Studies on the Constituents of *Viburnum* Species. XVIII.¹⁾ Viburnols: Six New Triterpenoids from *Viburnum dilatatum* Thunb.²⁾

Koichi Machida and Masao Kikuchi*

Tohoku College of Pharmacy, 4–4–1 Komatsushima, Aoba-ku, Sendai, Miyagi 981, Japan. Received June 13, 1997; accepted August 20, 1997

Six new triterpenoids, viburnols F, G, H, I, J and K, were isolated from the leaves of *Viburnum dilatatum* THUNB. (Caprifoliaceae). The structures were determined by extensive spectroscopic studies. Viburnols F, G and I are the first example of a new class of modified dammarane-type triterpenes.

Key words Viburnum dilatatum; Caprifoliaceae; triterpene; dammarane; viburnol

We have recently reported the isolation of five new triterpenoids, viburnols A, B, C, D and E, from the CHCl₃ extract of the leaves of *Viburnum dilatatum* THUNB.¹⁾ In a previous communication,²⁾ we reported the isolation and structural elucidation of six new triterpenoids, viburnols F—K, obtained from the remaining fractions of the same extract. In this paper, we present a full account of the structure elucidations of viburnols F (1), G (2), H (3), I (4), J (5) and K (6).

Viburnol F (1) was obtained as its methyl ester 1a, $\lceil \alpha \rceil_D$ +43.5° (CHCl₃). The molecular formula of **1a** was assigned as C₃₁H₅₀O₇ on the basis of the MS and ¹³C-NMR spectral data. Its ¹H- and ¹³C-NMR spectra were similar to those of viburnol E.11 The 1H- and ¹³C-NMR spectra of **1a**, however, lacked the signals due to a methylene (C-1) and a cyclic ketone (C-2) of viburnol E and instead showed signals characteristic of two oxygenated carbons [a methine ($\delta_{\rm H}4.37$, $\delta_{\rm C}82.5$) and a quaternary carbon ($\delta_{\rm C}$ 85.5)], a methoxycarbonyl group $(\delta_{\rm H}3.76, \delta_{\rm C}174.9, 51.9)$ and two hydroxyl groups $(\delta_{\rm H}4.68,$ 4.28, each 1H, disappearing on D₂O exchange). These findings suggested that the two hydroxy groups are located at the C-1 and -2 positions, and the methoxycarbonyl group is located at the hydroxy-bearing quaternary carbon $(\delta_c 85.5)$, in the five-membered A-ring. The location of

the methoxycarbonyl on C-2 was deduced from the heteronuclear multiple bond coherence (HMBC) spectrum. The quaternary carbon at $\delta_{\rm C}85.5$ showed HMBC correlations with the methyl protons at δ 1.05 (28-CH₃) and 0.84 (29-CH₃), which are also correlated to the quaternary carbon at δ 46.7 (C-4). On the other hand, the methine carbon at δ 82.5 showed a correlation with the methyl protons at $\delta 1.09$ (19-CH₃), which are also correlated to the quaternary carbon at δ 46.0 (C-10). Thus, the structure of ring A of 1a was indicated. The stereochemistry of 1a was deduced from the difference nuclear Overhauser effect (NOE) spectra. The observation of NOE enhancements between 1-H/19-CH₃ (but not between 1-OH/19-CH₃), 19-CH₃/29-CH₃, 29-CH₃/2-COOCH₃ and 2-COOCH₃/1-H indicated that they were all on the same face (β) of the molecule, while the presence of interactions between 1-OH/9-H and 2-OH/28-CH₃ revealed that these were on the same face (a), opposite to the β -face. The signal of 9-H of 1a was shifted to a lower field ($\Delta \delta + 0.46$) than that of viburnol E indicating the presence of steric compression between 1α-OH and 9-H. Moreover, the carbon signal of C-9 was shifted upfield from that of viburnol E by $\Delta \delta - 7.4$ due to the γ -gauche effect with 1α -OH (C-19 seems not to be affected by 1-OH). All other HMBC (Fig. 1) and NOE

