Taxuspines X—Z, New Taxoids from Japanese Yew Taxus cuspidata Hideyuki Shigemori, Xiao-xia Wang, Naotoshi Yoshida, and Jun'ichi Kobayashi* Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan. Received February 14, 1997; accepted March 10, 1997 Three new taxoids, taxuspines X-Z (1—3), have been isolated from stems of the Japanese yew *Taxus cuspidata* Sieb. et Zucc. and the structures elucidated on the basis of spectroscopic data. Taxuspine X (1) is a rare example of a bicyclic taxane-related diterpenoid consisting of 6/12-membered ring system with a cinnamoyl group at C-5. Taxuspine Y (2) is one of unique taxoids with 5/7/6-membered ring system, while taxuspine Z (3) is a new taxoid consisting of 6/8/6-ring system with a Winterstein's acid moiety at C-5. Key words taxoid; taxuspine X—Z; Japanese yew; bicyclic diterpenoid Numerous taxoids have been isolated from various yew trees and some of them exhibit interesting biological activities.¹⁾ In our continuing search for bioactive taxoids, we previously isolated a series of new taxoids, taxuspines A—H and J—W,²⁻⁸⁾ from stems and leaves of the Japanese yew *Taxus cuspidata* SIEB. *et* ZUCC. Further investigation of the extracts of stems of this yew led to the isolation of three new taxane and related diterpenoids, taxuspines X—Z (1—3). In this paper we describe the isolation and structure elucidation of 1—3. The methanolic extract of stems of the yew collected at Sapporo was partitioned between toluene and water. The toluene soluble portions were subjected to a silica gel column followed by reversed-phase column chromatographies to afford taxuspines X (1, 0.00014%), Y (2, 0.0002%), and Z (3, 0.000026%). Taxuspine X (1) was obtained as a colorless amorphous solid and showed the molecular ion peak at m/z 766 (M⁺) in the electron impact (EI)-MS spectrum. HR-EI-MS analysis revealed the molecular formula to be C₄₁H₅₀O₁₄ [m/z 766.3191 (M⁺), Δ -1.0 mmu]. IR absorptions at 1740 and 1640 cm⁻¹ implied that 1 possessed ester and unsaturated ester groups. Analyses of the ¹H- and ¹³C-NMR data (Table 1) and heteronuclear multiple quantum coherence (HMQC) spectrum of 1 provided six acetyls, one unsaturated ester carbonyl, one monosubstituted benzene, one disubstituted olefin, one trisubstituted olefin, two tetrasubstituted olefin, five oxymethines, one oxymethylene, one sp^3 methine, two sp^3 methylenes, one sp^3 quaternary carbon, and four methyl groups. Proton signals due to a cinnamoyl group appeared at $\delta_{\rm H}$ 7.40 (3H, m), 7.53 (2H, m), 6.60 (1H, d, J = 15.1 Hz; trans-oriented), and 7.87 (1H, d, J = 15.1 Hz). UV absorption at 279 nm also supported the presence of the cinnamoyl group. Since fifteen out of seventeen unsaturations were thus accounted for, 1 was inferred to contain two rings. Detailed analysis of the ¹H–¹H correlation spectroscopy (COSY) spectrum revealed connectivities of C-1 to C-3, C-5 to C-7, C-13 to C-1, and C-22 to C-23. Heteronuclear multiple-bond correlation spectroscopy (HMBC) correlations of H-13 to C-11 