5(24)-ene (2), 7β ,25-Epoxyfern-9(11)-en-8 α -ol (3) and 7α ,8 α -Epoxyfernan-25-ol (4), Hydroxyhopane (5), Ketohakonanol (6), and Isoadiantol B (7) Fractions E and F (see the preceding paper^{1a}) were

Table 3. ¹³C-NMR Spectral Data^{a)} (125 MHz, CDCl₃, δ)

	1	2	3	4
C-1	15.79	31.55	30.73	30.78
C-2	43.22	18.45	20.19	20.42
C-3	203.05	105.10	42.17	42.05
C-4		_	33.31	33.25
C-5	147.95	148.44	44.60	47.23
C-6	38.04	38.14	32.69	32.39
C-7	23.72	23.74	71.47	69.81
C-8	48.78	48.80	84.08	87.55
C-9	39.19	39.06	143.37	47.85
C-10	57.20	57.74	45.78	47.78
C-11	33.64	33.70	117.14	15.93
C-12	29.05	29.11	37.34	31.67
C-13	38.82	38.81	38.50	37.35
C-14	40.36	40.36	44.28	44.34
C-15	29.36	29.37	26.31	28.05
C-16	35.64	35.69	35.53	35.58
C-17	42.71	42.72	43.02	42.72
C-18	51.72	51.75	52.85	54.74
C-19	19.96	19.96	20.54	20.44
C-20	28.38	28.39	28.16	28.21
C-21	60.07	60.08	59.53	59.51
C-22	30.77	30.78	30.80	30.75
C-23	_	_	32.41	32.61
C-24	106.40	106.32	21.87	21.61
C-25	18.09	18.19	74.48	71.83
C-26	16.06	16.05	18.69	19.91
C-27	15.41	15.34	21.64	23.07
C-28	16.23	16.22	14.58	14.70
C-29	21.95	21.95	22.97	22.96
C-30	22.90	22.91	22.14	22.09

a) Assignments have been done on the basis of DEPT, $^1\mathrm{H}^{-1}\mathrm{H}$ COSY, $^1\mathrm{H}^{-13}\mathrm{C}$ COSY and HMBC spectra.

chromatographed on silica gel with benzene followed by HPLC with CH₃CN-CHCl₃ (19:1) to give the following crystalline solids (recrystallized from acetone or CHCl₃-MeOH to give pure compounds).

1, 3 mg, IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1700, MS m/z (rel. int.): 398 (17, M⁺), 383 (20, M⁺ – 15), 355 (24, a), 287 (35, b), 274 (100, c), 259 (61, c-15), 205 (43, d) and 191 (67, e). 2, 15 mg, MS m/z (rel. int.): 444 (2, M⁺), 429 (3, M⁺ – 15), 354 (48, a-H), 287 (50, b), 274 (100, c), 259 (66, c-15), 205 (51, d) and 191 (48, e). 3, 3 mg, IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3547, 1080, MS m/z (rel. int.): 440 (72), 425 (25), 412 (29), 397 (100), 356 (7), 287 (2), 205 (51) and 191 (10). 4, 23 mg, IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3440, 1069, MS m/z (rel. int.): 442 (100), 427 (52). 5, 1 mg. 6, 2 mg. 7, 482 mg. Compounds 5, 6 and 7 were identified by direct comparison (IR, ¹H-NMR) with authentic samples. ⁵⁾

References

- 1) a) Shiojima K., Arai Y., Nakane T., Ageta H., Chem. Pharm. Bull., **45**, 636—638 (1997); b) Idem, ibid., **45**, 639—642 (1997).
- Shiojima K., Nakane T., Ageta H., Cai S-Q., Chem. Pharm. Bull., 44, 630—632 (1996).
- Shiojima K., Arai Y., Masuda K., Takase Y., Ageta T., Ageta H., Chem. Pharm. Bull., 40, 1683—1690 (1992).
- Ageta H., Shiojima K., Arai Y., Suzuki H., Kiyotani T., Chem. Pharm. Bull., 42, 39—44 (1994).
- Shiojima K., Sasaki S., Ageta H., Chem. Pharm. Bull., 41, 268—271 (1993).