Chart 1

December 1997 1929

Fig. 1. HMBC Correlations of 1a

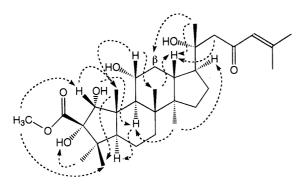


Fig. 2. NOE Enhancements of 1a

(Fig. 2) correlations of **1a** were the same as those of viburnol E. On the basis of the above data, the structure of viburnol F (1) was established as depicted in the formula.

Viburnol G (2) was obtained as its methyl ester 2a, $[\alpha]_D$ +73.8° (CHCl₃). The molecular formula of 2a was assigned as C₃₁H₄₈O₇ on the basis of the MS and ¹³C-NMR spectral data. From comparison of the NMR spectral data of 2a with those of viburnol E, it was deduced that 2a possesses an oxygenated quaternary carbon ($\delta_{\rm C}89.2$), a methoxycarbonyl group ($\delta_{\rm H}$ 3.76, $\delta_{\rm C}$ 172.4, 52.9) and a hydroxyl group ($\delta_{\rm H}$ 5.64, 1H, disappearing on D₂O exchange) instead of a methylene (C-1) group in viburnol E. These findings suggested that a tertiary alcohol and a methoxycarbonyl group are located at the C-1 position in the five-membered A-ring. This deduction was supported by the HMBC spectrum. The carbon at δ 89.2 showed a correlation with the methyl protons at δ 1.02 (19-CH₃), which are also correlated to the quaternary carbon at δ 49.0 (C-10). Furthermore, correlations were observed between the carbon at δ 217.3 (C-3) and the protons of 1-OH $(\delta 5.64)$, 28-CH₃ and 29-CH₃ $(\delta 1.07, 1.17)$. Thus, the structure 2a was indicated. The hydroxyl group at C-1 was determined to be on the same side as 19-CH₃ from the NOE difference spectrum. The C-19 signal of 2a was shifted upfield from that of viburnol E by $\Delta \delta - 3.3$ due to the γ -gauche effect of 1β -OH. All other HMBC and NOE correlations of 2a were the same as those of viburnol E. On the basis of the above data, the structure of viburnol G (2) was established to be as depicted.

Viburnol H (3) was obtained as an amorphous powder, $[\alpha]_D + 43.3^\circ$ (CHCl₃). The molecular formula of 3 was assigned as $C_{30}H_{48}O_5$ on the basis of the MS and $^{13}C\text{-NMR}$ spectral data. The $^{1}H\text{-}$ and $^{13}C\text{-}NMR$ spectral data of 3 were closely related to those of viburnol D, $^{1)}$

except that 3 had an oxygenated methine (δ 82.4) instead of the methylene group in viburnol D. Thus, 3 may be formulated as a hydroxy derivative of viburnol D at ring A. The ¹H-NMR spectrum of 3, however, showed signals of a methine proton at δ 3.89 (1H, s) and a methylene proton at δ 2.25 and 3.48 (each 1H, d, $J=13.0\,\mathrm{Hz}$). The multiplicities of these signals indicated that the keto group is located between a hydroxymethine and a methylene group, possibly on C-2. The location of the hydroxy group on C-3 was deduced from the HMBC spectrum, that is, cross peaks were observed between the methylene protons and C-9, -10 and -19, and between the hydroxymethine proton and C-4, -28 and -29. The stereochemistry of the hydroxyl group at C-3 was determined as β on the basis of the NOE difference spectra, in which NOE enhancements were observed at 3-H and 9-H when one of the methylene protons (δ 2.25) at C-1 was irradiated. All other HMBC and NOE correlations of 3 were the same as those of viburnol D. On the basis of the above data, the structure of viburnol H (3) is proposed to be as depicted in the formula.