and C-12, H₃-16 and H₃-17 to C-1, C-11, and C-15 indicated the presence of a cyclohexene moiety (ring A), while the correlations of H_3 -18 to C-11, C-12, and C-13 revealed that Me-18 was attached at C-12. HMBC correlations of H-3 to C-5, H-5 to C-3 and C-4, H-6a to C-8, H-7 to C-9, H-10 to C-9, and H-10 to C-11 suggested the presence of a cyclododecadiene moiety (ring B). The presence of an oxymethylene (C-20) at C-4 was deduced from the chemical shifts ($\delta_{\rm H}$ 4.41, 4.93, H-20; $\delta_{\rm C}$ 59.67, C-20) and HMBC correlations of H₂-20 to C-3 and C-4, and H-20a to C-5. HMBC cross-peaks of H₃-19 to C-7, C-8, and C-9 indicated that Me-19 was attached at C-8. Five out of six acetoxy groups were attached at C-2, C-7, C-10, C-13, and C-20 based on HMBC correlations of H-2 ($\delta_{\rm H}$ 5.80), H-7 ($\delta_{\rm H}$ 5.50), H-10 ($\delta_{\rm H}$ 7.27), H-13 ($\delta_{\rm H}$ 5.28), and H-20 ($\delta_{\rm H}$ 4.41, 4.93) to acetyl carbonyls, while the cinnamoyl group was connected to C-5 from an HMBC correlation of H-5 to C-21 ($\delta_{\rm C}$ 165.65). The remaining acetoxy group was an enol acetate connected to C-9, judging from the carbon chemical shift ($\delta_{\rm C}$ 143.67).⁸⁾ Thus the structure of taxuspine X was assigned to be 1. Relative stereochemistry of 1 was deduced from the nuclear Overhauser effect spectroscopy (NOESY) spectrum as shown in Fig. 1. The NOESY correlation of H-13/H₃-17 revealed that the ring A had a boat conformation and H-13 was β -oriented, while the correlations of H-2/H-16 and H-14a/H-17 indicated the β -orientation of H-14a and H-2. NOESY correlations of H-20a/H-2 and H-7/H-10 implied that the two double bonds at C-3 and C-8 had E-configuration. NOESY cross-peaks of H-7/H₃-18, H- $10/H_3$ -18, and H_3 -18/H-23 revealed that H-7, H-10, and the cinnamovl group were α -oriented. The molecular formula of taxuspine Y (2) was established to be $C_{31}H_{38}O_9$ by the HR-EI-MS [m/z 494.1907 $(M-i\text{-PrOH})^+$, $\Delta - 3.3 \,\text{mmu}$] and $^{13}\text{C-NMR}$ data. The IR spectrum indicated the presence of hydroxy © 1997 Pharmaceutical Society of Japan *To whom correspondence should be addressed. 1206 Vol. 45, No. 7 Table 1. ¹H- and ¹³C-NMR Data of Taxuspine X (1) in CDCl₃ | Position | $^{1}\mathrm{H}^{a)}$ | J (Hz) | ¹³ C ^{a)} | H coupled with C ^{b)} | |----------------|-----------------------|-----------|-------------------------------|---------------------------------| | 1 | 1.81 m | | 46.47 d | H-2, H-13, H-14a, H-16,
H-17 | | 2 | 5.80 dd | 11.1, 4.8 | 68.85 d | | | 3 | 5.99 d | 11.1 | 124.48 d | H-5, H-20a, H-20b | | 4 | | | 132.21 s | H-5, H-20a, H-20b | | 5 | 5.75 m | | 69.42 d | H-3, H-7, H-20a | | 6 (a) | $2.57 \mathrm{m}$ | | 35.11 t | H-7 | | (b) | $2.14 \mathrm{m}$ | | | | | 7 | 5.50 d | 9.1 | 66.74 d | H-5, H-6a, H-19 | | 8 | | | 125.45 s | H-6a, H-19 | | 9 | | | 143.67 s | H-7, H-10, H-19 | | 10 | 7.27 s | | 68.56 d | | | 11 | | | 136.92 s | H-10, H-13, H-16, H-17, | | | | | | H-18 | | 12 | | | 135.40 s | H-10, H-13, H-14a, H-18 | | 13 | 5.28 d | 9.1 | 69.99 d | H-18 | | 14 (a) | 2.55 m | | 25.80 t | H-2, H-13 | | (b) | 2.03 m | | | | | 15 | | | 36.19 s | H-10, H-16, H-17 | | 16 | 1.12 s | | 33.20 q | H-17 | | 17 | 1.30 s | | 25.17 q | H-16 | | 18 | 2.28 s | | 17.01 q | | | 19 | 1.65 s | | 12.23 q | H-7 | | 20 (a) | 4.93 d | 12.9 | 59.67 t | H-3 | | (b) | 4.41 d | 12.9 | | | | 21 | 6 60 1 | | 165.65 s | H-5, H-22, H-23 | | 22 | 6.60 d | 15.1 | 117.87 d | | | 23 | 7.87 d | 15.1 | 145.93 d | ** 00 | | 24 | 7.52 | | 134.10 s | H-22 | | 25
26 | 7.53 m | | 128.12 d | H-27 | | 26
27 | 7.40 m | | 129.08 d | ** 05 | | 2-AcO | 7.40 m
1.98 s | | 130.70 d | H-25 | | 2-ACO | 1.908 | | 169.18 s | H-2 | | 7-AcO | 1.98 s | | 20.84 q
169.71 s | H-7 | | r-Aco | 1.90 8 | | | п-/ | | 9-AcO | 1.88 s | | 21.01 q
167.83 s | | | <i>J-1</i> 100 | 1.00 3 | | 20.41 q | | | 10-AcO | 2.06 s | | 20.41 q
167.84 s | H-10 | | 10-1100 | 2.003 | | 21.05 q | 11-10 | | 13-AcO | 1.95 s | | 170.58 s | H-13 | | 15 /100 | 1.//3 | | 21.05 q | 11-17 | | 20-AcO | 2.20 s | | 170.63 s | H-20 | | _3 / 100 | | | 21.30 q | 11 20 | | | | | 21.50 q | | a) In ppm; b) in HMBC spectrum. (3455 cm⁻¹), ester (1715 cm⁻¹), and unsaturated carbonyl (1700 cm⁻¹) groups. The ¹H- and ¹³C-NMR data showed signals due to one α,β -unsaturated carbonyl, one exomethylene, two acetyls, one benzoyl, one tetrasubstituted olefin, one oxygenated quaternary carbon, four oxymethines, two sp^3 quaternary carbons, one sp^3 methine, three methylenes, and four methyl groups. Since eight out of eleven unsaturations were thus accounted for, 2 was inferred to contain three rings. HMBC correlations of H-14a to C-1, C-11, and C-13 and H₃-18 to C-11, C-12, and C-13 revealed the presence of a cyclopentenone ring (ring A), which was also supported by the UV absorption at 235 nm (ε 15700). Signals due to two methyl groups ($\delta_{\rm H}$ 1.18, 1.23), a deuterium-exchangeable proton ($\delta_{\rm H}$ 2.50), and an oxygenated quaternary carbon ($\delta_{\rm C}$ 75.81, C-15) indicated the presence of a hydroxyisopropyl group, which was attached at C-1 from HMBC correlations of H₃-16 and H₃-17 to C-1. The hydroxyisopropyl group was Fig. 1. Relative Stereochemistry of Taxuspine X (1) Dotted arrows denote NOESY correlations. inferred to be β -oriented, since NOESY correlations of H₃-16/H-2 and H₃-17/H-14a were observed. HMBC correlations of H-2 to C-8, H-6b to C-8, H₂-7 to C-9, and H₃-19 to C-8 and NOESY correlations of H-2/H₃-19, H-3/H-7b, and H-7b/H-10 revealed the presence of a seven-membered ring (ring B) and a six-membered ring (ring C). Two acetoxy groups were connected to C-2 and C-9, judging from HMBC correlations of H-2 and H-9 to acetyl carbonyls ($\delta_{\rm C}$ 170.00 and 171.52, respectively), while one benzoate group was attached at C-10 based on the HMBC cross-peak between H-10 and a benzoyl carbonyl carbon ($\delta_{\rm C}$ 164.77). The signals at $\delta_{\rm H}$ 4.45 and 5.12 (each 1H, s) indicated the presence of an exomethylene at C-4 by HMBC correlation