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Scale-Up of Agitation Fluidized Bed Granulation by Neural Network
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Scale-up of wet granulation by agitation fluidized bed was conducted using a hierarchy neural network with a
back-propagation learning. Scale-up characteristics of agitation fluidized bed granulation were self-learned using a
developed neural network system, and properties of size, size distribution, apparent density and shape factor of
granules prepared by the commercial scale under various operating conditions (moisture content, agitator rotational
speed and fluidization air velocity) were predicted. To confirm the method’s validity, the predicted properties were
compared with the actual granulation data. Good correlation was obtained between the predicted and the experimental
data of agitation fluidized bed granulation. It was found that the neural network could be a reliable tool to analyze
the scale-up characteristics of granulation, and to predict granule properties being produced by the unknown larger

scale granulator.
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learning

Fluidized bed granulation has become a key operation
in pharmaceutical and other industries. It is applied to
produce particulate materials of desired size and other
physical properties. Use of the fluidized bed has attracted
considerable attention, because the many different opera-
tions of mixing, granulation and drying can be conduct-
ed in a single vessel, thus preventing contamination and
saving processing space, time and cost. However, the
effects of process variables on granule properties are so
complex that the design and scaling up of this process are
very difficult. Only a few studies” have been reported on
theoretical analyses of granulation scale-up, and a reliable
tool to achieve this is strongly desired.

Neural Network,2™® which models the neuronal
operation in the brain, is a data-processing method. It
has become noted, because it has self-organization, i.e.,
learning ability: it can easily change its structure to identify
regularity among a vast amount of data. It can thus predict
or recognize patterns of unknown data without construct-
ing a mathematical model of the complicated non-linear
relationships between each item of data.

Compressed air

In this study we applied this method to scale-up of
agitation fluidized bed granulation,®~*? in which model-
ing and theoretical approaches have been very difficult.
The scale-up characteristics of the granulation were
investigated using a hierarchy neural network with a
back-propagation learning to predict properties of
granules produced by the commercial scale granulator
under various operating conditions. To confirm the
method’s validity, predicted granule properties were
compared with the experimental data. The number of
learning data required to analyze the scale-up characteris-
tics accurately was also determined.

Experimental

Equipment A schematic diagram of the experimental apparatus is
illustrated in Fig. 1.

For wet granulation, four sizes of agitation fluidized bed (NQ-125,
230, 500 and 750, Fuji Paudal Co., Ltd.),>° !® of which the vessel
diameter were 125, 230, 500 and 750 mm, respectively, were used. An
agitator blade was equipped to give tumbling and compacting effects to
granules, making the granules spherical and well-compacted. Under the
blade, circular plates of different diameter were superimposed 0.5mm
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Fig. 1. Schematic Diagram of Experimental Apparatus Employed
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1, blower; 2, bag filter; 3, spray nozzle; 4, pump; 5, binder liquid; 6, controller; 7, TR moisture sensor; 8, motor; 9, agitator blade; 10, slit plates; 11, heater; 12,

hot-wire anemometer.
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Table 1. Dimensions and Operating Conditions
Equipment NQ-125 NQ-230 NQ-500 NQ-750
Dimensions Diameter of vessel [25mm 230 mm 500 mm 750 mm
Powder load weight 0.36kg 2.23kg 229kg 77.3kg
Spray nozzle Type of nozzle 655 3B 2B 2Bx2
Nozzle insert diameter i.d. [.0mm id. 1.0mm i.d. 2.0mm i.d. 2.0mm
Air pressure 1.5x 10°Pa 1.5x 10°Pa 3.0x10°Pa 3.0x10°Pa
Nozzle height 100 mm 200 mm 500 mm 800 mm
Granulation Agitator rotational speed 300—900 rpm 150—600 rpm 75—300 rpm 50—150 rpm
Fluidization air velocity 0.5—1.1m/s
Moisture content 12—22%
Inlet air temperature 80°C
Dampen time Dampen to pre-determined moisture content in 20 min
Drying Agitator rotational speed 300 rpm 150 rpm 75 rpm 75 rpm
Inlet air temperature 80°C
Fluidization air velocity 0.7m/s

apart to function as air distributors. Heated air for particle fluidization
was blown from the slit between each circular plate to create a circulating
flow. Fine powders lifted up by the fluidization air were entrapped by
bag filters, then brushed down by a pulsating jet of air.