Viburnol I (4) was obtained as its methyl ester 4a, $[\alpha]_D$ $+20.0^{\circ}$ (CHCl₃). The molecular formula of **4a** was assigned as C₃₁H₄₈O₇ on the basis of the MS and ¹³C-NMR spectral data. From a comparison of the spectral data of 4a with those of viburnol B methyl ester, 1) it was deduced that 4a possesses a hemiacetal ($\delta_{\rm H}4.99$, $\delta_{\rm C}$ 105.2) and a carbonyl (1738 cm⁻¹, $\delta_{\rm C}$ 202.8) instead of methylene (C-1) and δ -lactone carbonyl (C-2) groups in viburnol B. The planar structure of 4a was finally deduced from the HMBC spectrum. The cross peaks between the proton at $\delta 4.99$ and C-11 ($\delta 75.8$), and between the 19-CH₃ (δ 1.07) and the carbon at δ 105.2, suggested the presence of a five-membered hemiacetal ring between C-1 and -11. The cross peaks between the methyl protons at δ 1.25 and 1.37 (28-CH₃, 29-CH₃) and carbon signals at δ 202.8, 50.3 (C-4) and 45.5 (C-5), respectively, suggested that the carbon signal at $\delta 202.8$ is assignable to C-3. The remaining methoxycarbonyl moiety should, therefore be connected with this carbonyl. The presence of the α-ketomethylester moiety was supported by the electron impact (EI) mass fragment at m/z 287 [M⁺-H₂O- C_6H_9O (C-20/-22 cleavage)- $C_6H_{10}O_3$ (C-4/C-5 cleavage)]. On the basis of the above data, 4a was suggested to be an A-seco dammarane-type triterpene having a five-membered hemiacetal ring and methoxalyl group. The stereochemistry of the hemiacetal group at C-1 was determined by an NOE experiment; a significant NOE between 1-H and 19-CH3 was observed. Moreover, the carbon signal of C-5 in 4a was shifted upfield from that of viburnol B methyl ester by $\Delta \delta - 9.8$ due to the γ gauche effect of 1α-OH (C-19 seems to be unaffected by the 1-OH). All other HMBC and NOE correlations of 4a were the same as those of viburnol B methyl ester. On the basis of the above data, the structure of viburnol I (4) was established to be as depicted in the formula.

Viburnol J (5) was obtained as an amorphous powder, $[\alpha]_D +45.5^\circ$ (CHCl₃). The molecular formula of 5 was assigned as $C_{29}H_{44}O_4$ on the basis of the MS and $^{13}C\text{-NMR}$ spectral data. From a comparison of the NMR spectral data of 5 with those of viburnol $C_s^{(1)}$ it was

1930 Vol. 45, No. 12

Table 1. ¹³C-NMR Chemical Shifts (67.8 MHz, CDCl₃)

С	1a	2a	3	4a	5	6
1	82.5	89.2	55.9	105.2	48.9	50.6
2	85.5	172.4	212.3	164.9	170.5	170.4
3	174.9	217.5	82.4	202.8	******	
4	46.7	44.5	45.3	50.3	144.5	
5	55.9	51.6	55.3	45.5	56.1	40.2
6	17.9	17.5	18.3	22.7	23.7	18.1
7	35.2	35.0	35.4	34.0	34.1	33.9
8	41.2	41.6	41.0	38.2	39.1	39.2
9	47.3	49.1	55.1	49.8	46.5	45.3
10	46.0	49.0	44.8	47.5	35.7	32.1
11	69.8	69.5	70.3	75.8	78.0	78.6
12	38.2	37.6	39.7	34.5	34.7	34.7
13	41.2	41.4	40.7	43.3	40.9	40.9
14	50.2	50.5	50.1	50.2	50.1	50.0
15	30.9	30.8	30.7	30.9	30.7	30.6
16	25.2	25.2	25.0	26.0	25.0	25.0
17	50.1	50.0	50.2	48.3	49.3	49.3
18	16.8	17.1	16.3	15.3	15.2	15.0
19	16.9	14.5	17.7	17.3	17.2	20.4
20	74.9	74.6	74.8	74.8	74.4	74.4
- 21	26.5	26.0	26.5	26.1	25.8	25.8
22	50.0	50.9	49.9	50.6	51.0	51.0
23	202.9	202.8	202.8	202.7	202.6	202.6
· 24	124.9	124.9	124.8	124.8	124.7	124.7
25	157.6	57.8	157.6	157.5	157.8	157.7
26	27.9	28.0	27.8	27.9	27.9	27.9
27	21.0	21.2	21.0	21.0	21.0	21.0
28	25.3	27.6	29.5	20.5	22.9	_
29	21.2	22.3	16.5	23.8	114.6	
30	16.7	16.7	16.3	16.0	16.4	16.3