of H-20a to C-3 and C-5, while a hydroxyl group was attached at C-5, judging from a proton signal at $\delta_{\rm H}$ 4.25 (br s, H-5). Thus the structure of taxuspine Y was assigned to be 2. Relative stereochemistry of 2 was elucidated to have a chair/boat conformation at B/C ring by the NOESY spectrum. The molecular formula of taxuspine Z (3) was revealed to be $C_{37}H_{51}NO_9$ by HR-EI-MS $[m/z 653.3589 (M^+), \Delta$ +2.6 mmu]. The ¹H- and ¹³C-NMR signals ($\delta_{\rm H}$ 2.83, 3.01, 3.75, 7.33, 7.40; $\delta_{\rm C}$ 40.32, 42.86, 67.89, 127.70, 128.23, 128.37, 139.08, 170.94) indicated the presence of a 3-N,N-dimethylamino-3-phenylpropanoyl group (Winterstein's acid⁹⁾). Prominent fragment ion peaks at m/z 134 and 192 in the EI-MS corresponded to fission of the Winterstein's acid moiety from 3. HMBC correlations of H_3 -16 and H_3 -17 to C-1 and C-15, H_3 -18 to C-11, C-12, and C-13, H₃-19 to C-3, C-7, C-8, and C-9, and H-20a to C-3 and C-5 revealed that 3 possessed a 6/8/6-ring system. Three acetoxy groups were attached at C-9, C-10, and C-13 based on the HMBC correlations of H-9, H-10, and H-13 to acetyl carbonyls ($\delta_{\rm C}$ 169.88, 170.23, and 170.55, respectively) and the oxymethine proton resonances (δ_H 5.82, 5.96, and 5.91, respectively), while a hydroxyl group was attached at C-2 based on the HMBC correlation of an oxymethine proton ($\delta_{\rm H}$ 4.16) to C-2. The Winterstein's acid part was attached at C-5 by an HMBC correlation of H-5 to C-21. Thus the structure of taxuspine Z was assigned to be 3 and the relative stereochemistry was elucidated from the NOESY spectrum. The absolute stereochemistry at C-23 of the Winterstein's acid moiety was determined to be R by chiral HPLC analysis (SUMICHIRAL OA-5000) of the acid hydrolysis prod- Taxuspines X—Z (1—3) are new taxoids from stems of July 1997 1207 the Japanese yew Taxus cuspidata Sieb. et Zucc. Taxuspine X (1) is a rare example of bicyclic taxane-related diterpenoids consisting of 6/12-membered ring system with a cinnamoyl group at C-5.^{10,11)} Taxuspine Y (2) is one of unique taxoids with 5/7/6-membered ring system, while taxuspine Z (3) is a new taxoid consisting of a 6/8/6-ring system with a Winterstein's acid moiety at C-5.¹²⁾ Compounds 1—3 exhibited cytotoxicity in vitro against L1210 murine leukemia cells with IC₅₀ values of 4.2, 5.4, and $>10 \,\mu\text{g/ml}$, respectively, and against KB human epidermoid carcinoma cells with IC₅₀ values of >10, >10, and $6.2 \,\mu\text{g/ml}$, respectively. ## Experimental General Methods Optical rotations were determined on a JASCO DIP-370 polarimeter. UV and IR spectra were obtained on JASCO Ubest-35 and JASCO IR Report-100 spectrometers, respectively. ¹H- and ¹³C-NMR spectra were recorded on Bruker ARX-500 and AMX-600 spectrometers. The 7.26 ppm resonance of residual CHCl₃ and 77.0 ppm of CDCl₃ were used as internal references, respectively. EI-MS was obtained on a JEOL DX-303 spectrometer operating at 70 eV. FAB-MS was measured on a JEOL HX-110 