Moisture content of granules during granulation was measured by an
infrared (IR) moisture sensor (Wet-eye, Fuji Paudal Co., Ltd.).>"t¥
Feedback control of the moisture content was conducted by regulating
a liquid feed rate.

Fluidization air velocity was measured by a hot-wire anemometer
(Ventcapter 3202.30, Weber Co., Ltd.), which was located at the center
of the inlet air duct pipe to detect maximum air velocity. Inlet and outlet
air temperatures and humidities were measured by ceramic sensors
(HT20F, NTK).

The main operational variables of inlet air temperature, velocity, and
agitator rotational speed were feedback controlled to maintain a stable
operation. All the operational variables measured were on-line monitored
via personal computer, then stored on a hard disk.

Powder Samples Starting material for granulation was a pharmaceu-
tical standard formulation defined by the Working Group for Preparation
of Standard Formulations,'® which consisted of lactose and cornstarch
(mixed at 7: 3 by weight). Hydroxypropylcellulose (HPC EF-P, Shin-Etsu
Chemical Co., Ltd.) was added to the above mixture at a level of 5 wt%
before granulation.

Purified water was sprayed by a binary nozzle located at the top of
the vessel (top spray method).

Operating Conditions Basic operating conditions for the scale-up
experiments are summarized in Table 1.

Initial powder feed weight of each equipment was determined based
on their geometric similarity (in proportion to vessel volume) to evaluate
scale-up characteristics correctly.

Optimal spray conditions were preliminary optimized to spray water
mist having a median diameter of 40 um and to maintain a constant
ratio of spray area to vessel sectional area (30—35%), regardless of spray
nozzle type.

Scale-up experiments were conducted as follows: i) Premixed powder
samples were fed to the vessels and agitated with fluidized air for 300s.
i) Granulation experiments started with spraying water. To avoid the
effect of granulation time on granule growth, damping speed was con-
trolled so as to dampen to any predetermined moisture content within
20 min. These procedures were the same as those previously reported.'®
iii) After the granulation, granulated products were dried with fluidiza-
tion air in the vessel until the measured moisture content decreased below
0%. The fluidization air was kept constant at 80 °C regardless of vessel
scale. In preliminary experiments, we had confirmed that the effect of
drying time increase on granule properties such as attrition could be
almost ignored if vessel scale increased. This was because the drying
time was considerably short and granules were so spherical and well-
compacted that attrition rarely occurred.

Evaluation of Produced Granules Particle size distribution of granules
was determined by a sicve analysis with a row-tap shaker. Based on the
log-normal distribution, mass median diameter and geometric standard
deviation were obtained using a personal computer.

Fig. 2. Structure of Three-Layer Neural Network Applied

Apparent density of granules was measured using a powder tester
(Hosokawa Micron Co., Ltd.).

Shape factor of granules was computed using an image processing
system® (Image Eye, Fuji Paudal Co., Ltd.).

Results and Discussion

Determination of Optimum Structure of Neural Network
Figure 2 illustrates the three-layer neural network applied
in this study. For the input-layer, four units composed of
vessel diameter D, moisture content W, fluidization air
velocity u, and agitator rotational speed N were used. For
the middle-layer, we used one layer, considering that
convergence time increased with the middle layer number
and that a three-layer neural network is sufficient.?? Unit
number for the output-layer was four, which generated
the predicted granule properties of granule mass median
diameter Ds,, geometric standard deviation o, (size
distribution), apparent density p, and shape factor ¢.