Assignments were confirmed by $^1H^{-1}H$ and $^{13}C^{-1}H$ COSY, distortionless enhancement by polarization transfer (DEPT) and HMBC methods.

deduced that **5** possesses an isopropenyl group ($\delta_{\rm H}$ 4.92, 4.68, 1.75, $\delta_{\rm C}$ 144.5, 114.6, 22.9) instead of a hydroxyl and two methyl (C-28, -29) groups in viburnol C. The isopropenyl group was located at C-5 from the HMBC spectrum. The carbon signal at δ 56.1 (C-5) showed correlations with the methyl protons (δ 1.75) and with the olefin protons (δ 4.92, 4.68). All other HMBC and NOE correlations of **5** were the same as those of viburnol C. On the basis of the above data, the structure of viburnol **J** (**5**) was established to be as depicted in the formula.

Viburnol K (6) was obtained as an amorphous powder, $[\alpha]_D$ +25.5° (CHCl₃). The molecular formula of **6** was assigned as C₂₆H₄₀O₄ on the basis of the MS and ¹³C-NMR spectral data. From a comparison of the NMR spectral data of 6 with those of viburnol C, it was deduced that 6 possesses a methylene ($\delta_{\rm C}40.2$) group instead of a hydroxyl-bearing carbon (C-4), two methyls (C-28, -29) and a methine (C-5) in viburnol C. The carbon signals of C-6 and -10 in 6 were shifted upfield from those of viburnol C by $\Delta \delta - 4.1$ and -5.5, respectively, because of the loss of the β -substituent effect. These findings suggested that the methylene carbon at $\delta 40.2$ could be assigned as C-5. All other HMBC and NOE correlations of 6 were the same as those of viburnol C. On the basis of the above data, the structure of viburnol K (6) was established to be as depicted in the formula. Viburnol K (6) is the first example of a ring A-tetranor (C-3, -4, -28 and -29)- triterpene isolated from a natural source.

The methyl esters 1a, 2a and 4a may be artifacts formed

from the corresponding acids 1, 2 and 4 during the extraction and isolation processes.

Viburnols F (1), G (2), H (3), I (4), J (5) and K (6) were presumably biosynthesized from viburnol D (Fig. 3), so all the chiral centers of 1 (except C-1 and -2), 2 (except C-1), 3 (except C-3), 4 (except C-1), 5 and 6 are expected to coincide with those of viburnol D, whose absolute configuration was elucidated from the circular dichroism (CD) spectrum. ¹⁾ Based on this assumption, the full structures of viburnols F—K (1—6) are as shown in Chart 1.

Compounds 1—6 are new dammarane-type triterpenes, and compounds 1, 2 and 4 are the first examples of a new class of modified dammarane-type triterpenes. Furthermore, the occurrence of compounds 1 and 2 gives important clues to the biosynthesis of the A-nor-triterpenoid, viburnol E.