spectrometer by using glycerol matrix. Collection, Extraction, and Separation The Japanese yew Taxus cuspidata Sieb. et Zucc. was collected at Sapporo, Hokkaido. The stems (1.2 kg) of the yew was extracted with MeOH (151×4). The MeOH extract was partitioned between toluene (11×4) and H_2O (750 ml). The toluene soluble portions were evaporated under reduced pressure to give a residue (24.5 g), part of which (15.9 g) was subjected to a silica gel column (hexane/acetone, 8:1) to give a fraction (3.22 g), part of which (1.11 g) was subjected to a silica gel column (CHCl₃/acetone, 10:1) to afford a fraction (38.6 mg). The fraction was separated by a reversed-phase column (YMC GEL ODS 60; CH₃CN/H₂O, 1:1) to give a fraction (17.7 mg), which was purified by reversed-phase HPLC (YMC-Pack ODS AL-323, $10 \times 250 \,\mathrm{mm}$; flow rate 2.5 ml/min; UV detection at 227 nm; CH₃CN/H₂O, 1:1) to give taxuspine Y (2, 1.0 mg, t_R 20.0 min). Toluene extract (115 g) obtained from the stems (11 kg) of the yew was subjected to a silica gel column with hexane/acetone to give fractions I (29.2 g; hexane/acetone, 2:1) and II (7.52 g; hexane/acetone, 1:1). The fraction II was subjected to a silica gel column (hexane/acetone, 8:1) followed by a reversed-phase HPLC (YMC-Pack ODS AM-323, 10×250 mm; flow rate 2.5 ml/min; UV detection at 227 nm; CH₃OH/ $\rm H_2O$, 70:30) to afford taxuspine Z (3, 2.0 mg, t_R 28.0 min). The fraction I was separated by a reversed-phase column (YMC GEL ODS 60; CH₃CN/H₂O, 4:1) followed by a silica gel column (CHCl₃/acetone, 10:1) to give a fraction (0.90 g), which was separated by a silica gel column (CHCl₃/MeOH, 40:1) followed by a reversed-phase column (YMC-GEL ODS 60; MeOH/H2O, 80:20) and then reversed-phase HPLC (YMC-Pack ODS AL-323, $10 \times 250 \,\mathrm{mm}$; flow rate $2.5 \,\mathrm{ml/min}$; UV detection at 227 nm; MeOH/H₂O, 70:30) to give taxuspine X (1, 11.7 mg, t_R 27.2 min). Taxuspine X (1): A colorless amorphous solid; $[α]_{6}^{22} + 31.7^{\circ}$ (c = 0.13, CHCl₃); UV (MeOH) λ_{max} 279 (ε 15300), 217 (19000), 205 (17900) nm; IR (film) ν_{max} 3450, 1740, 1640, 1370, 1240 cm⁻¹; ¹H- and ¹³C-NMR (Table 1); EI-MS m/z 766 (M⁺); HR-EI-MS m/z 766.3191 (M⁺), Calcd for C₄₁H₅₀O₁₄, 766.3201; ¹H-¹H COSY correlations (CDCl₃, H/H): 1/2, 1/14a, 2/3, 5/6a, 5/6b, 6a/6b, 6a/7, 6b/7, 9/10, 13/14a, 13/14b, 14a/14b, 20a/20b, 22/23, 25/26, 26/27; HMBC correlations (Table 1); NOESY correlations (CDCl₃ H/H): 1/2, 1/14a, 1/16, 1/17, 2/16, 2/20a, 3/5, 3/7, 3/16, 3/22, 5/6a, 5/6b, 5/19, 6a/19, 6a/20b, 7/10, 7/18, 7/19, 10/18, 13/14a, 13/17, 13/18, 13/20a, 14a/17, 18/22, 18/23, 19/20b, 22/25, 23/25. Taxuspine Y (2): A colorless amorphous solid; $[\alpha]_{0}^{3^{1}}$ – 25.4° (c = 0.17, CHCl₃); UV (MeOH) λ_{max} 235 (ε 15700), 204 (11100) nm; IR (film) ν_{max} 3455, 1715, 1700, 1370, 1250 cm⁻¹; ¹H-NMR (CDCl₃): δ7.91 (2H, d, J=9.2 Hz, H-23, H-27), 7.58 (1H, m, H-25), 7.45 (2H, m, H-24, H-26), 6.62 (1H, d, J=10.3 Hz, H-10), 6.17 (1H, d, J=9.2 Hz, H-2), 6.12 (1H, d, J=10.3 Hz, H-9), 5.12 (1H, s, H-20a), 4.45 (1H, s, H-20b), 4.25 (1H, br s, H-5), 3.29 (1H, d, J=9.2 Hz, H-3), 2.74 (1H, d, J=18.8 Hz, H-14b), 2.50 (1H, br s, 15-OH), 2.48 (1H, d, J=18.8 Hz, H-14a), 2.04 (3H, s, 2-AcO), 1.96 (3H, s, H₃-18), 1.84 (1H, m, H-6b), 1.82 (3H, s, 9-AcO), 1.81 (1H, m, H-7b), 1.77 (1H, m, H-6a), 1.64 (1H, m, H-7a), 1.23 (3H, s, H₃-16), 1.18 (3H, s, H₃-17), 1.02 (3H, s, H₃-19); ¹³C-NMR (CDCl₃): δ 207.4 (s, C-13), 171.52 (s, 2-COCH₃), 170.00 (s, 9-COCH₃), 164.77 (s, C-21), 161.75 (s, C-11), 155.43 (s, C-4), 146.85 (s, C-12), 133.72 (s, C-22), 129.64 (d, C-25), 128.87 (d, C-24, C-26), 128.74 (d, C-23, C-27), 111.38 (t, C-20), 76.02 (d, C-9), 75.81 (s, C-15), 75.81 (s, C-5), 68.87 (d, C-10), 68.02 (d, C-2), 65.00 (s, C-1), 44.21 (t, C-3), 44.21 (d, C-14), 42.50 (s, C-8), 30.45 (q, C-17), 30.25 (t, C-6), 26.66 (t, C-7), 26.66 (q, C-16), 21.69 (q, 2-CH₃CO), 20.52 (q, 9-CH₃CO), 16.50 (q, C-19), 8.87 (q, C-18); EI-MS m/z 494 (M-i-PrOH)⁺; HR-EI-MS m/z 494.1907 (M-i-PrOH) $^+$, Calcd for $C_{28}H_{30}O_8$, 494.1940; $^1H^{-1}H$ COSY correlations (CDCl₃, H/H): 2/3, 5/6a, 5/6b, 6a/6b, 6b/7, 9/10, 14a/14b, 20a/20b; HMBC correlations (CDCl₃, H/C): 2/3, 2/8, 2/15, 2/CH₃CO, 6b/8, 7/9, 9/CH₃CO, 10/1, 10/9, 10/12, 10/PhCO, 20a/3, 20a/5, 14a/1, 14a/11, $14a/12,\ 14a/13,\ 14a/15,\ 16/1,\ 16/15,\ 16/17,\ 17/1,\ 17/15,\ 17/16,\ 18/11,$ 18/12, 18/13, 19/8; NOESY correlations (CDCl₃, H/H): 2/3, 2/16, 2/19, 2/20a, 3/7b, 3/10, 3/14b, 5/6b, 6b/19, 7/10, 7a/19, 9/16, 9/19, 10/18, 14a/17, 19/20a, 19/20b. Taxuspine Z (3): A colorless amorphous solid; $[\alpha]_D^{28} + 31.2^{\circ}$ (c=0.08, CHCl₃); UV (MeOH) $\lambda_{\rm max}$ 265 (ϵ 2330), 210 (15400) nm; IR (film) $\nu_{\rm max}$ 3530, 1740, 1640 cm⁻¹; ¹H-NMR (CDCl₃): δ7.40 (2H, m, H-26, H-28), 7.40 (1H, m, H-27), 7.33 (2H, m, H-25, H-29), 5.96 (1H, d, J = 10.5 Hz, H-10), 5.91 (1H, dd, J = 15.4, 8.0 Hz, H-13), 5.82 (1H, d, J = 10.5 Hz, H-9), 5.42 (1H, s, H-20a), 5.39 (1H, s, H-20b), 5.21 (1H, s, H-5), 4.16 (1H, dd, J=6.8, 3.0 Hz, H-2), 3.75 (1H, t, J=6.8 Hz, H-23), 3.01 (1H, m, H-22a), 2.97 (1H, d, J=6.8 Hz, H-3), 2.83 (1H, m, H-22b), 2.56 (1H, m, H-14a), 2.20 (3H, s, H₃-18), 2.18 (6H, s, NMe₂), 2.10 (1H, m, H-1), 2.05 (3H, s, 13-AcO), 2.04 (3H, s, 9-AcO), 2.01 (3H, s, 10-AcO), 1.68 (3H, s, H₃-16), 1.59 (1H, m, H-7a), 1.45 (1H, m, H-6a), 1.38 (1H, dd, $J = 11.0, 4.5 \text{ Hz}, \text{ H-7b}, 1.30 (1\text{H}, \text{m}, \text{H-14b}), 1.15 (3\text{H}, \text{s}, \text{H}_3-17), 1.10$ (1H, m, H-6b), 0.84 (3H, s, H_3 -19); 13 C-NMR (CDCl₃): δ 170.94 (s, C-21), 170.55 (s, 13-CH₃CO), 170.23 (s, 10-CH₃CO), 169.88 (s, 9-CH₃CO), 143.46 (s, C-4), 139.08 (s, C-24), 136.71 (s, C-12), 132.95 (s, C-11), 128.37 (d, C-25, C-29), 128.23 (d, C-26, C-28), 127.70 (d, C-27), 119.44 (t, C-20), 77.81 (d, C-5), 76.75 (d, C-9), 72.38 (d, C-10), 70.38 (d, C-13), 70.04 (d, C-2), 67.89 (d, C-23), 51.33 (d, C-1), 46.10 (d, C-3), 44.33 (s, C-8), 42.86 (q, NMe₂), 40.32 (t, C-22), 37.29 (s, C-15), 31.61 (q, C-17), 28.68 (t, C-6), 28.02 (t, C-7), 27.41 (t, C-14), 27.10 (q, C-16), 21.34 (q, 13-CH₃CO), 21.00 (q, 9-CH₃CO), 20.81 (q, 10-CH₃CO), 17.97 (q, C-19), 15.24 (q, C-18); EI-MS m/z 653 (M⁺), 192, 134; HR-EI-MS m/z 653.3589 (M⁺), Calcd. for C₃₇H₅₁NO₉, 653.3563; ¹H⁻¹H COSY correlations (CDCl₃, H/H): 1/2, 1/14a, 2/3, 5/6a, 5/6b, 6a/6b, 6b/7, 9/10, 13/14a, 14a/14b, 20a/20b, 22a/22b, 22/23, 25/27; HMBC correlations (CDCl₃, H/C); 3/2, 3/4, 3/19, 5/3, 5/7, 5/21, 6b/7, 7/19, 9/7, 9/8, 9/10, 9/19, 9/CH₃CO, 10/9, 10/11, 10/12, 10/CH₃CO, 13/CH₃CO, 14a/12, 14a/13, 14b/13, 16/1, 16/11, 16/15, 16/17, 17/1, 17/11, 17/15, 17/16, 18/11, 18/12, 18/13, 19/3, 19/7, 19/8, 19/9, 20a/3, 20a/5, 22/21, 22/23, 22/24, 23/22; NOESY correlations (CDCl₃, H/H): 1/14a, 1/16, 1/17, 2/9, 2/16, 2/19, 3/14b, 3/18, 5/6a, 5/6b, 7b/10, 9/16, 9/19, 10/18, 13/14a, 13/17, 16/17, 18/22b, 19/20a, 25/26, 26/27. Determination of Absolute Configuration of 3-N,N-Dimethylamino-3-phenylpropanoic Acid in Taxuspine Z (3) Compound 3 (0.1 mg) was refluxed in 10% HCl aq. (0.1 ml) for 1 h. The reaction mixture was extracted with Et₂O (1 ml × 2), and the aqueous layer was concentrated under reduced pressure. The residue was dissolved in H₂O for chiral HPLC analysis using a SUMICHIRAL OA-5000 column (Sumitomo Chemical Industry, 0.46×15 cm; flow rate 1.0 ml/min; UV detection at 254 nm; cluent: 2.0 mm CuSO₄ in H₂O/CH₃OH, 98:2). Retention times of standard 3-(S)- and 3-(R)-N,N-dimethylamino-3-phenylpropanoic acids⁹⁾ were 14.7 and 15.9 min, respectively, and that of 3-N,N-dimethylamino-3-phenylpropanoic acid contained in the hydrolysate of 3 was found to be 15.9 min. Acknowledgements We thank Prof. T. Sasaki (Kanazawa University) for cytotoxicity test. This work was partly supported by a Grant-in-Aid from the Naito Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan. ## References - 1) Kingston D. G. I., Molinero A. A., Rimoldi J. M., *Progress in the Chemistry of Organic Natural Products*, **61**, 1—206 (1993) and references cited therein. - Kobayashi J., Ogiwara A., Hosoyama H., Shigemori H., Yoshida N., Sasaki T., Li Y., Iwasaki S., Naito M., Tsuruo T., Tetrahedron, - **50**, 7401—7416 (1994). - 3) Kobayashi J., Hosoyama H., Shigemori H., Koiso Y., Iwasaki S., Experientia, 51, 592-595 (1995). - Kobayashi J., Inubushi A., Hosoyama H., Yoshida N., Sasaki T., - Shigemori H., *Tetrahedron*, **51**, 5971—5978 (1995). Wang X.-x., Shigemori H., Kobayashi J., *Tetrahedron*, **52**, 2337—2342 (1996). - 6) Kobayashi J., Hosoyama H., Katsui T., Yoshida N., Shigemori H., Tetrahedron, 52, 5391-5396 (1996). - 7) Wang X.-x., Shigemori H., Kobayashi J., Tetrahedron, 52, - 12159—12164 (1996). - 8) Hosoyama H., Inubushi A., Katsui T., Shigemori H., Kobayashi J., Tetrahedron, 52, 13145-13150 (1996). - Winterstein E., Guyer A., Z. Physiol. Chem., 128, 175 (1923). Zamir L. O., Zhou Z. H., Caron G., Nedea M. E., Sauriol F., 10) Mamer O., J. Chem. Soc., Chem. Commun., 1995, 529—530. - Fang W.-S., Fang Q.-C., Liang X.-T., Lu Y., Zheng Q.-T., 11) Tetrahedron, 51, 8483—8490 (1995). - 12) Appendino G., Nat. Prod. Rep., 1995, 349-360.