Table 2 gives a list of learning data consisting of granule
properties under various operating conditions and vessel
scales.

Learning was conducted using the back-propagation,
which is a learning algorithm to update the weight and
the threshold value by making the error function (Eq. 1)
minimum.
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Practically, learning is conducted using the following
equation to update the weight
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Table 2. List of Supervised Learning Data Obtained by Laboratory
Scale Granulator (NQ-125, -230 and -500)

Input data Result

D (mm) W (%) u(mfs) N(@pm) Dy, (um) o,(—) p, (keg/m®) ()

125 12 0.7 300 165 1.79 520 0.767
125 12 0.7 600 157 2.02 540 0.720
125 14 0.7 300 200 1.77 545 0.758
125 14 0.5 600 182 1.79 562 0.778
125 14 0.7 600 188 1.92 545 0.761
125 14 0.9 600 196 1.79 537 0.761
125 14 0.7 900 180 1.73 572 0.783
125 16 0.5 600 220 1.67 565 0.772
125 16 0.7 600 228 1.66 554 0.762
125 16 0.9 600 238 1.67 554 0.758
125 16 0.5 900 211 1.65 548 0.781
125 16 0.7 900 216 1.66 530 0.767
125 16 0.9 900 229 1.71 532 0.771
125 18 0.7 600 303 1.55 562 0.768
125 18 0.7 900 216 1.48 570 0.777
230 18 0.7 300 233 1.70 593 0.820
230 18 0.7 450 166 1.63 600 0.830
230 16 0.5 300 169 1.82 594 0.820
230 16 0.7 300 175 1.81 582 0.813
230 16 0.9 300 183 1.82 582 0.813
230 16 0.5 450 162 1.80 575 0.834
230 16 0.7 450 166 1.81 556 0.818
230 16 0.9 450 176 1.86 556 0.828
230 14 0.7 150 154 1.92 572 0.798
230 14 0.5 300 140 1.94 591 0.816
230 14 0.7 300 145 2.07 572 0.802
230 14 0.9 300 151 1.94 563 0.801
230 14 0.7 450 139 1.88 602 0.826
230 12 0.7 150 127 1.94 544 0.770
230 12 0.7 300 121 2.17 550 0.782
230 20 0.7 300 340 1.60 600 0.840
500 12 0.7 150 110 2.60 570 0.803
500 14 0.7 75 130 2.61 580 0.780
500 14 0.7 150 119 2.54 596 0.819
500 14 0.9 150 122 2.48 604 0.797
500 16 0.7 150 140 2.42 613 0.822
500 18 0.7 75 215 2.16 617 0.798
500 18 0.5 150 178 1.83 630 0.840
500 18 0.7 150 188 1.96 625 0.832
500 18 0.9 150 234 2.14 610 0.831
500 20 0.7 150 280 1.80 617 0.837

where # is the learning rate determining speed of learning
convergence and ¢ is the learning cycle. Based on the
behavior of error convergence during the learning, the
number of middle-layer units, learning cycles # and learning
rates # were determined.

Figures 3 indicates the behavior of error convergence
under various numbers of middle layer units.

As seen in the figure, each final error after 10000
learnings was prone to decrease with the increase in
number of middle-layer units. Moreover, if the unit
number was four or five, there was no significant difference
in the final error. It is commonly said that the neural
network can express more complicated functions as the
number of middle-layer units increases. However, with a
large unit number, there is a possibility of over-learning
and a tendency for a remarkable increase in convergence
time.2? We therefore determined that the optimum unit
number for the middle-layer was four.

For the learning cycles, an error over 10000 learnings
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Fig. 3. Behavior of Error Convergence at Various Numbers of
Middle-Layer Units
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Fig. 4. Granule Mass Median Diameter against Moisture Content in
the Commercial Scale Equipment (NQ-750, N=100rpm, u=0.7m/s)

indicated almost constant value. Since an increase in the
number of learning cycles resulted in an increase in learn-
ing time, the optimum learning cycles in this study was
determined to be 10000.