It is likely that all viburnols (except viburnols D and H) are biosynthesized from the postulated intermediate (7; dammar-24-ene-2,3,23-trione- 1α , 11α , 20α -triol). Bonds cleavages at ring A followed by recyclization would afford viburnols F (route A), G (route B), A (route C) and I (route D) (Fig. 3).³⁾

Experimental

The instruments, materials and experimental conditions were the same as in our previous paper. 1)

Extraction and Isolation The extraction and isolation procedures were as described in our previous paper.¹⁾ Compounds **1a** (10.0 mg), **2a** (7.0 mg), **3** (30.0 mg), **4a** (6.5 mg), **5** (10.0 mg) and **6** (9.5 mg) were isolated from frs. 3-2-4—3-2-8 by preparative HPLC.

Viburnol F Methyl Ester (1a): An amorphous powder, $[\alpha]_D + 43.5^\circ$ (c=0.3, CHCl₃). IR (CHCl₃) cm⁻¹: 3421, 2954, 1727, 1672, 1613. UV $\lambda_{\rm max}$ (MeOH) nm (log ε): 241.0 (3.89). EI-MS m/z: 516 (M - H₂O) ⁺. FAB-MS m/z: 535 (M + H) ⁺. HR-MS m/z: 516.3459 (M ⁺ - H₂O, Calcd for C₃₁H₄₈O₆; 516.3451). ¹H-NMR (270 MHz, CDCl₃) δ: 6.07 (1H, br t, J=1.2 Hz, 24-H), 4.68 (1H, br s, 1-OH), 4.40 (1H, s, 20-OH), 4.37 (1H, s, 1-H), 4.28 (1H, s, 2-OH), 3.99 (1H, ddd, J=11.2, 10.5, 5.0 Hz, 11-H), 3.76 (3H, s, COOCH₃), 2.54, 2.61 (2H, d, J=16.4 Hz, 22-CH₂), 2.42 (1H, br s, 11-OH), 2.21 (1H, m, 12-H_β), 2.17 (3H, d, J=1.2 Hz, 27-CH₃), 2.14 (1H, d, J=11.2 Hz, 9-H), 1.91 (3H, d, J=1.2 Hz, 26-CH₃), 1.21 (3H, s, 21-CH₃), 1.09 (3H, s, 19-CH₃), 1.05 (3H, s, 28-CH₃), 0.97 (6H, s, 18,30-CH₃), 0.84 (3H, s, 29-CH₃). ¹³C-NMR (67.8 MHz, CDCl₃): Table 1.

Viburnol G Methyl Ester (2a): An amorphous powder, $[\alpha]_D + 73.8^\circ$ (c = 0.4, CHCl₃). IR (CHCl₃) cm⁻¹: 3451, 2957, 1755, 1719, 1672, 1613. UV λ_{max} (MeOH) nm (log ε): 240.0 (3.93). EI-MS m/z: 514 (M - H₂O) ⁺. FAB-MS m/z: 533 (M + H) ⁺. HR-MS m/z: 514.3303 (M ⁺ - H₂O, Calcd for C₃₁H₄₆O₆; 514.3295). ¹H-NMR (270 MHz, CDCl₃) δ: 6.05 (1H, brt, J = 1.2Hz, 24-H), 5.64 (1H, s, 1-OH), 4.37 (1H, s, 20-OH), 3.82 (1H, m, 11-H), 3.76 (3H, s, COOCH₃), 3.34 (1H, d, J = 8.9 Hz, 11-OH), 2.57 (2H, s, 22-CH₂), 2.32 (1H, m, 12-H_β), 2.17 (3H, d, J = 1.2 Hz, 27-CH₃), 2.06 (1H, d, J = 10.9 Hz, 9-H), 1.92 (3H, d, J = 1.2 Hz, 26-CH₃), 1.20 (3H, s, 21-CH₃), 1.17 (3H, s, 29-CH₃), 1.07 (3H, s, 28-CH₃), 1.02 (6H, s, 18,19-CH₃), 0.94 (3H, s, 30-CH₃). ¹³C-NMR (67.8 MHz, CDCl₃): Table 1.

Viburnol H (3): An amorphous powder, $[\alpha]_D + 43.3^{\circ}$ (c = 0.7, CHCl₃). IR (CHCl₃) cm $^{-1}$: 3475, 3019, 2974, 1704, 1674, 1614. UV $\lambda_{\rm max}$ (MeOH) nm (log ε): 240.0 (3.79). EI-MS m/z: 470 (M $-{\rm H_2O}$) $^+$. FAB-MS m/z: 489 (M+H) $^+$. HR-MS m/z: 470.3366 (M $^+-{\rm H_2O}$), Calcd for C₃₀H₄₆O₄; 470.3396). $^1{\rm H}$ -NMR (270 MHz, CDCl₃) δ : 6.06 (1H, br t, J=1.3 Hz, 24-H), 4.36 (1H, br s, 20-OH), 3.98 (1H, ddd, J=10.6, 10.4, 5.3 Hz, 11-H), 3.89 (1H, s, 3-H), 3.48 (1H, d, J=13.0 Hz, 1-H $_{\beta}$), 2.56 (2H, s, 22-CH $_2$), 2.25 (1H, d, J=13.0 Hz, 1-H $_{\alpha}$), 2.22 (1H, m, 12-H $_{\beta}$), 2.17 (3H, d, J=1.3 Hz, 27-CH $_3$), 1.92 (3H, d, J=1.3 Hz, 26-CH $_3$), 1.70 (1H, d, J=10.6 Hz, 9-H), 1.21 (3H, s, 21-CH $_3$), 1.19 (3H, s, 28-CH $_3$), 0.99 (3H, s, 19-CH $_3$), 0.96 (6H, s, 18,30-CH $_3$), 0.70 (3H, s, 29-CH $_3$). 13 C-NMR (67.8 MHz, CDCl $_3$): Table 1.

Fig. 3. Possible Biosynthetic Pathways of Viburnols

Viburnol I Methyl Ester (4a): An amorphous powder, $[\alpha]_D + 20.0^\circ$ (c=0.3, CHCl₃). IR (CHCl₃) cm⁻¹: 3452, 2958, 2928, 1738, 1713, 1673, 1612. UV $\lambda_{\rm max}$ (MeOH) nm ($\log \epsilon$): 241.0 (3.94). EI-MS m/z: 514 (M-H₂O)⁺. FAB-MS m/z: 533 (M+H)⁺. HR-MS m/z: 514.3322 (M⁺-H₂O, Calcd for C₃₁H₄₆O₆; 514.3295), m/z: 417.2674 (M⁺-H₂O-C₆H₉O, Calcd for C₂₅H₃₇O₅; 417.2641), m/z: 287.1970 (M⁺-H₂O-C₆H₉O-C₆H₁₀O₃, Calcd for C₁₉H₂₇O₂; 287.2011). ¹H-NMR (270 MHz, CDCl₃) δ : 6.04 (1H, brt, J=1.0 Hz, 24-H), 4.99 (1H, d, J=2.5 Hz, 1-H), 4.33 (1H, s, 20-OH), 3.84 (3H, s, COOCH₃), 3.73 (1H, ddd, J=11.9, 11.0, 5.0 Hz, 11-H), 2.61, 2.53 (2H, d, J=16.5 Hz, 22-CH₂), 2.36 (1H, m, 12-H_{\beta}), 2.34 (1H, d, J=2.5 Hz, 1-OH), 2.16 (3H, d, J=1.0 Hz, 27-CH₃), 2.10 (1H, d, J=11.9 Hz, 9-H), 1.91 (3H, d, J=1.0 Hz, 26-CH₃), 1.37 (3H, s, 29-CH₃), 1.25 (3H, s, 28-CH₃), 1.19 (3H, s, 21-CH₃), 1.07 (3H, s, 19-CH₃), 0.97 (3H, s, 18-CH₃), 0.96 (3H, s, 30-CH₃). ¹³C-NMR (67.8 MHz, CDCl₃): Table 1.