We conducted the same optimization concerning the
learning rate #: the optimum learning rate was determined
to be n=0.8.

Prediction of Granule Properties Figures 4—7 show
mass median diameter Ds,, geometric standard deviation
o, apparent density p, and shape factor ¢ of granules

-produced by commercial scale equipment (NQ-750) at

various levels of moisture content. Plots in the figures
indicate the experimental data and lines show predicted
results using the neural network.

As seen in Fig. 4, there was close agreement between
predicted and experimental data. The granule mass
median diameter of both predicted and experimental data
showed an increase with moisture content. As described
earlier,’*~ 1721 granule size was determined by adhesion
force of a liquid bridge formed between the granules and
a separation force experienced to the granules to separate
each other. With moisture variation at the same agitator
rotational speed and fluidization air velocity (i.e., constant
separation force), the granule size was influenced only by
the moisture content, because the adhesion force by the
liquid bridge was closely connected with the water volume
of the bridge.

As a result, the effect of moisture content on granule
size could be well predicted using the neural network
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Fig. 5. Geometric Standard Deviation against Moisture Content in the
Commercial Scale Equipment (NQ-750, N=100rpm, u=0.7m/s)
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Fig. 6. Granule Apparent Density against Moisture Content in the
Commercial Scale Equipment (NQ-750, N=100rpm, ¥=0.7 m/s)
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Fig. 7. Granule Shape Factor against Moisture Content in the
Commercial Scale Equipment (NQ-750, N=100rpm, #=0.7m/s)

system with a back propagation learning.

Also, as shown in Figs. 5—7, each predicted data point
agreed well with the experimental data. In this case,
increase in moisture content resulted in a decrease in
particle size distribution and increase in apparent density
and shape factor, indicating granules were spherical and
well compacted, and their size distribution was narrower.
These characteristics were also well understood by the
neural network with the back-propagation learning.

We also confirmed here that granule properties of the
commercial scale equipment (NQ-750) under various
agitator rotational speeds and fluidization air velocities
showed good agreement with the experimental data.

Based on the results obtained, it was concluded that
granule properties in larger scale equipment under various
operating conditions could be easily and accurately pre-
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Fig. 8. Effect of Learning Data Number on the Accuracy of Prediction
(Mass Median Diameter)

dicted by means of the neural network with back-
propagation learning. It was also found that the neural
network could predict or recognize patterns of unknown
data without constructing a mathematical model of com-
plicated non-linear relationships of vast experimental
data.

Figure 8 is an example of the effect of number of learn-
ing data on the accuracy of the predicted properties. In
this case, the accuracy of the prediction was investigated
using the deviation (error) between the predicted and
experimental data of mass median diameter.

By selecting all the data of NQ-500 and some data of
other scale equipment (NQ-125 and -230), the number of
learning data could be decreased and a good accuracy
retained. When the number of learning data dropped be-
low 12 or 13, however, the accuracy of the prediction de-
creased markedly with a decrease in the number. The
number of learning data thus could be reduced, how-
ever, for good accuracy in prediction, a larger number
of learning data is preferable.

Conclusion

Application of neural network to scale-up of granula-
tion by an agitation fluidized bed was described. Optimum
structure of the neural network was determined by the
behavior of error convergence, and the learning of the
scale-up characteristics was conducted adopting super-
vised learning data obtained by smaller laboratory scale
equipment of three sizes (vessel diameter were 125, 230
and 500mm, respectively). The granule properties of
granule mass median diameter, geometric standard devia-
tion, apparent density and shape factor obtained in the
commercial scale equipment (vessel diameter was 750 mm)
at various moisture contents, agitator rotational speeds
and air flow rates were predicted. There was close agree-
ment between the predicted and the experimental data,
and scale-up characteristics were well understood by the
neural network with back-propagation learning. The effect
of learning data number on the accuracy of prediction
was also investigated.
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