Viburnol J (5) An amorphous powder, [α]_D +45.5° (c=0.2, CHCl₃). IR (CHCl₃) cm⁻¹: 3456, 2965, 1718, 1673, 1611. UV λ_{max} (MeOH) nm (log ε): 241.0 (3.93). EI-MS m/z: 438 (M−H₂O)⁺. FAB-MS m/z: 457 (M+H)⁺. HR-MS m/z: 438.3112 (M⁺−H₂O, Calcd for C₂₉H₄₂O₃; 438.3134). ¹H-NMR (270 MHz, CDCl₃) δ: 6.05 (1H, br s, 24-H), 4.92 (1H, t, J=1.7 Hz, 29-H_b), 4.68 (1H, br s, 29-H_a), 4.42 (1H, ddd, J=11.6, 11.4, 5.0 Hz, 11-H), 4.38 (1H, s, 20-OH), 2.57 (2H, s, 22-CH₂), 2.54 (1H, d, J=16.0 Hz, 1-H_β), 2.39 (1H, ddd, J=12.0, 5.0, 3.0 Hz, 12-H_β), 2.17 (3H, s, 27-CH₃), 2.16 (1H, d, J=16.0 Hz, 1-H₂), 1.92 (3H, d, J=1.3 Hz, 26-CH₃), 1.79 (1H, d, J=11.6 Hz, 9-H), 1.75 (3H, br s, 28-CH₃), 1.21

(3H, s, 21-CH₃), 1.06 (6H, s, 18, 19-CH₃), 0.97 (3H, s, 30-CH₃). $^{13}\text{C-NMR}$ (67.8 MHz, CDCl₃): Table 1.

Viburnol K (6) An amorphous powder, $[\alpha]_D + 25.5^\circ$ (c = 0.4, CHCl₃). IR (CHCl₃) cm⁻¹: 3452, 2943, 1718, 1674, 1614. UV λ_{max} (MeOH) nm (log ε): 241.0 (3.80). EI-MS m/z: 398 (M-H₂O)⁺. FAB-MS m/z: 417 (M+H)⁺. HR-MS m/z: 398.2831 (M⁺-H₂O, Calcd for C₂₆H₃₈O₃; 398.2821). ¹H-NMR (270 MHz, CDCl₃) δ: 6.04 (1H, brt, J = 1.0 Hz, 24-H), 4.39 (1H, ddd, J = 11.9, 10.6, 5.0 Hz, 11-H), 4.37 (1H, s, 20-OH), 2.56 (2H, s, 22-CH₂), 2.38 (1H, m, 12-H_β), 2.34 (1H, d, J = 17.2 Hz, 1-H_β), 2.17 (3H, d, J = 1.0 Hz, 27-CH₃), 2.16 (1H, d, J = 17.2 Hz, 1-92 (3H, d, J = 1.0 Hz, 26-CH₃), 1.78 (1H, d, J = 11.9 Hz, 9-H), 1.21 (3H, s, 21-CH₃), 1.12 (3H, s, 19-CH₃), 1.04 (3H, s, 18-CH₃), 0.95 (3H, s, 30-CH₃). ¹³C-NMR (67.8 MHz, CDCl₃): Table 1.

Acknowledgements The authors are grateful to Dr. K. Hisamichi and Mr. S. Sato of our college for analyses of NMR and MS measurements.

References and Notes

- Part XVII: Machida K., Kikuchi M., Chem. Pharm. Bull., 45, 1589—1592 (1997).
- 2) A preliminary communication: Machida K., Kikuchi M., Tetrahedron Lett., 38, 571—574 (1997).
- See for example: a) Simpson T. J., Lunnon M. W., MacMillan J., J. Chem. Soc., Parkin 1, 1979, 931—934; b) Lontsi D., Sondengam B. L., Bodo B., Phytochemistry, 30, 2361—2364 (1991).